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Abstract

Due to different shape modeling applications, partitioning a given complex 3D mesh model into some patches or meaningful subparts
is one of the fundamental problems in digital geometry processing. By using the high-dimensional mean-shift clustering scheme in shape
signature space, a new method is proposed which can generate user-specified segmentation results automatically for different applica-
tions. The shape signature is composed of mesh geometric attributes and its spectral harmonics. The latter one can reflect mesh frequency
spectrum information. The low frequency components are essential for semantics-oriented segmentation, while the high frequency com-
ponents are important for purely geometry-oriented segmentation. The effects of the proposed method are demonstrated by several
examples.
© 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

The problem of partitioning a polygonal mesh into
patches or meaningful subparts has been studied in digital
geometry processing for different applications, such as tex-
ture mapping and texture atlas generation [1,2], surface
remeshing and mesh simplification [3,4], skeleton extrac-
tion [5], shape morphing and metamorphosis [6,7], shape
recognition and shape retrieval [§8], and shape modeling [9].

Due to different applications, the mesh segmentation
methods can be classified into part-type ones (in a more
semantics-oriented manner) and patch-type ones (in a
purely geometric sense). The former aims at partitioning
the mesh into distinct semantic or meaningful parts accord-
ing to its shape features, ¢.g. a head and the legs of a horse,
without topological restriction for the segmented parts.
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The latter one aims at partitioning the underlying mesh
into topological disk-like patches based on the mesh geom-
etry features, such as planarity, convexity and curvature.

According to the spectral analysis of a 3D model [10,11],
the high frequency signals contribute to the geometric
details, while the low frequency signals account for the
overall or global shape. In general, when the 3D spectral
information is considered, the mesh segmentation based
on low frequency information corresponds to the seman-
tics-oriented one, while the mesh segmentation based on
high frequency information corresponds to the geometry-
oriented one. The mesh segmentation method considered
in this paper focuses on both the aspects, and it is an
user-controllable scheme.

The proposed method is based on a high-dimensional
adaptive mean-shift clustering scheme in shape signature
space, where the shape signature is composed of mesh spec-
tral harmonics and its geometric attributes. Unlike the
traditional parametric segmentation methods, the pro-
posed one is a non-parametric mean-shift clustering
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scheme, which need not specify the cluster number in
advance.

The contributions of the proposed method are summa-
rized as follows:

(1) Based on the manifold harmonic analysis, a new def-
inition of the shape harmonic signature is proposed,
which can be used for the subsequent clustering
analysis.

(2) The traditional mean-shift analysis is extended to the
high-dimensional and adaptive cases.

(3) By choosing different signatures in the shape signa-
ture space, the method can be tailored to the specified
segmentation purposes.

The paper is organized as follows: The related works are
briefly reviewed in Section 2. The multi-dimensional shape
signature is defined in Section 3, which is based on both the
frequency spectrum information and the geometric infor-
mation. The adaptive mean-shift analysis is adopted for
robust shape signatures clustering, which is described in
Section 4. Some examples of user-controlled mesh segmen-
tations are given in Section 5. Finally, conclusions are
drawn, and the future researches are discussed in Section 6.

2. Related work

Various model segmentation methods have been pro-
posed in digital geometry processing, such as the clustering
ones, the region-growing ones, the watershed ones, the geo-
metric snake ones, and the spectral analysis ones. Readers
interested in more details can refer to the thorough survey
by Shamir [12].

One automatic approach is to partition a polygonal
mesh into a set of face clusters through the greedy face
clustering method, where each face cluster can be approx-
imated by a fitting plane [13]. By adopting other fitting
primitives, Attene et al. [14] segmented a mesh into face
clusters hierarchically where each face cluster can be best
fit by not only plane, but also sphere or cylinder. Katz
and Tal [5] hierarchically decomposed a mesh by using
the fuzzy clustering method based on geodesic and angular
distances of the dual graph of the given mesh. Yamauchi
et al. [15] proposed a mesh normal mean-shift clustering
method and achieved a feature-sensitive mesh segmenta-
tion. Reniers and Telea [16] presented a hierarchical and
level-of-detail shape segmentation method that can seg-
ment a 3D model into meaningful component sets associ-
ated with critical points on its curve skeleton. Inspired by
Lloyd’s max quantization method, Shlafman et al. [7] pro-
posed a k-means clustering method to decompose a mesh
into some meaningful parts in which the clustering metric
is determined by the dihedral angle and the “physical” dis-
tance between the faces. According to the hierarchical mesh
structures generated by the feature-sensitive isotropic reme-
shing method, Lai et al. [17] proposed a k-means cluster-
ing-based top—down hierarchical segmentation algorithm.

