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Abstract
In this paper, an automatic method is proposed to generate a symmetry-aware kinematic
skeleton for a human body model with an arbitrary pose and orientation. First, a template
kinematic skeleton with semantics is embedded into the input human body model. Then,
the joints of the embedded kinematic skeleton are refined according to the geometry of the
human body model and some prior knowledge. Finally, a specific local coordinate system is
defined on the kinematic skeleton and is used to distinguish the symmetry of the kinematic
skeleton. In this way, the symmetric joints of the kinematic skeleton, e.g., the left knee
joint and the right knee joint, can be distinguished. Quantitative and qualitative analysis
and comparison show that the proposed method can generate a symmetry-aware kinematic
skeleton with accurate joints and has no restrictions on the pose and orientation of the input
human body model. Moreover, this paper presents validation of the proposed method in
many applications, such as shape alignment, shape deformation, shape co-segmentation and
shape correspondence.

Keywords Kinematic skeleton · Symmetric ambiguity · Skeleton embedding

1 Introduction

Intrinsic symmetry is a common property for bipeds and quadrupeds. Many algorithms in
shape correspondence and shape segmentation suffer from symmetric ambiguity because
of the intrinsic symmetry of models. Although many methods [24, 32, 38] have been pro-
posed to solve this problem, symmetric ambiguity between non-isometric models is still a
challenge since most properties are just isometric-invariant.

For human body models, symmetry distinction is particularly important, whether for the
semantic analysis of human body models or the generation of human deformable models
[3]. However, symmetric ambiguity for human body models is particularly difficult because
of the diversity of human body models due to the changes in poses and the shape variations
across individuals. For a human body model in a standard pose (A-pose), the symmetric
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parts can be distinguished assisted by the directions of the feet, which always face forward
in the standard pose. But few straightforward methods have been applied to the human body
models in non-standard poses to solve this problem.

If the pose of a human body model is transformed to the standard pose, the symmetric
ambiguity can be solved based on the feet directions. As abstract representations of 3D
models, skeletons are much easier to be deformed than human body models. Therefore,
transforming the skeleton of the human body model to the standard pose may be a good
choice to solve the symmetric ambiguity of the human body model. In general, skeletons can
be classified into two categories: curve skeletons and kinematic skeletons. Compared with
curve skeletons, kinematic skeletons contain only a small number of joints and are more
frequently used to deform 3D models. In recent years, some methods [7, 13, 25] have been
proposed to generate the kinematic skeletons for 3D models. However, few methods pay
attention to solve the symmetric ambiguity problem via the generated kinematic skeleton.

In this paper, we focus on automatic kinematic skeleton generation for a human body
model with an arbitrary pose and orientation. This proposed method can distinguish the
symmetry of the human body model and generate a semantically symmetry-aware kinematic
skeleton. The semantics of the human body model can be obtained indirectly through the
semantics of the generated kinematic skeleton, without any learning process. Similar to
some kinematic skeleton generation methods, a template skeleton is embedded into the
human body model by converting an extracted curve skeleton into a kinematic skeleton.
However, the joints of the kinematic skeleton are refined by the geometry of the human
body model and some prior knowledge, and the symmetric parts are distinguished by a local
coordinate system established based on the assumption that human feet face forward in the
standard pose.

In summary, the main contributions in this paper are as follows:

– The proposed method can distinguish the symmetry of the kinematic skeleton, resulting
in a semantically symmetry-aware kinematic skeleton.

– The proposed method has no restrictions on the pose and orientation of the human body
model.

– The joint positions of the kinematic skeleton are accurate by taking the geometry of the
human body model and some prior knowledge into account.

The remainder of our paper is organized as follows. Related works are introduced in
Section 2. The proposed method is described in detail in Section 3. Quantitative and qualita-
tive analysis and comparison are given in Section 4. Applications of the generated kinematic
skeleton are presented in Section 5. Conclusions are drawn and future work is indicated in
Section 6.

2 Related work

Symmetry distinction Symmetric ambiguity is a common problem when matching or
co-segmenting 3D models with intrinsic symmetries. Earlier methods located a set of land-
marks on models manually to avoid symmetric ambiguity. To reduce manual operations,
some automatic methods were proposed based on the properties of isometric models, such
as the geodesic distance preservation [29] and Laplace eigenvectors preservation [24]. How-
ever, these methods cannot work when the isometric assumption is not valid. Based on
the observation that some orientations are sensitive to the local symmetry, some oriented
descriptors are proposed to distinguish the symmetric parts. Yoshiyasu et al. [36] presented
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a local depth map by taking the gradient of the average diffusion distance field as the view-
up direction. Wang and Fang [32] developed a multi-scale local diffusion map based on heat
diffusion distribution. Other descriptors [27, 38] constructed a sign indicator by checking
whether the directions satisfy the right-hand rule. These oriented descriptors are discrimi-
native on the symmetric parts of a model. However, the orientations these descriptors take
are also isometric-invariant and not stable for non-isometric models. For the symmetry dis-
tinction between non-isometric models, Liu et al. [19] extracted the symmetry axis curves
first and Yoshiyasu et al. [37] detected a symmetry plane on a low dimensional embed-
ding. However, detecting the symmetry axis or plane is also a complex and time-consuming
problem. Marin et al. [22] proposed a symmetry distinction method based on a kinematic
skeleton by propagating the foot direction along the leg of the kinematic skeleton under
torque-penalizing constraints. It takes about fourteen steps to get the front direction of the
kinematic skeleton. In this paper, a more straightforward method is proposed to distinguish
the symmetry of the kinematic skeleton.

