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Figure 1: Different rendering results generated by our variance soft shadow mapping method without any precomputation.

Abstract
We present variance soft shadow mapping (VSSM) for rendering plausible soft shadow in real-time. VSSM is based
on the theoretical framework of percentage-closer soft shadows (PCSS) and exploits recent advances in variance
shadow mapping (VSM). Our new formulation allows for the efficient computation of (average) blocker distances,
a common bottleneck in PCSS-based methods. Furthermore, we avoid incorrectly lit pixels commonly encountered
in VSM-based methods by appropriately subdividing the filter kernel. We demonstrate that VSSM renders high-
quality soft shadows efficiently (usually over 100 fps) for complex scene settings. Its speed is at least one order of
magnitude faster than PCSS for large penumbra.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism – Color, Shading, Shadowing, and Texture

1. Introduction

Shadow rendering is a basic and important feature for many

applications. However, applications like computer games re-

quire shadow rendering to be very efficient — ideally less

than 10ms per frame. Shadow mapping [Wil78] is a purely

image-based shadow method which scales well with scene

complexity. Hence it fulfills the strict requirement of game

engines and has become the de facto standard for shadow

rendering in computer games. While the original shadow

mapping method only deals with hard shadows, a variant

called percentage-closer soft shadows (PCSS) [Fer05] is

sometimes used for rendering soft shadow. PCSS achieves

visually plausible quality and real-time performance for

small light source. Moreover, its implementation only incurs

shader modification and is easy to be integrated into existing

rendering system. The PCSS method contains the following

main three steps. First, compute the average blocker depth

for the current pixel by averaging all depth values within

an initial filter kernel that are smaller than current pixel’s

† Corresponding author: Zhao Dong. The first two authors con-

tributed equally.

depth. Then, the average blocker depth is used to compute

the penumbra size. Note that PCSS assumes that the block-

ers/receivers are all planar and in parallel. Using this as-

sumption, the penumbra can be easily computed based on

similar triangles. Finally, a loop over all sampling points in

the penumbra is performed to do shadow comparisons and

to sum up the visibility to get soft shadows. The algorithmic

pipeline of the PCSS method can be regarded as a general

soft shadow mapping framework based on the planarity as-

sumption.

1.1. Soft Shadowing with PCSS

Following the PCSS pipeline, several pre-filtering soft

shadow mapping methods [Lau07, ADM∗08] have been re-

cently introduced. Convolution soft shadow map (CSSM) is

built on pre-filterable shadow reconstruction functions using

the Fourier basis. The reconstruction functions with differ-

ent number of basis terms are shown in Figure 2(b). It is

easy to see that the reconstruction curve of CSSM covers the

whole range of (d − z) values. Such a double-bounded pre-

filtering function can be applied for both average blocker

depth computation and soft shadow test, and fits very well

into the PCSS framework. Yet, large amounts of texture
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memory are required to store Fourier basis terms, making it

less practical. Compared to CSSM, Variance Shadow Maps
(VSM) [DL06] support pre-filtering based on a one-tailed

version of Chebyshev’s inequality and requires a much lower

amount of texture memory. Unfortunately, there is no obvi-

ous way to correctly pre-filter average blocker depth values

based on the VSM theory. In [Lau07], the average blocker

depth evaluation step is therefore performed by brute-force

point sampling of the depth map. The shadow reconstruc-
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Figure 2: Comparison between different pre-filtering
shadow functions. The blue line represents the heaviside step
function for the shadow test. d represents the depth value of
current point and z represents the depth value sampled from
shadow map with a filter kernel.

tion curve of VSM are shown in Figure 2(a). It is easy to see

that this curve only bounds one side of shadow comparison

function and is undefined when (d − z) ≤ 0. Therefore, we

call it single-bounded pre-filtering shadow function. Exist-

ing techniques [DL06] simply assume the shadow value is

equal to 1 in this case. When the average depth value zAvg
of a filter kernel is bigger than or equal to the depth value

d of the current point, this point will be assumed to be fully

lit. When handling hard shadow or when the filter kernel is

very small, this assumption is reasonable. However, when

handling large kernel for soft shadow, this lit-assumption for

the whole kernel can introduce incorrect result (lit pixels in-

stead of partially shadowed). We refer to this as the “non-

planarity” problem for single-bounded pre-filtering shadow

functions [Sal08]. Such incorrectly-lit artifacts are more se-

rious when the kernel size increases.

