
Pacific Graphics 2014
J. Keyser, Y. J. Kim, and P. Wonka
(Guest Editors)

Volume 33 (2014), Number 7

Sub-Pixel Anti-Aliasing Via Triangle-Based Geometry
Reconstruction

Wenjun Du1 Jieqing Feng1,† Baoguang Yang2

1State Key Lab of CAD&CG, Zhejiang University ({duwenjun, jqfeng}@cad.zju.edu.cn) † - Corresponding author
2Qualcomm Incoporated

Abstract
Anti-aliasing has recently been employed as a post-processing step to adapt to the deferred shading technique in
real-time applications. Some of these existing algorithms store supersampling geometric information as geometric
buffer (G-buffer) to detect and alleviate sub-pixel-level aliasing artifacts. However, the anti-aliasing filter based
on sampled sub-pixel geometries only may introduce unfaithful shading information to the sub-pixel color in
uniform-geometry regions, and large G-buffer will increase memory storage and fetch overheads. In this paper, we
present a new Triangle-based Geometry Anti-Aliasing (TGAA) algorithm, to address these problems. The coverage
triangle of each screen pixel is accessed, and then, the coverage information between the triangle and neighboring
sub-pixels is stored in a screen-resolution bitmask, which allows the geometric information to be stored and
accessed in an inexpensive manner. Using triangle-based geometry, TGAA can exclude irrelevant neighboring
shading samples and achieve faithful anti-aliasing filtering. In addition, a morphological method of estimating the
geometric edges in high-frequency geometry is incorporated into the TGAA’s anti-aliasing filter to complement
the algorithm. The implementation results demonstrate that the algorithm is efficient and scalable for generating
high-quality anti-aliased images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Antialiasing—
Picture/Image Generation

1. Introduction

Anti-aliasing is a technique to remove or alleviate aliasing
artifacts and improve the visual quality of synthetized im-
ages. The classical approach, Super-Sampling Anti-Aliasing
(SSAA), evaluates multiple sub-pixel shading samples and
then compute thier average or weighted averages for each
pixel. Another widely used method, Multi-Sampling Anti-
Aliasing (MSAA) [Ake93], is a specific optimization of S-
SAA and performs notably better. The MSAA executes the
fragment program once per pixel and supersamples the depth
and stencil values. MSAA has long been the most popular
anti-aliasing solution in various graphics applications.

Deferred shading [GPB04, Har04] is a powerful screen-
space shading technique. It gathers data on the first shading
pass and performs real shading composition on the second
pass. The method can achieve complex illumination effects
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without a significant decrease in performance. Unfortunate-
ly, MSAA is not compatible with deferred shading because
the real shading stage of deferred shading is performed in
image space via geometric buffers (G-buffer). In such a con-
text, MSAA will degenerates to SSAA and loses its perfor-
mance advantages [Koo07, Shi05].

In recent years, new anti-aliasing algorithms have e-
merged that are performed as a post-processing step and are
compatible with the deferred shading technique. The post-
processing anti-aliasing algorithms can be classified into two
categories based on whether geometric information is em-
ployed: the image-based approach and the geometry-assisted
approach.

The image-based approach commonly detects and ana-
lyzes aliased features in a screen-resolution shading image
and then performs heuristic filtering to alleviate the alias-
ing artifacts. These algorithms exhibit good performance in
general, but they are subject to insufficient geometric infor-
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Figure 1: Anti-aliasing result of TGAA in Powerplant (470K triangles), 1920×1080, 4.8 ms for the entire algorithm.

mation and tend to overblur certain visual features or details
in the image.

The geometry-assisted anti-aliasing approach is based on
the fact that the shading costs are typically higher than the
geometric computation costs [CML11]. The ideal color of
the screen pixel can be seen as the average color of the sub-
pixels, some geometry-assisted approach stores the pixel-
level shading information and the sub-pixel-level geomet-
ric information, instead of the sub-pixel-level shading infor-
mation in SSAA, to minimize the shading operations in the
algorithm. These algorithms reconstruct the sub-pixel color
according to the geometric similarity between this sub-pixel
and its neighboring shading samples, and then achieve rea-
sonable anti-aliasing color filtering. However, the high reso-
lution G-buffer that represent super-sampling scene geome-
try will increase memory storage and access overheads.

As another geometry-assisted solution, [DYF08, LMS-
G14] represent the sub-pixel-level scene geometry by the
coverage triangle of screen pixels, which refers to the trian-
gle closest to the viewpoint that overlaps the center of each
screen pixel. Inspired by this, we present a Triangle-based
Geometry Anti-Aliasing algorithm (TGAA), which has in-
expensive G-buffers and faithful anti-aliasing filter. The sub-
pixel-level geometries are represented by the coverage in-
formation between the coverage triangle and its neighbor-
ing sub-pixels for each screen pixel, and can be stored in a
screen-resolution bitmask. The anti-aliasing filter uses infor-

mation stored in the G-buffers to select neighboring shading
samples and then reconstruct sub-pixel colors.