Kinematic skeleton generation There are two types of kinematic skeleton generation
approaches. One, which is called skeleton extraction, extracts the joints from the 3D model
directly and connects the joints to form a kinematic skeleton. The other, called skeleton
embedding, embeds a template skeleton into the 3D model.

For skeleton extraction methods [17, 18, 21], the topological structure and the number
of joints are sensitive to the shape of the model, which may be inconsistent for different
models. To improve the accuracy of joint locations, some example-based methods [1, 11,
15] were proposed to generate a kinematic skeleton from a set of models in a variety of
poses. However, joints locations are highly dependent on the poses of the input models,
which may still be inaccurate if the input models are not carefully selected. Moreover, these
methods require a set of examples as input, which is hard for users to obtain. In 2019,
Xu et al. [34] proposed a method to generate a kinematic skeleton for a 3D articulated
model via deep learning. But they aimed at generating a kinematic skeleton tailored for 3D
articulated models with different structures or geometries, rather than a kinematic skeleton
with pre-defined structure.

Skeleton embedding methods can generate compatible kinematic skeletons and are more
suitable for our purpose. To generate the kinematic skeleton, some methods embed a tem-
plate skeleton into the model directly, while others embed a template skeleton into the model
indirectly, i.e., fit a template skeleton to a curve skeleton of the model. For details about
curve skeleton extraction, readers can refer to surveys by Cornea et al. [10] and Saha et al.
[28].

Baran and Popović [7] proposed an automatic method in which a template skeleton is
embedded into the input model directly. However, this method requires that the input model
to be well-posed and -oriented. Wang et al. [33] presented a method to generate a consistent
skeleton by transferring the structure of the skeleton from the source model to the target
model through corresponding points. The quality of the skeleton is decided by the accuracy
of corresponding points. Recently, some registration-based methods [6, 12, 22] were pro-
posed to transfer a kinematic skeleton from a template model to the target model. Taking
an extra template model and its corresponding kinematic skeleton as input, these methods
embed the kinematic skeleton into the target model through registering the template model
to the target model. Since a series of optimizations are needed for 3D model registration,
the registration-based methods are time-consuming in general.

Indirect methods transform the skeleton generation problem into establishing correspon-
dences between the template skeleton and the extracted curve skeleton. Some methods [5,
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26] solved this problem by a pair of corresponding points specified manually. Pantuwong
and Sugimoto [25] established correspondences via the positions of the symmetry junc-
tions while Hajari et al. [13] adopted the degrees of the joints with multiple branches to
match them. For these indirect methods, the joints of the generated kinematic skeleton are
all located on the curve skeleton, which is not accurate enough since some sharp features
of the curve skeleton are lost. Since human bodies are symmetrical, the kinematic skeleton
may be generated with symmetric flips in semantics when the input human body model has
an arbitrary pose and orientation. However, apart from Pantuwong and Sugimoto [25] deter-
mining the orientation of the human body model by the directions of the feet directly, which
can be applied to human body models in certain poses, other methods do not pay attention
to this problem.

In this paper, an automatic symmetry-aware kinematic skeleton is generated for a human
body model with an arbitrary pose and orientation. This method belongs to the indirect
skeleton embedding approach. Therefore, the topological structure and the semantics of the
kinematic skeleton generated by the proposed method are identical to those of the template
skeleton.

3 Symmetry-aware kinematic skeleton generation

The input of our method is a triangular mesh of a human body model and a 21-joint template
skeleton. In contrast to other methods, each joint of the template skeleton is attached with
semantics, as shown in Fig. 2a. The output of our method is a kinematic skeleton with a
consistent structure and semantics to the template skeleton. Our method is composed of
three steps: kinematic skeleton generation, kinematic skeleton refinement and symmetry
distinction. An overview of our pipeline is illustrated in Fig. 1. As shown in the “result”
in Fig. 1, the proposed method distinguishes the symmetric parts of the kinematic skeleton
successfully.

3.1 Kinematic skeleton generation

In this part, a kinematic skeleton is obtained from a human body model. An indirect skeleton
embedding method is adopted to achieve this goal. For the indirect skeleton embedding
methods, the main steps are: 1) extracting a curve skeleton, and 2) embedding the template
skeleton on the extracted curve skeleton.