1.2. Our Method

Motivated by aforementioned problems, Variance Soft
Shadow Map (VSSM) is introduced to enable real-time,

high-quality soft shadow rendering with low-memory cost.

Our key contributions are:

1. Derivation a novel formula for estimating average

blocker depth, which is based on VSM theory.

2. An efficient and practical filter kernel subdivision

scheme that handles the “non-planarity” lit problem for

single-bounded VSM shadow functions. The subdivision

scheme can be either in uniform way or in adaptive way

which is based on linear quad-tree traversal on the GPU.

Such a divide-and-rule strategy succeeds in efficiently re-

moving incorrect-lit.

2. Related Work

A complete review of existing shadow algorithms is beyond

the scope of this article and we refer the reader to Woo et

al. [WPF90], Hasenfratz et al. [HLHS03], and to a recent

course [EASW09] for a detailed overview. In this section,

the most related pre-filtering shadow mapping techniques

and soft shadow mapping methods will be introduced.

2.1. Soft Shadow Mapping with Backprojection

In recent work [AHL∗06, GBP06], researchers have

transferred ideas from classical discontinuity mesh-

ing [DF94] to the shadow mapping domain. Although these

backprojection-based methods stem from physically correct

theory, crude approximations of blocker geometry may

yield either incorrect occluder fusion or light leaking. The

work by Guennebaud et al. [GBP07] and bitmask soft shad-

ows [SS07] remove most of these problems, but increase the

algorithmic complexity or computation time. More recently,

Yang et al. [YFGL09] accelerate backprojection soft shadow

mapping by introducing a hierarchical technique, which

results in better performance for large penumbra but is still

complex for real applications.

2.2. Hard Shadow Mapping with Pre-Filtering

Edge anti-aliasing is a classical problem for hard shadow

mapping [Wil78]. Unfortunately, standard filtering can-

not be applied directly to the shadow map, because the

shadow test has to be carried out before the filtering takes

place [RSC87]. Besides brute-force point sampling, several

pre-filtering shadow mapping methods [DL06, AMB∗07,

AMS∗08, Sal08] have been proposed recently to solve this

problem. The general idea is to transform the standard

shadow test function into a linear basis, which then enables

the use of readily available filtering functions, such as mip-

mapping or summed-area tables (SAT) [Cro84].

The variance shadow map (VSM) [DL06] is a probabilis-

tic approach that supports shadow pre-filtering. The shadow

test is based on one-tailed version of Chebyshev’s inequal-

ity which only gives an upper bound of the result. Usually

the upper bound value will be directly taken as the shadow

test results. The reconstructed function of VSM is shown in

Figure 2(a). It is easy to see when the variance σ2 becomes

bigger, the reconstructed results of VSM will become worse.

This will produce noticeable high frequency light leaking ar-

tifacts for scenes with high depth complexity. Lauritzen et

al. [LM08] successfully suppress light leaking by partition-

ing the shadow map depth range into multiple layers. How-

ever, the incorrectly-lit due to “non-planarity” problem still

exists since there is no correct definition for the left side of

shadow test function.

Convolution shadow maps (CSM) [AMB∗07] are based

on the same theory as CSSM [ADM∗08]. As mentioned

in Sec. 1.1, its shadow reconstruction function is “double-

bounded”. Hence the “non-planarity” problem does not exist
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for CSM. Yet, the shadow quality depends on the truncation

order and high order will incur impractical memory require-

ments for storing basis textures.

Exponential shadow maps (ESM) [AMS∗08] [Sal08]

use the exponential function to approximate the heaviside

shadow test function. Since the exponential function is

also single-bounded, it relies on standard percentage closer

filtering (PCF) for “non-planarity” regions [AMS∗08].For

hard shadows, those regions are small and PCF is efficient

enough. However, for soft shadows, these regions become

bigger and PCF becomes too expensive.