Recently, Miao et al. [18] presented a k-means point-sam-
pled geometry clustering method, which is based on the
Euclidean distance variation between sample points and
angular difference variation between differential directions
on the surface.

The region-growing-based mesh segmentation method is
closely related with the clustering ones. The generated
charts grow so as to align their boundaries with the high
curvature features of the mesh [19]. To generate charts
which can be flattened efficiently in mesh parameterization,
Yamauchi et al. [20] proposed an integrated Gaussian cur-
vature-based segmentation method that measures the dev-
elopability of a chart. It can evenly distribute Gaussian
curvature over the charts and automatically ensure disc-
like topology of each chart.

Inspired by image processing research, the watershed-
based method can partition a mesh into several subparts.
The earlier watershed-based method proposed by Magan
and Whitaker [21] tends to align the boundaries along with
the high curvature regions and neglects the concavity
regions. Page et al. [22] proposed a fast marching
watershed algorithm where the height map is adopted to
avoid climbing up negative principal curvature hills. As
an extension of the active snake model, Lee et al. [23]
adopted the geometric snake as an interactive tool for the
feature detection and the mesh segmentation, in which an
initial segmentation curve slithers from a user-specified
position to a nearby feature curve through minimizing an
energy functional.

Recently, several frequency-domain-based techniques
have been proposed. According to the spectral analysis of
the combinatorial graph Laplacian, Gotsman [24] pro-
posed a geometric space partitioning technique. Due to a
pose-invariant representation of a mesh based on the
multi-dimensional scaling analysis, Katz et al. [25]
extracted the prominent feature points near the extremities
of an articulated shape and obtained the key components
of a mesh, which can generate an efficient segmentation.
Moreover, by using the spectral analysis-based k-means
clustering on the mesh affinity matrix, Liu et al. [26] devel-
oped a mesh segmentation along the mesh concave regions.
Based on 2D spectral embedding and 2D contour analysis
from the planar embedding using graph Laplacian and geo-
metric operators, Liu et al. [27] also presented a nearly
automatic mesh part-type segmentation algorithm by itera-
tively bisecting a sub-mesh.

The above-mentioned segmentation methods are para-
metric ones, that is, users should provide the clustering
number in advance, and each element (vertices or sample
points) should be assigned to one of them initially. It is
not always a trivial work to specify a clustering number.
However, the proposed segmentation scheme is a non-
parametric mean-shift iterative one. Users need not specify
the clustering number in advance, which can be automati-
cally altered with the algorithm processing. Moreover, the
proposed approach can take the mesh spectral harmonics
and its geometric attributes into account simultaneously.
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Thus, users can control the segmentation by adjusting their
corresponding weights.

3. Shape harmonic signature

Based on the combinatorial graph Laplacian operators,
Taubin [11] first introduced the spectral analysis as a digital
geometry signal processing tool. Due to the sole dependence
on the vertex connections, the graph Laplacian operator was
later improved as the discrete Laplacian operator [28,29],
which replaces the uniform weights with the more elaborate
cotangent weights. Because the coefficients of the discrete
Laplacian operator are non-symmetric, the operator
seemingly loses an important property of its continuous
counterparts, i.e., the orthogonality of eigenvectors. In our
framework, the multiple orthogonal eigenfunctions are com-
puted and a different shape signature is defined.

In order to conduct the classical Fourier spectral analy-
sis on the 3D geometry, Pauly et al. [10] parameterized a
3D discrete point cloud on a parametric plane. Due to
the robustness of spherical parameterization, Zhou et al.
[30] defined a 3D sphere as the base domain and adopted
the spherical harmonics for the geometry processing. Note
that these methods generally require a parameterization
and subsequent resampling procedures. However, it is dif-
ficult to perform the two preprocessing procedures robustly
and efficiently in general. To avoid them, it is necessary to
directly compute its frequency spectrum for a mesh of arbi-
trary topology. The manifold analysis and exterior calcu-
lus, similar to the analysis framework as Vallet and Levy
[31], is an alternative tool to facilitate the goal.