Fig. 1 Overview of the proposed method. In the final result, the bones on the left part of the kinematic
skeleton are shown in blue, while the others are shown in yellow
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First, a geometry-based algorithm is adopted to extract the curve skeleton via mesh con-
traction and simplification [4]. This method is independent of the poses and orientations
of human body models and can recover some sharp features in the curve skeleton by the
refinement step. After the curve skeleton is extracted, a preprocessing step is adopted to
remove additional branches which occur in regions with complex geometry and have no
corresponding branches on the template skeleton. The maximum distance between any two
nodes on the curve skeleton is normalized to 1 to avoid model size inconsistency. Any
branch whose length is smaller than a threshold ε is considered as an additional branch and
will be removed. Since the curve skeleton is extracted by mesh contraction, sometimes a
redundant branch occurs at the heel, making the length of the foot branch approximately
equal to those of the additional branches on the head. To make the process robust, a multi-
resolution approach is adopted to delete the additional branches. First, a small ε is set as
0.015 to address the “small” additional branches caused by the pure geometric curve extrac-
tion algorithm, e.g., the additional branch at the heel. Then, a larger ε is set as 0.06 to handle
the “long” additional branches caused by geometrical details, such as fingers and ears.

Then, the template skeleton is embedded on the extracted curve skeleton. Previous meth-
ods established the correspondences via the positions of the symmetry junctions [25] or the
degrees of joints with multiple branches [13], which is highly dependent on the structure
of the curve skeleton, making the algorithms not robust enough. Inspired by the spectral
matching algorithm proposed by Leordeanu and Hebert [16] and applied by Kleiman and
Ovsjanikov [14], a matching algorithm is proposed to solve this problem.

To reduce the complexity of the matching step, reduced skeletons that ignore all joints
with a degree of two (also called intermediate joints) are used as the input of the matching
algorithm. The reduced template skeleton is shown in Fig. 2b. Once the correspondences are
established, the intermediate joints can be located based on the length ratios and the local
extremal curvatures. The distance between two nodes of the reduced skeleton is defined as
the geodesic distance along the original skeleton rather than the Euclidean distance between
them.

The matching algorithm measures the similarity between two skeletons by considering
both the degree of the node and the distances to other nodes. Let the reduced curve skele-
ton and the reduced template skeleton be represented as two weighted graphs with m and
n nodes respectively. Considering the compatibility of corresponding pairs, a matrix M of

Fig. 2 a The input template skeleton with semantics for each joint. b The reduced template skeleton
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mn ∗ mn is constructed, whose values of diagonal elements represent the affinity of cor-
responding pairs and values of off-diagonal elements represent the compatibility between
two corresponding pairs. Then, the matching problem can be formulated as finding a binary
vector x that represents the one-to-one correspondence to maximize xT Mx. To this end,
we relax the binary constraint and find a solution discretely based on the eigenvector
corresponding to the largest eigenvalue of M .

In our solution, the elements of M are defined as follows. For each node i of the graph, we
first compute the node degree G(i), distances to other nodes D(i, ∗), and average distance
Davg(i). For a corresponding pair (i, j), we consider the differences in both degrees and
average distances, which are defined as:

Eg(i, j) = ‖G(i) − G(j)‖.
Ed(i, j) = ‖Davg(i) − Davg(j)‖.

(1)

The affinity of the corresponding pair is computed by the following: U(i, j) = αe−Eg(i,j)+
e−Ed(i,j), with α = 5 in our experiments.

For the off-diagonal elements in the M , such as the element related to the corresponding
pair (i, j) and the corresponding pair (k, l), we re-define the differences in both degrees and
distances:

Eg(i, j, k, l) = ‖Eg(i, j) − Eg(k, l)‖.
Ed(i, j, k, l) = ‖D(i, k) − D(j, l)‖.

(2)

Then, the compatibility of these two corresponding pairs is defined as:
U(i, j, k, l) = αe−Eg(i,j,k,l) + e−Ed(i,j,k,l), with α = 5.

Through eigenvalue decomposition of the matrix M , we can obtain the eigenvector x

corresponding to the largest eigenvalue. A greedy algorithm is adopted to solve the final
corresponding pairs. The greedy algorithm is not terminated until all nodes of the reduced
template skeleton find their corresponding nodes on the reduced curve skeleton.

Figure 3a and b show the results of matching between the reduced curve skeleton and
the reduced template skeleton. Even if the pose of the reduced curve skeleton differs greatly
from that of the reduced template skeleton, the matching algorithm produces correct results.

To verify the robustness of this algorithm, a reduced curve skeleton that has an incon-
sistent structure with the reduced template skeleton is obtained from a curve skeleton
extracted with improper parameters. The matching algorithm still obtains the correct result,
as shown in Fig. 3c. To generate a reduced curve skeleton that has a consistent structure
with the reduced template skeleton, the non-matched nodes on the reduced curve skeleton
are adjusted to its neighboring matched node with the most branches.

(a) (b) (c)

Fig. 3 Matching results. The reduced template skeleton is shown in green, while the reduced curve skeleton
is shown in yellow
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3.2 Kinematic skeleton refinement

Since smoothness is one of the constraints for extracting the curve skeleton, some sharp
features of the curve skeleton are lost, making the joint positions insufficiently accurate. In
this section, the geometry of the human body model and some prior knowledge are used to
refine the joints of the kinematic skeleton to more appropriate positions.