2.3. Soft Shadow Mapping with Pre-Filtering
One key insight of PCSS [Fer05] is that its step (1) and

(3) are based on brute-force point sampling of the depth

map. When the area light size becomes large, many sam-

pling points (e.g., 30×30) are required to avoid banding arti-

facts.Based on PCSS, more efficient prefiltering-based meth-

ods have been proposed, such as convolution soft shadow
map (CSSM) [ADM∗08] and SAT-based variance shadow
map (SAVSM) [Lau07], which we have already discuss

in Sec. 1.1. Despite the correct estimation of the average

blocker depth in SAVSM (brute-force), it may still show

“non-planarity” lit problems.

3. Overview
An overview of the VSSM algorithmic steps are given in Al-

gorithm 1 and we refer to the line numbers as (Lxx) in the

text. First, we generate a normal shadow map and two tex-

tures based on it (L2-L4): a summed-area table (SAT) and

a min-max hierarchical shadow map (HSM). Then for each

visible scene point P, we do the following: Firstly, the initial

filter kernel wi (blocker search area) is computed (L7) by

intersecting the shadow map plane with the frustum formed

by P and the light source. We then sample the average depth

value zAvg in wi from the SAT texture and the min-max depth

range in wi from min-max HSM. Comparing the depth value

d of P with the min-max depth range, we can quickly find

the fully-lit and fully-blocked (lit/umbra) scene points and

ignore them for following soft shadow computation (L10).

Then for the scene points that are left and which are poten-

tially penumbra, our VSSM method checks whether wi is a

“non-planarity” kernel or not. The condition here is whether

zAvg ≥ d. If wi is not a “non-planarity” kernel, the average

blocker depth will be estimated directly using a new formula

(L15), which will be introduced in section 4. If wi is a “non-

planarity” kernel, wi needs to be subdivided either uniformly

or adaptively to compute the average blocker depth (L12-

L13). The kernel subdivision scheme will be explained in

detail in section 5. After getting the average blocker depth,

the actual penumbra kernel wp can be computed (L16). Note,

the computation for kernel size in this step is similar to L7,

and just the shadow map plane is substituted by the average

blocker depth plane. Finally, the variance-based soft shadow

value of penumbra kernel wp can be evaluated either directly

or using the kernel subdivision scheme.

Algorithm 1 Overview of VSSM algorithm

1 Render scene from light center:

2 Render normal variance depth map

3 Generate summed-area table (SAT) for the depth map.

4 Render the min-max hierarchical shadow map (HSM)
5 for the depth map

6 Render scene from view point. For each visible point P:

7 Compute the initial kernel wi (blocker search area)

8 Check if P is lit or umbra using the HSM

9 if (P is lit or umbra)

10 return the shadow value accordingly

11 if (wi is “non-planarity” kernel)

12 Subdivide filter kernel

13 Estimate average blocker depth using novel formula
14 else
15 Estimate average blocker depth using novel formula
16 Compute penumbra kernel wp based on average blocker depth

17 if (wp is “non-planarity” kernel)

18 Subdivide filter kernel and evaluate soft shadow value

19 else
20 Evaluate soft shadow value directly

21 Render the final image using the visibility factors

4. Variance Soft Shadow Mapping

In this section, we introduce the theory about how to effi-

ciently estimate average blocker depth for VSSM.

4.1. Review of Variance Shadow Maps

Variance shadow maps are based on the one-tailored version

of Chebyshev’s inequality. Let x be a random variable drawn

from a distribution with mean μ and variance σ2, then for

t > μ:

P(x ≥ t) ≤ pmax(t) ≡ σ2

σ2 +(t −μ)2
(1)

Considering t represents the current point’s depth d, and x
represents the sampled depth z from the shadow map, the

quantity P(x ≥ t) in Eq. 1 represents the fraction of texels

over a filter kernel that will fail the depth comparison, which

is exactly the same as the result of PCF sampling. Since μ =
E(x) = x and σ2 = E(x2)−E(x)2, E(x) and E(x2) can be

generated on-the-fly to pre-filter the shadow test.

Note, only in the particular case of a single planar oc-

cluder at depth d1, casting a shadow onto a planar surface

at depth d2, the upper bound of Eq. 1 will be equal to the

shadow test result. In most other cases, Eq. 1 will not pro-

vide an exact value, but a close approximation (Fig. 2).