The classical Laplacian definition can be generalized to a
manifold version S with a metric g, namely the Laplace—
Beltrami operator [32]:
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where |g| denotes the determinant of metric g. The mani-
fold harmonics are the solution of the following manifold
harmonic equation:

—Agh = Ah

Using “hat” functions ¢/(j =1,2,...,n) related to each
vertex (that is piecewise-linear function on the triangles
and satisfies ®(v;,) =1 and ®'(v;) =0 if k # j) as test
and basis functions, the equation can be rewritten as the
projection form:

—(Ash, @) = A(h,®'), for Vj

Solving the above projection equation by the finite element
technique is equivalent to finding out the function in the
form of A =37 @, which satisfies the following linear
system:

= h{as®, W) = 0> (@, @), for Vj
i=1 i=1
By computing the stiffness matrix Q = (Q,;) where O, =

(rs®', @) and mass matrix B = (B;;) where B; = (@', &),
the matrix form of the above equation is

—Qh = \Bh
or
—B'Qh = h

which can be solved by utilizing the spectral shift technique [31].

According to the spectral analysis, low frequency signals
account for the global geometric shape, while high frequency
signals contribute to the geometric details (see Fig. 1). Thus,
the low frequency components are essential for the seman-
tics-oriented segmentation. On the other hand, to segment
amodel along the geometric features, such as folds and wrin-
kles, the high frequency components are important for the
purely geometry-oriented segmentation.

These frequency signals can be intrinsically character-
ized by the manifold harmonics (see Figs. 1 and 2). Fur-
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(d) k=30 (e) k=100

—

Fig. 1. Selected shape harmonics of the Torus model.
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Fig. 2. Selected shape harmonics of the Hand model.

thermore, the evaluated manifold harmonics can be
regarded as the discrete values attached to each vertex
and continuous piecewise-linear functions could be recon-
structed on the whole mesh. These shape harmonics can
reflect the intrinsic geometric attributes associated on the
vertices. Any subset of those attributes can be chosen and
designed to characterize the signature space. In detail, for
each vertex v, its harmonic signature information H(v)
can be defined in a joint space of both geometry and man-
ifold harmonic attributes. It comprises four different parts.
The first two parts are the spectral information, i.e., low
frequency and high frequency information. The other two
parts are its spatial information, including position
Uy, Uy, V., and normal n,, n,, n.. The low frequency informa-
tion contributes to overall shape and is defined as

1 1 1
' (v), , ——h
e = V7

The high frequency information is related with geometric
details and is defined as

W (v) ), ...

1 1 1
"' (v), ), ——K"2(v), ...
Vo A et

In the signature space, the user can interactively specify sig-
natures for the different segmentation objectives. For
example, to segment a mesh into meaningful parts, it
should include the low frequency signatures

[ (\/% , %hz(z}), \/Lﬂhk(v))

However, to segment a mesh into patches along high curva-
ture features, it should include the high frequency signatures
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If the segmentation is based on spatial information, the sig-
nature should also comprise the following spatial
components:

I = (vy, vy, ;)

and

1V = (ny,ny,n,)

Thus, according to different segmentation applications, the
final signatures for a vertex v can be chosen as the linear
combination of the above four signatures.

4. Adaptive mean-shift clustering in harmonic signature
feature space

Based on the analysis of the multi-modal shape signa-
ture space defined in both frequency and spatial domain
spaces, the mean-shift method [33,34] will be a powerful
non-parametric feature space clustering technique for
high-dimensional scattered data. The shape signature fea-
ture space itself can be regarded as an empirical probability
density function. The traditional mean-shift scheme is an
ascending search technique for the local maxima along
the increasing direction of the density function gradient
[35]. Applying this scheme to a set of given discrete data
points will create clusters around the maxima modes, which
correspond to the dense regions in the feature space.
Unlike many other parametric clustering techniques which
should specify the number of modes or clusters as a prere-
quisite, this scheme can determine it automatically by the
mean-shift procedure itself.