3.2.1 Refinement by the geometry of the human bodymodel

Centeredness is one of the constraints of skeleton generation. The embedded kinematic
skeleton can be further adjusted to the center of the human body model based on the
geometry of the human body model.

In general, for an elliptical cylindrical shape, the skeleton point is the center of the cross-
section curve at the point. Since most parts of the human body are approximately elliptical
cylindrical, some skeleton points of the human body model can be obtained by the centers
of the cross-section curves. Then, the generated kinematic skeleton can be refined by these
skeleton points.

The approximately elliptical cylindrical parts of a human body model can be recognized
by the semantics of the kinematic skeleton obtained above. For each part to be processed,
we uniformly sample n points on the corresponding bone and compute the cross-section
curve at each sampling point. Then, the reliability of the center points is analyzed. Finally,
the joint positions are adjusted according to the linear fitting results of the reliable center
points.

The reliability of a center point is judged by the quality of the cross-section curve. Since
Prominent Cross-Sections (PCS) [30] is also a way to extract the curve skeleton, the center
points of the prominent cross-sections can be regarded as reliable skeleton points. Therefore,
we adopt a similar idea and use the sectional Gauss map, which is the Gaussian sphere
constructed by the normals associated with the points on a cross-section curve, to determine
whether a cross-section curve is effective. Examples of the sectional Gauss map are shown
in Fig. 4. PCS is an iterative result of making the points on the Gaussian sphere to be in
one plane as far as possible. Therefore, we measure the quality of a cross-section curve by
the flatness of the points on the Gaussian sphere. We define the flatness of the points on the
Gaussian sphere as: f = λ3/(λ1 + λ2 + λ3), where the λ represent the eigenvalues of the
PCA analysis on the points of the Gaussian sphere and λ1 ≥ λ2 ≥ λ3. If the flatness f is

Fig. 4 a Cross-section curves of the human body model. b The sectional Gauss map of the blue cross-section
curve in (a). c The sectional Gauss map of the green cross-section curve in (a)
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Fig. 5 The definitions of some bones on the kinematic skeleton

smaller than a threshold ε1, the cross-section curve is considered to be effective, then the
center point is a reliable point. In our implementation, ε1 is set as 0.1.

3.2.2 Refinement by some prior knowledge

In this section, we will use some prior knowledge to refine the joints to more reasonable
positions. For better explanation, the definitions of some bones on the kinematic skeleton
are shown in Fig. 5.

Since mesh contraction and simplification are adopted to extract the curve skeleton,
occasionally the crotch joint is nearly on the model or even outside the model, as shown

Fig. 6 Joint refinement. a The generated kinematic skeleton. b Refinement of crotch joint. c Refinement of
arm joints. d Refinement of leg joints
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in Fig. 6a. From observation, it is reasonable that the distance between the crotch joint and
the human body model would be not less than the thigh thickness. If the distance between
the crotch joint and the human body model is less than the thigh thickness, the crotch joint
is adjusted towards the waist joint until the distance is not less than the thigh thickness.
Figure 6b shows the refined crotch joint. The thickness of a point on the bone is defined as
the average distance from the cross-section curve, and the thigh thickness is defined as the
average thickness of the sampling points on the thigh bone.

Affected by the torso, the position of the shoulder joint is somewhat lower than its ideal
position, as shown in Fig. 6a. Thus, the shoulder joint should be adjusted away from the
elbow joint to a more reasonable position. However, the adjustment distance is not fixed
and varies with the pose of the human body model. After experiments, we find that the
adjustment distance of the shoulder joint is closely related to the pose. Let θ be the angle
between the upper arm bone and spine bone; the adjustment distance will decrease when θ

increases. Here, an empirical formula is proposed for the adjustment distance d as follows:

d =
{

2r cos θ if θ ≤ π/2;
0 otherwise.

(3)

where r is the average thickness of the upper arm bone.
The wrist joint is refined to the point with the minimum thickness around it. For a human

body model with a straight arm, there will be no salient geometric features near the elbow
joint. In this case, the elbow joint is adjusted according to the length ratio of the template
skeleton if the shoulder joint or wrist joint is adjusted. Figure 6c shows the refined arm
joints.

For a human body model with an arbitrary pose, it is difficult to locate the hip joints due
to the lack of obvious geometric features. From observation, the lumbar bone is generally
perpendicular to the hip bone. Therefore, the hip joint should be adjusted away from the
knee joint to make the lumbar bone perpendicular to the hip bone. To achieve this, a hip
direction which is perpendicular to the lumbar bone is obtained first by projecting the hip
joints to the normal plane of the lumbar bone. Then, the hip joint is located on the midpoint
of the common perpendicular line of the hip direction and thigh bone direction. When a leg
of the human body model is straight, the corresponding knee joint is adjusted based on the
length ratio once the hip joint is located. Figure 6d shows the refined leg joints.

After these joint refinements are made based on prior knowledge, the joints of the
kinematic skeleton are located at more reasonable positions.