4.2. Estimating Average Blocker Depth

In order to fit VSM into the PCSS framework, the difficult

problem is how to efficiently estimate the average blocker

(first step in PCSS, see Sec. 1).

Considering a filter kernel w and the current point’s depth

t, the pre-filtered depth value z and its square z2 can be sam-

pled from the VSM. Based on linear filtering, the sampled

z is actually the average depth value zAvg in w. The depth
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values for all the texels in w can be separated into two cat-

egories: (1) the depth values which are ≥ t and the average

of this kind of depth values is defined as zunocc, (2) the depth

values which are < t and the corresponding average value is

defined as zocc. Let’s assume there are N samples in total in

filter kernel w. N1 of them are ≥ t and N2 of them are < t.
The following equation holds:

N1

N
zunocc +

N2

N
zocc = zAvg (2)

It is easy to see N1
N and N2

N correspond to shadow test results

P(x ≥ t) and P(x < t) = 1.0−P(x ≥ t). Therefore, Eq. 2 can

be written as:

P(x ≥ t)zunocc +(1.0−P(x ≥ t))zocc = zAvg (3)

Therefore, the average blocker depth value zocc is:

zocc = (zAvg −P(x ≥ t)zunocc)
/
(1.0−P(x ≥ t)) (4)

zAvg is known and P(x≥ t) can be evaluated based on Cheby-

shev’s inequality. The only unknown variable left is the av-

erage non-blocker depth value zunocc. Observing that in the

aforementioned two-plane scene setting, P(x ≥ t) is accurate

and in this case, zunocc = t. We therefore assume zunocc = t
and use it for general cases as well. This assumption gener-

ates high-quality soft shadows in all our experiments.

While it may now seem straightforward to compute the

average blocker depth value, the new formula relies on

the VSM shadow value P(x ≥ t). As mentioned already,

the shadow reconstruction function of VSM is just “single-

bounded”. If zAvg ≥ t, this will break the prerequisite of

Chebyshev’s inequality and the “non-planarity” lit problem

can occur (Fig. 3(a)). In order to evaluate the average blocker

depth correctly, we need to correct P(x ≥ t), which we pro-

pose to do using subdivision. In the following section, we

will explain the kernel subdivision scheme which deals with

the “non-planarity” problem (Fig. 3(b)).

(a) Without kernel subdiv. (b) With Kernel subdivision

Figure 3: Comparison between without kernel subdivision
and with kernel subdivision.

5. Non-Planarity Problem and its Solution

In this section, we introduce the uniform and the adaptive fil-

ter kernel subdivision schemes to handle the “non-planarity”

problem.

5.1. Motivation for Kernel Subdivision

For an arbitrary filter kernel w of a scene point P, the “non-

planarity” problem occurs if zAvg ≥ t. Here, t represents the

current point’s depth d. Standard VSM will assume that the

shadow value equals to 1 in this case. When w is small, it

is reasonable since the depth values of most texels in w are

likely to be bigger than t. However, when the size of w in-

creases, only part of the texels in w contain bigger depth

value than d. Therefore, the errors due to the lit assumption

for the whole w becomes obvious.

Following the concept of divide-and-rule, we propose

to subdivide the kernel w into a set of sub-kernels

{wci, i ∈ [1 . . .n]}. Depending on whether zAvg ≥ d in wci,

all the sub-kernels can be categorized into two parts. For the

normal sub-kernels fulfilling zAvg < t, the Chebyshev’s in-

equality still holds and we can compute the average blocker

depth and soft shadow based on it. For the “non-planarity”

sub-kernels fulfilling zAvg ≥ t, there are two options: (1) as-

suming each of them to be lit or (2) using normal PCF sam-

pling to do the shadow test. Option (1) is similar to the pre-

vious VSM strategy. However, since the sub-kernel wci is

much smaller than initial kernel w, the “non-planarity” lit

problem can be effectively suppressed. Option (2) is a good

alternative, since few cheap PCF samplings (2×2) can gen-

erate rather accurate results for wci. In our implementation,

option (2) is chosen.