In the traditional fixed bandwidth mean-shift clustering
scheme, the neighbor points within a fixed radius region
will depend heavily on the distribution of high-dimensional
data points in the feature space, e.g., it may be sparse or
dense in the feature space. The sampling irregularity may
lead to incorrect clustering results [36]. In our adaptive
mean-shift clustering, for each data point p in the d-dimen-
sional feature space R, the key step is to determine the
appropriate size of the neighborhood N(p) and the associ-
ated adaptive bandwidth value %(p) as follows:

h(p) = maxge ) (dist(p, q))

For the sake of simplicity, we adopt the K-nearest neigh-
boring method to determine the neighbors of data points.

First, the procedure computes the weighted average of
the data points which falls inside this neighborhood win-
dow, and then iteratively moves the window to the mean
point. In general, the weighted mean of a feature data point
p in the joint feature space can be defined by a monotoni-
cally decreasing symmetric profile kernel g(x) with a radius
h(p) in the feature space, such as the Gaussian kernel or the
Epanechnikov kernel [33,34]. The mean shift local mode
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Fig. 3. Low frequency analysis for the Eight model. (a) Frequency analysis for the first 50 low frequency components and (b) their corresponding

eigengaps.

M, (p) in the feature space can be generated by the follow-
ing iteration procedures:

> a/h"g(|dist(p.q)/h]”)
v 9€N(p)
M(p) == 2 - 2
> 1 g distp.)/hI)

M, (p)
geN(p

M(p) == Mi(p) + M, (p)

where M, (p) is also called the mean-shift point whose ini-
tial value can coincide with p, and M (p) is the mean-shift
vector associated with the adaptive bandwidth.

For the data points in a high-dimensional feature space,
the bottleneck and time-consuming step of the mean-shift
clustering is to search the closest neighbors. Due to its com-
putational complexity, the traditional approach based on
the Kd-tree is inefficient. Similar to the locally sensitive
hashing search method described in [36,37], the approxi-
mately nearest neighbor search algorithm is adopted for
determining the k-nearest neighbors of each data point in
the feature space.

According to the user-specified vertex shape signatures
in the feature space, our adaptive mean-shift clustering
algorithm can be performed through the following steps
according to different mesh segmentation objectives:

b

(1) For each vertex v, its harmonic signature H(v) is
computed.

(2) A multi-dimensional mean-shift iterative procedure is
then applied to its local modes computation.

(3) For each local maximal mode, a cluster is generated
by assigning each vertex to its nearest local mode;
the distance between the signatures can be computed
as the weighted sum of each signature component,
that is

dist(H (v;), H(v;)) = o1 [[[(v;) — 1(v))|| + w211 (v;)
— I (v))|| + ws|| I (v;) — I (v))|
+ 4|1V (vi) = 1V (v)) |

Each cluster will be assigned with an average signa-
ture and its vertex number.

(4) According to the number of the vertex, these clusters
are sorted descendingly.

(5) Those clusters whose size is below a user-specified
threshold are pruned, and the pruned vertices are
reassigned to their nearest cluster.

5. Experimental results and discussion

All the algorithms presented in this paper are imple-
mented and tested on a PC with a Pentium 4 2.0 GHz

d

Fig. 4. Partitioning the Eight model by manifold harmonic signatures and position information. (a) Original model; (b and c) semantics-oriented
segmentation by low frequency manifold harmonic signatures, in which the first 3 and 10 low frequency signatures are selected, respectively; (d and e)
semantics-oriented segmentation by the combination of manifold harmonic signatures and position information, in which the weights of the first 10 low

frequency signatures and position are 0.3, 0.7, and 0.7, 0.3, respectively.
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a

Fig. 5. Partitioning by manifold frequency and surfel information. (a) Original Stanford bunny model; (b and c) geometry-oriented segmentation by the
combination of manifold harmonic signatures and surfel information, in which weights of the last 10 high frequency signatures, position and normal

information are 0.3, 0.2, 0.5 and 0.6, 0.3, 0.1, respectively.

CPU, 512M memory and Windows XP. In our algorithm,
the vertex harmonic signature H(v) is an important deter-
minant in the final segmentation. As mentioned in Section
3, due to different segmentation purposes, users can select
different signatures or their combination for each vertex,
including low frequency harmonic, high frequency har-
monic and spatial information.