3.3 Symmetry distinction

Since the matching algorithm does not take the symmetric ambiguity into consideration, the
kinematic skeleton may be semantically symmetrically flipped for symmetric parts (legs and
arms), making the semantics of the kinematic skeleton inconsistent with that of the human
body model.

Because the correction is focused on semantics, any method which is semantic-
independent cannot be used to solve this problem. In this paper, a semantic-based local
coordinate system is established on the kinematic skeleton to distinguish the symmetry of
the kinematic skeleton. The direction determination of the local coordinate system is based
on two observations: 1) human feet face forward in the standard pose, and 2) the waist joint
is above the crotch joint. Figure 7a and b show the local coordinate systems established
based on the above observations.
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Fig. 7 a,b The local coordinate system for the human body model. c Definition of an auxiliary direction for
the human body model

For a human body model, the positive z-axis direction is defined from the crotch joint to
the waist joint. Then, the leg skeletons and foot skeletons are rotated to the standard pose
to obtain the feet directions. The positive x-axis direction is defined via the cross product
of the positive z-axis direction and the average direction of the feet directions. Finally, the
positive y-axis direction is determined via the cross product of the positive x-axis direction
and the positive z-axis direction. In the above local coordinate system, the positive x-axis
points to the left part of the human body model.

To rotate the leg bones and foot bones to the standard pose, an auxiliary direction is
first defined that is perpendicular to the plane formed by the leg bone and foot bone in the
standard pose. We project the hip joints to the normal plane of the z-axis and define the
direction between the projected hip joints as the auxiliary direction, as shown by the red
line in Fig. 7c. Then, the leg bone and foot bone should be rotated to the plane which is
perpendicular to the auxiliary direction and across the hip joint, as the yellow plane shown
in Fig. 7c.

Once the auxiliary direction is determined, the leg bone and foot bone undergo a step-
by-step rotation to the standard pose. (1) The leg bone and foot bone are rotated around
the axis which is parallel to the z-axis and across the hip joint simultaneously such that the
plane determined by the thigh bone and calf bone is perpendicular to the auxiliary direction.
(2) The foot bone is rotated around the calf bone such that the foot bone is perpendicular to
the auxiliary direction. When the thigh bone and calf bone are on a straight line, these two
steps are combined to rotate the leg bone and foot bone simultaneously such that the plane
determined by the leg bone and foot bone is perpendicular to the auxiliary direction. (3) The
thigh bone is rotated around the auxiliary direction to the negative z-axis direction. (4) The
calf bone is rotated around the auxiliary direction to the negative z-axis direction. Since the
rotation angle of the joint is limited for the human body shape, the rotation angles in step
(4) should not be greater than 180 degrees, while the others should not be greater than 90
degrees. A step by step example of the rotation of the bones to the standard pose is shown
in Fig. 8. A similar process is used for the other leg.

Once the local coordinate system is established, the positive x-axis direction is used to
distinguish the symmetry of the kinematic skeleton. The hip (shoulder) joints that do not
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Fig. 8 Step-by-step rotation of the leg bone and the foot bone to the standard pose

produce confusion in any pose are taken to determine the left and right legs (arms) of the
human body model.

After the steps above, all joints of the kinematic skeleton are attached with correct seman-
tics, which can be used to recognize the semantics of the human body model. A similar
but not identical local coordinate system should be established if the method is extended to
animals, but this is not explained here because this paper mainly focuses on a human body
model.

4 Results and discussion

The proposed method generates a symmetry-aware kinematic skeleton with semantics for a
human body model with an arbitrary pose and orientation. The method was implemented on
a desktop PC with an Intel Core i5-4590 CPU, 16 GB memory, Windows 7 OS and a single
thread. Three datasets were adopted for the test: the SCAPE dataset [3], which provides
71 human body models of the same person in different poses; the MPI FAUST dataset
[8], which contains 100 human body models of 10 people in 10 different poses; and the
Princeton Segmentation Benchmark (PSB) [9], which provides 20 human body models, in
which 2 models are not applicable to the proposed method due to the topological connection
of hands and legs.

The method was fully evaluated in three aspects: generating kinematic skeletons of
human body models with arbitrary poses and orientations, symmetry distinction of the
kinematic skeleton and joint localization.

Figure 9 shows the results of the proposed method for a set of human body models
with various poses and orientations, among which each human body model is taken as
input respectively. These models have no fixed orientation, and their original orientations
are adopted as input. More results for different orientations are also given in Fig. 14. As
shown in Fig. 9, the proposed method correctly generates kinematic skeletons for all of these
human body models. Therefore, the proposed method does not limit the pose and orientation
of the human body model.
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Fig. 9 Kinematic skeleton generation results by the proposed method. The bones on the left part of the
kinematic skeleton are shown in blue, while the others are shown in yellow

Fig. 10 Kinematic skeleton generation results without symmetry distinction (top row) and with symmetry
distinction (bottom row)
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The symmetry of the generated kinematic skeleton is distinguished by a local coordinate
system. Without the symmetry distinction, the kinematic skeleton may suffer from symmet-
ric ambiguity in semantics, as shown in the top row of Fig. 10. It can also be seen in Fig. 9
that the proposed method successfully distinguishes the symmetric parts of the kinematic
skeleton. For all the 189 human body models tested, our algorithm can correctly distinguish
the symmetric parts.