(a) Uniform kernel subdivision (b) Adaptive kernel subdivision

Figure 4: Illustration of 4× 4 uniform and adaptive subdi-
vision for filter kernel.

5.2. Uniform Kernel Subdivision Scheme

Since the corner points of the initial kernel w are known, it is

straightforward to subdivide it into equal-sized sub-kernels.

As illustrated in Fig. 4(a), the whole quad represents the ini-

tial kernel w and each sub-quad inside of it represents a sub-

kernel wci. We loop over each wci and check whether it is a

“non-planarity” kernel or not. In Fig. 4, the blue sub-quad

represents “non-planarity” kernels and the green one repre-

sents the normal kernels. Here we conceptually separate all

the sub-kernels into two groups: the normal sub-kernel group

wc jand the “non-planarity” sub-kernel group wck. In follow-

ing, we will illustrate how to estimate average blocker depth

using the uniform kernel subdivision scheme.

Let’s first consider the normal sub-kernel group: To com-

pute P(x ≥ t) using Eq. 1 for the whole group, the mean
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value μ and the variance σ2 needs to be determined. More

specifically, the E(x) and E(x2) from all the sub-kernels in

this group need to be computed. We define the size of wc j
to be Tc j , and arrive at the following formulas to compute μ
and σ2 for the normal sub-kernel group:

μ = ∑
j
(E(x)c j ·Tc j)/∑

j
Tc j

σ2 = ∑
j
(E(x2)c j ·Tc j)/∑

j
Tc j −μ2 (5)

During the loop, E(x)c j and E(x2)c j can be sampled from

the SAT texture for each wc j. Then, E(x)c j ·Tc j, the sum of

all texels’ depth in wc j, is accumulated. The same accumu-

lation happens for E(x2)c j ·Tc j. Finally, the depth and depth

square sums are divided by the accumulated sub-kernel size

(Eq. 5) to get μ and σ2. Hence, the VSM shadow reconstruc-

tion function can be evaluated. The average blocker depth d1

in the normal kernel group can be evaluated using Eq. 4.

For the “non-planarity” sub-kernel group, we apply stan-

dard PCF sampling for each wck: m points are sampled in wck
and the sum of all the blocker depth samples are computed.

Since the size of wck is small, usually m = 2× 2 is enough.

In following steps, both the sum of all the blocker depth and

the sum of all the blocker sub-kernel size are accumulated.

Similar as before, we can get the average blocker depth d2

of the “non-planarity” sub-kernel group.

After getting d1 and d2, the average blocker depth d over

the whole kernel w can be computed by combining d1 and

d2 weighted by the corresponding blocker kernel size sepa-

rately. Note there is a reasonable acceleration strategy: the

variance σ2 represents the depth value variation in each wci.

Hence, when the zAvg in wci is bigger than current depth d,

and if the σ2 is also less than a small Threshold, such a wci
can probably be treated as fully-lit.

5.3. Adaptive Kernel Subdivision Scheme

To achieve better subdivision granularity control, we pro-

pose an adaptive kernel subdivision scheme, as shown in

Fig. 4(b). Compared to the uniform scheme, adaptive ker-

nel subdivision processes sub-kernels in hierarchical way. Its

performance is a balance between the hierarchical culling

gain and traversal cost. Usually when the number of sub-

kernels is large (≥ 64), adaptive subdivision achieves better

performance.

Since our filter kernel is always a 2D square, we can con-

struct a quad-tree in the 2D domain (Fig. 5(a)). For the filter

kernel w, the root node of the quad-tree represents w itself

and each tree node represents a sub-kernel {wci, i ∈ [1 . . .n]}.

Be aware the different wci are not equal-sized anymore and

they could exist in different levels of tree hierarchy. In Al-

gorithm 2, we show the steps for computing the final soft

shadow value based on adaptive kernel subdivision scheme.

Standard quad-tree traversal depends on recursive opera-

tions, which is not easily implemented on a stackless GPU.

(a) Kernel Hierarchy

Null

(b) Linear quad-tree traversal

Figure 5: Linear quad-tree traversal on 2D filter domain.