Segmentation only by manifold harmonic frequency.
According to matrix perturbation theory [38,39], there exist
some intrinsic connections between the gaps of eigenvalues
and the cohesiveness of the clusters. For the sake of part-
type segmentation by low frequency signals, we can choose
the first several sequential harmonic signatures until the
first large eigengap is encountered, which could generate

the semantics-oriented segmentation (see Fig. 4b and c).
On the contrary, for patch-type segmentation by high
frequency signals, the last several sequential harmonic sig-
natures are selected until the last large eigengap is encoun-
tered to generate the purely geometric sense segmentation
(see Fig. 5). For the Eight model, according to the fre-
quency analysis (see Fig. 3), the first 3 or 10 low frequency
signatures can be selected for semantics-oriented segmenta-
tion (see Fig. 4b and c). In general, if the user takes more
shape harmonic signatures into account, it will generate
more subparts.

Fig. 6 shows some semantics-oriented segmentation
results for different models. All the experimental results
in this figure are generated by the mean-shift clustering of

Fig. 6. Semantics-oriented segmentation by low frequency manifold harmonic signatures. Upper row: different original models; Bottom row: semantics-
oriented segmentation results by the low frequency harmonic signatures, in which the first 3, 10, and 12 low frequency signatures are selected for teapot,

penguin, and duck, respectively.
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the first several low frequency signatures. For example, the
semantics-oriented segmentation for teapot, penguin, and
duck is generated by using the first 3, 10, and 12 low fre-
quency signatures, respectively.

Partitioning by manifold harmonic frequency and position
information. The frequency spectrum information and its
geometric attributes can also be combined together as the
segmentation signature. It corresponds to different applica-
tions of mesh segmentation. For the Eight model, the first
10 low frequency signatures and position information are
selected to perform semantics-oriented segmentation. In
Fig. 4d, the weights of the frequency signatures and posi-
tion information are 0.3 and 0.7, respectively, while in
Fig. 4e they are 0.7 and 0.3, respectively.

Partitioning by manifold harmonic frequency and surfel
information. Finally, partitioning the underlying model
according to its frequency signatures and its sample surfel
(vertex position and normal information) will lead to a
user-specified segmentation. For the Stanford bunny
model, Fig. 5b shows the segmentation result that is
obtained by choosing the last 10 high frequency signatures
and surfel information, in which weights of the last 10 high
frequency signatures, position and normal information are
0.3, 0.2, and 0.5, respectively, while Fig. 5c shows the seg-
mentation result that is obtained by choosing similar shape
signatures, and the weights are 0.6, 0.3, and 0.1, respec-
tively. Our experiments show that the large weight of the
high frequency signatures emphasizes the geometric details
of the underlying model, such as folds and wrinkles, while
the large weight of the position or normal information will
emphasize the compactness or planarity of the underlying
model.

6. Conclusions and future work

A new mesh segmentation approach is proposed, which
is based on an adaptive mean-shift clustering scheme on the
shape harmonic signature and geometry information space.
Our signature feature space is defined as a multi-dimen-
sional one associated with the surface spectral harmonics
and its geometric attributes. According to the traditional
spectral analysis, low frequency signals account for the
overall geometric shape, while high frequency signals con-
tribute to the geometric details. Thus, the low frequency
component is essential for the semantics-oriented segmen-
tation. On the contrary, to segment a model along the folds
and wrinkles, the high frequency component is important
for the purely geometric segmentation. According to the
user pre-defined shape signatures, it is possible to partition
the given mesh according to the user’s different partition

objectives.
However, like the common spectral clustering algo-
rithms for mesh segmentation [25,26], our current

approach can generate natural segmentation results only
for mesh models on which the visually salient segmentation
boundaries are mostly around concave regions, otherwise a
post-processing step should be adopted to smoothen the

coarse boundaries by finding a minimum cut [5] or by using
geometric snakes [23]. Furthermore, the bottleneck of our
segmentation framework is the low efficiency of computing
harmonic frequency spectrum for large-scale 3D models. In
order to overcome this limitation, multi-thread parallel
scheme and TAUCS solvers [40] can be adopted to calcu-
late the eigen systems of a large harmonic problem, and
GPU techniques can also be employed to accelerate our
shape analysis system.

In the future, more shape analysis and editing opera-
tions based on harmonic frequency spectral analysis will
be investigated, for example, shape remeshing, digital
watermark, detail transfer, and deformation transfer.
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