For joint localization, Fig. 9 shows that all joints of the kinematic skeleton are located at
reasonable positions, even for the part without salient features, such as the elbow joints and
the knee joints in Fig. 9g. To quantitatively evaluate the accuracy of the joints, the generated
kinematic skeleton is compared to the kinematic skeletons that are provided manually by
using some software. Four human body models with different poses and orientations are

Fig. 11 Top row: the average kinematic skeletons (ground truth) generated manually. Middle row: the com-
parison of our kinematic skeletons and the ground truth. Bottom row: the comparison of the kinematic
skeletons generated by FARM [22] and the ground truth
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analyzed in this part. To improve the reliability, the kinematic skeletons are generated by
6 graduate students whose research interests are computer graphics and its applications
separately, and the average kinematic skeleton for each human body model is taken as the
ground truth. The ground truth is shown in the top row of Fig. 11. A visual comparison
between our kinematic skeleton and the ground truth is shown in the middle row of Fig. 11.

Table 1 shows the average errors for each joint of these four human body models. Besides
the errors between our kinematic skeleton and the ground truth, the average errors and the
maximum errors between the hand-build kinematic skeletons and the ground truth are also
provided in Table 1. Although the errors of our kinematic skeletons are a bit larger than
the average errors of the hand-build kinematic skeletons, the errors of most joints are lower
than the maximum errors of the hand-build kinematic skeletons. For boundary joints and
joints with less features, e.g., the chest joint and the crotch joint, it’s really difficult to obtain
identical positions, even for manual operations. However, the proposed method can generate
a kinematic skeleton which is comparable to the hand-build kinematic skeletons. Therefore,
the joints of our kinematic skeleton are accurate.

Comparisons The proposed method is compared with three kinematic skeleton generation
methods: the method proposed by Marin et al. [22], called FARM, the method proposed

Table 1 Quantitative evalution of the generated kinematic skeletons

Joint Avg. error Hand–build FARM [22]

Avg. error Max. error Avg.error

Lshoulder 0.0160 0.0111 0.0224 0.0106

Rshoulder 0.0171 0.0096 0.0176 0.0161

Lelbow 0.0066 0.0056 0.0105 0.0098

Relbow 0.0080 0.0053 0.0087 0.0119

Lwrist 0.0048 0.0043 0.0085 0.0168

Rwrist 0.0056 0.0038 0.0084 0.0188

Lhand 0.0156 0.0059 0.0096 0.0209

Rhand 0.0117 0.0071 0.0162 0.0190

Lhip 0.0147 0.0103 0.0150 0.0254

Rhip 0.0196 0.0124 0.0207 0.0257

Lknee 0.0074 0.0069 0.0114 0.0152

Rknee 0.0074 0.0071 0.0123 0.0222

Lankle 0.0102 0.0103 0.0180 0.0102

Rankle 0.0094 0.0104 0.0187 0.0072

Lfoot 0.0208 0.0099 0.0263 0.0082

Rfoot 0.0185 0.0130 0.0293 0.0107

Neck 0.0118 0.0115 0.0257 0.0188

Crotch 0.0189 0.0144 0.0259 0.0262

Chest 0.0181 0.0151 0.0306 –

Head 0.0178 0.0148 0.0346 –

Waist 0.0128 0.0124 0.0213 –

The maximum geodesic distances of the human body models are unit scaled, and the Euclidean distances
between corresponding joints are taken as the errors

Author's personal copy



Multimedia Tools and Applications

by Baran and Popović [7], called Pinocchio and the method proposed by Hajari et al. [13].
FARM focuses on 3D model registration, while the kinematic skeleton generation is one of
its straightforward applications. Pinocchio is a famous method for embedding a template
skeleton into the model directly. And the method proposed by Hajari et al. [13] specifically
focuses on a human body model and embeds a template skeleton into the human body model
indirectly. Other indirect methods [5, 25, 26] prefer kinematic skeleton generation methods
for models in various categories rather than focusing on a human body model. Therefore,
we do not compare our method with these methods.

A visual comparison between the kinematic skeletons generated by FARM and the
proposed method is shown in Fig. 12. Since FARM is a registration-based method, the kine-
matic skeleton can be generated from the deformed template model directly. All the results
of FARM shown in this paper are generated by taking SMPL [20] as the template model.
As shown in Fig. 12, both FARM and the method proposed in this paper can distinguish the
symmetry of the generated kinematic skeleton successfully. Because the joint positions of
the kinematic skeleton generated by FARM are determined by the vertex positions of the
template model, the quality of 3D model registration determines the accuracy of joint posi-
tions. FARM can generate kinematic skeletons reasonably for most of the tested models.
An example is shown in Fig. 12a. But it may also generate kinematic skeletons with some
inaccurate joint positions due to inaccurate 3D model registrations, as shown in Fig. 12b–d.
However, for all these human body models, the method proposed in this paper can generate
kinematic skeletons with joints in reasonable positions. What’s more, for each human body
model shown in Fig. 12, it takes more than thirty minutes for FARM to generate a kinematic
skeleton, while the proposed method can obtain a kinematic skeleton within one minute.