Algorithm 2 Adaptive kernel subdivision algorithm

1 Define V SMEx = 0, V SMEx2 = 0, VSMArea = 0

2 PCFArea = 0,PCFBArea = 0,LitArea = 0

3 Start from the root node of kernel w, TreeNode = root

5 While( TreeNode != Null ):

6 TreeNode wci is current node

7 Compute texcoords UV and kernel size Tci
8 Sample the E(x)ci and E(x2)ci from SAT

9 Compute the variance σ2

10 If (E(x)ci ≥ d And σ2 < Threshold)

11 TreeNode = TreeNode.Next

12 LitArea = LitArea + Tci
13 Else
14 If (E(x)ci < d)

15 V SMEx = V SMEx + E(x)ci ×Tci
16 V SMEx2 = V SMEx2 + E(x2)ci ×Tci
17 VSMArea = VSMArea + Tci
18 TreeNode = TreeNode.Next

19 Else
20 If (TreeNode is not a leaf)

21 TreeNode = TreeNode.Child

22 Else
23 Sample m points inside the kernel wci of TreeNode.

24 PCFArea = PCFArea + Tci
25 PCFBArea = PCFBArea + Tci × m̄/m
26 //m̄ is the number of occluding samples

27 TreeNode = TreeNode.Next

28 End While
29 Compute shadow reconstr. value L from V SMEx and V SMEx2

30 Compute visibility L1 based on PCFArea and PCFBArea
31 Final visibility is computed using L, 1.0 and L1,

32 weighted by VSMArea, LitArea and PCFArea separately

We borrow the idea from [Bun05] and successfully ap-

ply the GPU-based linear quad-tree traversal for our 2D

filter kernel domain. To achieve the linear traversal, each

quad-tree node needs to define two pointers (as shown in

Fig. 5(b)): ‘Child’ pointer (red), which points to the first

child node, and the ‘Next’ pointer (green), which points to

the next tree node on the linear traversal path. After carefully

setting up the ‘Next’ pointer for each tree node [Bun05], we

avoid the usual recursive operation and enables a linear for-

ward traversal on the GPU.

Note, computing soft shadow value needs to consider the

fully-lit sub-kernels. In Algorithm 2, we define a variable

LitArea to record the size of all the fully-lit sub-kernels. In

L10-L12, when both E(x)ci ≥ d and σ2 < Threshold, the

current wci is fully-lit, and its all child nodes can be ig-

nored. So we accumulate the LitArea and move to the next
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treenode. If E(x)ci < d, wci is a normal sub-kernel. As be-

fore, we accumulate the sum of E(x)ci (L15), the sum of

E(x2)ci (L16) and the sum of sub-kernel size Tci(L17). Af-

ter accumulation, we then move on to the next treenode

(L18). Excluding from above two cases, the last case is when

E(x)ci ≥ d and σ2 ≥ Threshold. In this situation, we should

consider whether the current treenode is a leaf or not. If the

current treenode is a non-leaf node, go down the tree hierar-

chy to its child node (L21). Otherwise, if the current treen-

ode is a leaf node, we resort to use PCF for the visibility

computation (L23-L26) as before. When it is done, we move

to the next treenode. After the whole traversal is finished, the

final visibility can be evaluated (L29-L32). Note, here all the

three sub-kernel regions: VSMArea, LitArea and PCFArea
are required to compute the final result.

6. Implementations and Discussion
6.1. Min-Max Hierarchical Shadow Map
When generating the min-max hierarchical shadow

map (HSM), there are two options: Mip-map and N-

buffers [D0́5]. Mip-maps can be generated very efficiently

and also require little texture memory. However, the intro-

duced error tends to be obvious when sampling from high

mip-map level. In contrast, N-buffers can ensure accurate

min-max sampling results for arbitrary filter kernel sizes

with more memory and generation time. For the scene

setting of Fig. 1(b), generating a 1024× 1024 HSM, takes

3ms with N-buffers and only 1ms with mip-maps. In our

experiments, the HSM using mip-maps already works very

well, even for complex scenes. Hence we choose mip-maps

for HSM generation.