The main contributions of TGAA include the following:

• TGAA employs a triangle-based G-buffer generated from
the original coverage triangle of each screen pixel and
proposes a faithful geometric filter to alleviate aliasing.

• The triangle coverage information is stored in a screen-
resolution texture representing sub-pixel-level geometry,
and thus, the additional rendering pass for high resolution
G-buffer generation is not required. Meanwhile, the small
size storage as a bitmask significantly reduces the memory
storage and access overheads of the algorithm.

• A morphological method is employed to estimate the anti-
aliased color of the sub-pixel near thin geometric details.

2. Related Work

Aside from SSAA and MSAA, the subsequent algorithms,
e.g., CSAA [YN06] and EQAA [AMD11], inherit the limi-
tation of being incompatible with the deferred shading tech-
nique. Lauritzen [Lau10] combined tiled deferred shading
with MSAA with detection of surface discontinuities. Hol-
länder et al. [HBE13] improved the super-sampling alias-
ing framework to adapt the deferred shading context. Bar-
ringer et al. [BAM13] proposed asynchronous adaptive anti-
aliasing using shared memory architecture between the GPU
and CPU as an accelerated anti-aliasing solution.
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In recent years, post-processing anti-aliasing algorithms
have been proposed, and are well adapted to the deferred
shading framework. Detailed surveys are given in [JGY∗11].
Only the most relevant works are reviewed in this section.

2.1. Image-Based Anti-Aliasing Approach

Among the post-processing anti-aliasing algorithms, image-
based approaches are widely used due to their simplicity and
high efficiency. The input to an image-based anti-aliasing
algorithm is a screen-resolution rasterized image. Various
aliased features or details in the image are detected or es-
timated. An anisotropic filtering method is then designed
and performed to alleviate these aliasing artifacts. In general,
these algorithms can generate plausible results efficiently.

The directionally adaptive edge anti-aliasing filter
[IYP09] is one of the pioneer works of post-processing anti-
aliasing. For each pixel on the feature edge, this filter us-
es integration to estimate the weights of the adaptive filter,
which are the coverages of the geometry on the pixel.

Morphological anti-aliasing (MLAA) [Res09] is a repre-
sentative image-based anti-aliasing algorithms. It estimates
the underlying edge properties by analyzing the color dis-
continuities. However, this method is implemented on the
CPU using vector instructions and is not suitable for real-
time GPU implementation. Jimenez’s MLAA [JME∗11]
achieves high performance by fully exploiting hardware-
supported texture operations, such as edge detection, area
coverage estimation, precomputed blending patterns, and bi-
linear interpolation. Although it is regarded as successful
image-based anti-aliasing algorithms, it still cannot detec-
t or process sub-pixel-level aliasing artifacts well. In some
cases, it may overblur features or details in the scene due
to a lack of sub-pixel geometric information. Their subse-
quent work, enhanced subpixel morphological antialiasing
(SMAA) [JESG12], solves the sub-pixel feature problem by
combining MLAA with an additional multi/super-sampling
step. In addition, this method improves such features as
sharp edge estimation, pattern processing, and distance com-
putation. However, certain aliasing artifacts are still omitted
due to the limited number of precomputed patterns and lack
of geometric information.

Directionally localized anti-aliasing (DLAA) [And11] is
another image-based solution that blurs the feature edges
along the estimated directions. Both vertical and horizon-
tal blurs are adopted to produce a gradient effect along the
aliased feature edges. Fast approximate anti-aliasing (FX-
AA) [Lot11] addresses sub-pixel features efficiently via fast
feature detection and attenuation processes while sacrificing
the anti-aliasing quality and accuracy to some extent. Reduc-
ing aliasing artifacts through resampling (RSAA) [Res12]
adopts a high resolution sampling image to reconstruct the
pixel color of the feature by computing the offsets of bilin-
ear resampling. However, the method is not effective enough

when more than two distinct surfaces cover a pixel or when
there are a sufficient number of valid samples in its neigh-
boring pixels.

2.2. Geometry-Assisted Anti-Aliasing Approach

Compared with image-based anti-aliasing approaches,
geometry-assisted anti-aliasing algorithms consider addi-
tional sub-pixel level geometric information to estimate ge-
ometric features or details. As a result, they facilitate more
accurate "feature pixel" filtering. However, they suffer from
additional storage and memory accessing costs.

Distance-to-edge anti-aliasing (DEAA) [JGY∗11] com-
putes the distance from the pixel center to the nearest trian-
gle edge at the sub-pixel precision and then uses the distance
to estimate the filtering weight. Geometric post-process anti-
aliasing (GPAA) [Per11a] and geometry buffer anti-aliasing
(GBAA) [Per11b] algorithms compute feature pixel cover-
ages using additional edge information. Unfortunately the
three aforementioned algorithms still cannot handle sub-
pixel-level aliasing artifacts correctly, as only screen reso-
lution geometric information is adopted.