To compare the quality of the generated kinematic skeletons quantitatively, the kinematic
skeletons for the human body models shown in Fig. 11 are also obtained by FARM. And
a visual comparison between the kinematic skeletons generated by FARM and the ground

Fig. 12 Top row: the kinematic skeletons generated by FARM. Bottom row: the kinematic skeletons
generated by our method
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truth is shown in the bottom row of Fig. 11. Because the structure of the template skeleton
obtained by FARM is inconsistent with that of the template skeleton adopted in this paper,
only the joints with the same semantics are analyzed for FARM. A quantitative comparison
of the errors for joint positions is reported in Table 1. For most of the joints, the joint
positions of the kinematic skeleton generated by the proposed method are more accurate.
For the joints with lower accuracy than those obtained by FARM, such as the shoulder
joints, the errors of the proposed method are also less than the max errors for the hand-build
kinematic skeletons.

Figure 13 shows the comparison of the kinematic skeleton generation results between
Pinocchio and our method. Since Pinocchio requires the input model to be given in the same
orientation and pose as the template skeleton, the orientation of the model is first adjusted
manually. By contrast, for our method, the original human body model is used as input. For
human body models with poses similar to the template skeleton, Pinocchio can generate
good results. However, for models with different poses, the results of Pinocchio may be
inaccurate or even incorrect. However, the proposed method can generate correct results for
all of these human body models. We also try to take the 18-joint template skeleton used by
Pinocchio as the input of the proposed method and obtain satisfactory results, as shown in

Fig. 13 Top row: the skeleton embedding results by Pinocchio. Middle row: the kinematic skeleton genera-
tion results of our method by using the template skeleton of Pinocchio. Bottom row: the kinematic skeleton
generation results of our method by using our 21-joint template skeleton
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Fig. 14 Top row: human body models with different orientations. Middle row: the kinematic skeletons
generated by Pinocchio. Bottom row: the kinematic skeletons generated by our method

the middle row of Fig. 13. However, Pinocchio cannot change the structure of the template
skeleton directly because some of the parameters are obtained by learning.

Fig. 15 Comparison between the method proposed by Hajari et al. [13] (a,d) (pictures taken from [13]) and
our method (b,c,e,f)
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Table 2 Columns t1, t2, and t3 show the running time of kinematic skeleton generation, kinematic skeleton
refinement and symmetry distinction, respectively

Dataset Size Times(s)

t1 t2 t3 Total

SCAPE 25K 13.270 0.761 0.0000 14.031

FAUST 13K 4.657 0.430 0.0000 5.087

PSB 20K 8.799 0.816 0.0000 9.615

30K 21.052 1.165 0.0000 22.217

Pinocchio only addresses models with the same orientation as the template skeleton. For
the same model with different orientations, the results will be quite different, as shown in
Fig. 14. However, our method is insensitive to the orientation of the human body model.

Figure 15 shows the comparison of the kinematic skeleton results between the method
proposed by Hajari et al. [13] and our method. The method proposed by Hajari et al. [13]
locates the joints on the curve skeleton directly, making some joints not accurate enough,
for example, the knee joints and elbows joints in Fig. 15a and the shoulder joints in Fig. 15d.
Furthermore, the method proposed by Hajari et al. [13] does not consider the symmetry dis-
tinction problem. By contrast, our method generates a symmetry-aware kinematic skeleton
with more accurate joints.

Runtime Table 2 shows the running time of the proposed method for the human body model
with different face sizes. The data of the SCAPE dataset and the FAUST dataset in Table 2
are the average running time for all models in the dataset. Most of the computation time is
devoted to curve skeleton extraction, while other steps take less time.

Limitations For the human body model shown in Fig. 16a, the geometries of the hand and
the thigh are connected. In this case, the topology of the model is inconsistent with that of
the template skeleton. The proposed method cannot process the model correctly.

Fig. 16 a A failure case. b The kinematic skeleton of a dressed human body model
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Fig. 17 Shape alignment results based on the local coordinate system

Some prior knowledge is adopted to refine the joints of the kinematic skeleton. For a
dressed human body model, some observations and prior knowledge may be inaccurate, and
thus the generated kinematic skeleton will not be as good as the tested human body models,
as shown in Fig. 16b. In addition, the length ratio is adopted to deal with the cases where a
leg or an arm of the human body model is straight. This ratio is statistically significant. It
holds for most of the people. However, the ratio varies for some special people, e.g., the high
jumpers. In these cases, the ratio of the template skeleton can be adjusted interactively if
accurate joint points are required. How to determine the related joint positions automatically
via machine learning will be further investigated in our future work.

Our method assumes that the human feet are always in the forward direction in the
standard pose. Consequently, if the input model does not contain feet or the feet can face
back simultaneously because of the strong flexibility of some people, our method cannot
distinguish the symmetry correctly.