6.2. Number of Sub-Kernels
Applying uniform kernel subdivision to evaluate both aver-

age occluder depth and soft shadows, the number of sub-

kernels in these two steps can be represented as m × m
and n× n respectively. If the number is too low, the “non-

planarity” sub-kernel will have relatively larger size, so that

a low number of PCF samplings (2× 2) will not be enough

to avoid perceptible artifacts (Fig. 6(a)). In Fig. 6(b), we in-

crease m to 5 and the artifacts are successfully removed. In

fact, we find that m = 5 works well in most of our experi-

ments. Furthermore, average blocker depth evaluation is less

sensitive to precision compared with shadow computation.

Hence, n is usually larger than m.

Our adaptive subdivision is based on a full quad-tree of

2D sub-kernels. If the height of the quad-tree is H, there are

maximally 4H leaf nodes corresponding to 4H sub-kernels. If

taking H = 3, our experimental results show that the quality

of adaptive subdivision is basically the same as for uniform

subdivision (Fig. 6(b) and (c)).

6.3. Combining Different Subdivision Schemes
The performance of adaptive subdivision is a balance be-

tween the hierarchical culling gain and traversal cost. When

the number of sub-kernels is small (like m = 5), the traversal

cost could hinder the performance. A better strategy is to use

uniform subdivision for evaluating average occluder depth

(m = 5) and adaptive subdivision for the soft shadow (H = 3)

separately. As shown in Fig. 6(d), such a combination gives

the same quality but provides the best performance.

6.4. SAT Precision and Contact shadow
We adopt summed-area tables (SAT) to pre-filter the shadow

map. However, it is well known that SAT suffers from

numerical precision loss for large filter kernel. Follow-

ing [Lau07], the 32-bit integer format is used for SAT gener-

ation to achieve stable shadow quality. However, in contact

shadow areas, where the blocker and receiver are placed very

closely, the precision of integer SAT is still not enough and

can introduce small errors (Fig. 7(a)) for the average blocker

depth zAvg. We observe that in contact shadow areas, the dif-

ference between zAvg and d is very small [ADM∗08], and

hence the corresponding penumbra size is also very small

and applying several PCF samplings for shadow is usu-

ally sufficient. In our experiments, the contact shadow sub-

kernels are detected by checking the difference between zAvg
and d. If the difference is smaller than a threshold value ε, a

3× 3 jittered bilinear PCF sampling [Bav08] is applied for

evaluating soft shadow. In our experiments, ε = 0.01 ·r and r
is the bounding sphere radius of input scene. The experimen-

tal results demonstrate such a strategy can avoid precision ar-

tifacts and generate convincing contact shadows (Fig. 7(b)).

(a) Contact Noise (b) Noise Fixed

Figure 7: Fixing contact shadow noise.

6.5. Threshold Selection
In Algorithm 2, there is a Threshold value which is used to

identify nearly-planar regions that can be safely marked as

fully lit. In all of our tests, Threshold = 0.0001 ·r works well

and r is the bounding sphere radius of input scene.

7. Results
Our experiments were run on a PC with a quad-core

2.83GHz Intel Q9550 CPU, an NVIDIA GeForce GTX 285,

and 4GB of physical memory. Except for comparison in

Fig. 6, all the result images are using mixed kernel sub-

division scheme: 5 × 5 uniform subdivision for estimating

average blocker depth, and H = 3 adaptive subdivision for

computing soft shadow. The screen resolution for rendering

is always 1024×768.
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(a) m = 3,n = 8 (102 fps) (b) m = 5,n = 8 (98 fps) (c) H = 3 (94 fps) (d) m = 5,H = 3 (117 fps)

Figure 6: Comparison between different subdivision cases. m and n represent the number of sub-kernels when using uniform
kernel subdivision. H represent the height of quad-tree when using adaptive kernel subdivision.

(a) Ground Truth (Ray-Traced) (b) VSSM (148 fps) (c) PCSS (10 fps) (d) Backprojection (19 fps)

Figure 8: Shadow quality comparison of several methods (SM size 512× 512, scene has 212K faces): ray-tracing (a), our
VSSM method using mixed subdivision scheme (b), percentage closer soft shadows [Fer05] (c), backprojection [GBP07] (d).