5 Applications

In this section, we demonstrate the effectiveness of the kinematic skeleton generated by the
proposed method for some graphics applications.

5.1 Shape alignment

To correct the semantics of symmetric parts of a kinematic skeleton, a semantic based local
coordinate system is established in the proposed method. Since the local coordinate system
is semantically related to the human body model, the coordinate system can be used to align
the human body models by aligning the coordinate axes, making human body models have
a consistent orientation. Figure 17 shows some human body models with the coordinate
system alignment.

5.2 Skeleton-based deformation

As an abstract representation of a 3D model, a kinematic skeleton is often used to deform or
animate the 3D model. Some shape deformations directly based on the kinematic skeleton
generated by the proposed method are performed, which are shown in the bottom row of
Fig. 18. The skinning procedure is accomplished by using the method proposed by Baran
and Popović [7].
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Fig. 18 Shape deformation results. Top row: human body models in the SCAPE dataset. Bottom row: a an
original human body model in the PSB dataset; b–e the deformed human body models based on the poses in
the top row

Since our method can generate the kinematic skeletons for human body models in differ-
ent poses and orientations, the poses can be transferred to different human body models via
the generated kinematic skeletons. The models on the top row of Fig. 18 are human body
models in the SCAPE dataset. The model in Fig. 18a is a human body model in the PSB
dataset. Once all the kinematic skeletons are generated, we can deform the kinematic skele-
ton of the model in Fig. 18a to the kinematic skeletons generated from the models in the
SCAPE dataset. The deformed human body models are shown in the bottom row of Fig. 18.
Therefore, the generated kinematic skeleton is of high quality and is appropriate for the
human body deformation.

5.3 Shape co-segmentation

Symmetric ambiguity is a difficult problem to be solved for 3D models with intrinsic sym-
metry in shape co-segmentation. Because the kinematic skeletons generated by the proposed
method are semantically distinguished for symmetric parts and structurally consistent for
human body models, they can be used to distinguish the symmetric parts for human body
models in shape co-segmentation.

Figure 19a shows the consistent region segmentation results of the method proposed by
Kleiman and Ovsjanikov [14]. The symmetric parts of human body models are not distin-
guished by this method. Although a symmetry-breaking algorithm is proposed to obtain a
one-to-one part matching result, the totally symmetric flips that map the entire left side of
a human body model to the right side cannot be avoided. With the symmetry-aware kine-
matic skeleton generated by the proposed method, the symmetric parts can be distinguished
by the semantics of the nearest bones on the kinematic skeleton. As shown in Fig. 19b, the
symmetric parts of the models are distinguished and matched correctly.
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Fig. 19 a Consistent region segmentation results by Kleiman and Ovsjanikov [14]. b Consistent region
segmentation results refined by our kinematic skeletons

5.4 Shape correspondence

Shape correspondence is a fundamental problem in computer graphics with a wide range
of applications such as shape deformation, shape analysis, etc. There are many good
methods [24, 32, 36] to find correspondences between isometric models based on some
isometric-invariant features, and the symmetric ambiguity problem can also be solved by
some oriented descriptors. However, for non-isometric models, it is difficult to obtain cor-
respondences since features between the non-isometric models are not invariant. Some
methods [2, 35] establish the correspondences between non-isometric models by optimiz-
ing the minimum distortion with a set of landmarks. However, finding a sparse set of feature
correspondences automatically is not an easy task.

With the kinematic skeleton generated by the proposed method, a sparse set of corre-
spondences can be obtained easily. Given two human body models, kinematic skeletons
can be generated by the proposed method first. Then, some parts of the human body model
can be segmented according to the joint positions of the kinematic skeleton, as shown in
Fig. 20a. For each part, the point with maximum HKS [31] values can be defined as a fea-
ture point. Feature points corresponding to parts with the same semantics are regarded as
corresponding points, as shown in Fig. 20b.

Fig. 20 a Segmented parts of human body models based on the generated kinematic skeletons. b A sparse
set of correspondences between human body models
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Recently, some shape correspondence methods [23, 27] have been proposed based on
the functional map framework. The results of the symmetry-aware shape co-segmentation
and the sparse point correspondences can also be used as constraints of the functional
map framework to avoid symmetric ambiguity and improve the accuracy of dense shape
correspondence.

6 Conclusion and future work

We have proposed an automatic symmetry-aware kinematic skeleton generation method
that is specifically designed for a human body model. Arbitrary pose and orientation of the
input human model are allowed. The joint positions of the generated kinematic skeleton are
accurate since the geometry of the human body model and some prior knowledge are taken
into consideration. Furthermore, the proposed method can distinguish the symmetry of the
generated kinematic skeleton. In addition to animation applications, our symmetry-aware
kinematic skeleton generation method can also be used in shape correspondence, shape co-
segmentation and other applications that need to distinguish the symmetric parts of a human
body model.

In the future, we will focus on skeleton generation with more details, such as a skeleton
with fingers and toes. Moreover, a similar method can also be extended to animals by taking
a corresponding template skeleton as input, which can also be considered in future work.
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