Scene GBuf SM HSM SAT Shadow Total

Balls 2.0 0.1 0.1 2.5 3 7.7

Sponza 2.5 0.6 0.3 4.4 2.0 9.8

Soldier 13.8 10.6 0.3 4.3 3.8 32.8

Table 1: Performance (milliseconds) breakdown for differ-
ent scenes (SM:1024×1024).

Table 1 provides the performance breakdown for differ-

ent scenes: Balls (55k faces) in Fig. 6, Sponza (72k faces)

in Fig. 1 (a) and Soldier (9700k faces with 100 instances)

in Fig. 1 (d). Each row contains timings for: generate G-

buffer data (GBuf), render shadow map (SM), generate mip-

map HSM (HSM), generate summed-area table (SAT), and

soft shadow pass (Shadow). The final column (Total) is the

sum of each step’s timing. From the data, we can see that

SAT usually takes a significant ratio of the running time.

The running time of soft shadow pass also depends on how

many screen pixels locate in penumbra. In the soldier scene,

penumbras appear in many areas, so the soft shadow pass

takes more time. Also since the geometric burden in the sol-

dier scene is very high, the GBuf and SM become the bottle-

neck of rendering. Table 2 provides the performance break-

down for the Plant (142k faces) in Fig. 8 using different SM

resolution. With increasing resolution, the SAT becomes the

bottleneck and also increases the sampling cost in the soft

shadow pass.

SMRes GBuf SM HSM SAT Shadow Total

512 1.7 0.17 0.18 2.1 2.5 6.65

1024 2.0 0.25 0.3 4.8 3.5 10.85

2048 2.0 0.5 1.0 17.9 4.4 25.8

Table 2: Performance (milliseconds) breakdown using dif-
ferent SM resolution for plant scene (141k faces).

(a) VSSM (148 fps) (b) SAVSM (183 fps)

Figure 9: Shadow quality comparison of between VSSM (a)
and SAT-based variance shadow map (SAVSM) [Lau07] (b).

The result images shown in Fig. 8 compare the shadow

quality of several different algorithms including a ray-traced

reference image. We analyze two situations in particular,

large penumbrae and multiple blockers shadows (close-ups

in red squares). Overall Shadows rendered with VSSM are

very close to the reference. For the large penumbrae, the re-

sults of all methods are close to the reference and just a little
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bit of banding can be noticed in PCSS case. In the case of

multiple blockers, the difference between our method and

the reference becomes more obvious. It is because VSSM is

based on planar assumption of PCSS and will average the

blocker depth so that the umbra is underestimated. The ren-

dering result of PCSS exhibits the same effect as VSSM.

Backprojection method can achieves more physically cor-

rect result, but its performance is slow for real-time applica-

tions. We further compare VSSM with SAVSM [Lau07], see

Fig. 9. All the three close-up regions contain multiple depth

layers. Hence, for SAVSM the “non-planarity” lit case hap-

pens. The side-by-side comparisons clearly show that our

kernel subdivision scheme successfully removes incorrectly

lit areas at very reasonable performance cost.

7.1. Limitations

Our VSSM method shares the same failure cases as PCSS.

The PCSS method assumes that all blockers have the same

depth within the filter kernel. Such a “single blocker depth

assumption” essentially flattens blockers. When the light

size becomes bigger, this assumption is more likely to be

violated and umbrae tend to be underestimated. Further-

more, PCSS only generates one depth map from the center

of the light source. When using a single depth map to deal

with blockers of a high depth range, single silhouette arti-

facts [AAM03] may appear. Nevertheless, in most cases, the

soft shadow generated by VSSM is visually plausible and

looks very similar to the ray-traced reference.

8. Conclusions and Future works

In this paper, we have presented variance soft shadow map-
ping (VSSM) for rendering plausible soft shadow. VSSM is

based on the theoretical framework of percentage-closer soft
shadows. In order to estimate the average blocker depth for

each scene point, a novel formula is derived for its efficient

computation based on the VSM theory. We solve the classi-

cal “non-planarity” lit problem by subdividing the filtering

kernel, which removes artifacts. As future work, we would

like to apply our kernel subdivision method to exponential

shadow mapping [AMS∗08], which is also a single-bounded
pre-filterable shadow mapping method.
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