Subpixel reconstruction anti-aliasing (SRAA) [CML11]
combines a screen-resolution shading image with addition-
al supersampling position, depth or normal G-buffers and
is capable of reconstructing sub-pixel-level geometric de-
tails. Furthermore, SRAA functions steadily for animated
scenes. SRAA respects the original geometric boundaries
more faithfully than image-based anti-aliasing approaches.
Because the edge estimation of SRAA is based on pure sam-
pled geometry, unfaithful filtering may occur when a sample
has similar geometric attributes to its neighboring shading
information. Furthermore, the storage and texture accessing
costs of the high resolution G-buffer in SRAA are heavy,
which is also a common problem for geometry-assisted anti-
aliasing algorithm, particularly if the G-buffer is large.

3. Triangle-Based Anti-Aliasing Algorithm

3.1. Algorithm Overview

Employing sub-pixel geometry in anti-aliasing filtering in-
troduces two main challenges. First, in some cases the sam-
pled sub-pixel geometries (e.g., depth or normal) exhibit lit-
tle geometric variation within the filtering region, and the
filter may degenerate to a blurring process and introduce un-
faithful shading information to sub-pixel color. The second
challenge is the storage and access overheads of the large
G-buffers.

To overcome these challenges, TGAA adopts triangle-
based geometry as the basis of its anti-aliasing filtering,
which can represent both sampled sub-pixel geometry and
primitive information of the scene. Thus triangle-based ge-
ometry is more reliable for reconstructing the sub-pixel col-
or, compared to considering the geometric similarity be-
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Figure 2: Flowchart of the proposed algorithm in two passes, where rectangles denote data and ellipses denote procedure.

tween sub-pixels alone. Meanwhile, triangle-based geome-
try can be stored in a small size texture to reduce the memory
requirement (see details in section 3.2). The flowchart of the
proposed algorithm is shown in Figure 2. TGAA includes
two rendering passes: G-buffer generation and anti-aliasing
filtering.

3.2. G-buffer generation

As described in Figure 2, the G-buffer generation pass gener-
ates the coverage information, the primitive ID information,
the depth information accompanied by the shading informa-
tion. The four generated information are all stored in screen
resolution texture, while the coverage information can rep-
resent sub-pixel geometry.

Figure 3: (a) A screen pixel (center) and its 8 adjacent pixels
with its surrounding triangle geometries. (b) There are 36
sub-pixels (black dots) for 4× anti-aliasing in this area. The
coverage triangle (red) of the center pixel is accessed, and
its coverage with the 36 neighboring sub-pixels is computed.
(c) A 36-bit bitmask is generated as the sub-pixel geometric
information.

Coverage information: The sub-pixel-level geometry in
TGAA is based on the coverage triangle of each pixel cen-
ter, which can be retrieved from the geometry shader stage of
the rendering pipeline. The coverage triangle can represen-
t the original geometry of the scene and approximately re-
construct the real sub-pixel color with surrounding shading
samples. Rather than directly storing the vertex coordinates
of the coverage triangle, we can pre-compute the coverage
information between the coverage triangle and its neighbor-
ing sub-pixels in this pass. Thus, the triangle-based geomet-

ric information is converted into a binary mask, and a large
G-buffer is avoided.

TGAA supports different sub-pixel sampling rates or pat-
terns and different filtering kernel of neighboring shading
samples according to the application’s requirements. With-
out loss of generality, assume that 4× TGAA is performed
with an 8-neighbor pixel filtering kernel (Figure 3). For the
coverage triangle of the current pixel, we will test whether
the triangle covers 4 × 9 surrounding sub-pixels. The re-
sulting bitmask will record this coverage information us-
ing 36 bits per pixel. This sub-pixel-level geometry has a
smaller size and is less expensive to fetch compared to other
sub-pixel anti-aliasing algorithms. For example, SRAA di-
rectly adopts 4 × depth as the sub-pixel information: 128
bits per pixel. Moreover considering normal information of
sub-pixel resolution, the G-buffer size will become 256 bit-
s. We will perform a detailed G-buffer size comparison in
Section 4.

Determining whether 36 neighboring sub-pixels lie insid-
e the coverage triangle can be achieved by computing the
barycentric coordinates of the sub-pixels, and this cost dom-
inates the runtime of the entire pass. Instead of a brute-
force computation, an incremental determination strategy
[Pin88] is employed to avoid time-consuming matrix calcu-
lations and improve the performance. We choose one sub-
pixel p∗(x∗,y∗) between the 36 sub-pixels and compute it-
s barycentric coordinates (ω0,ω1,ω2). The coverage of the
other 35 sub-pixels can be determined incrementally via E-
quation (1). In this manner, the bitmask for the edge pixel is
determined efficiently.



ω0(x, y) =
∂w0

∂x∗
(x− x∗) +

∂w0

∂y∗
(y− y∗) +ω0(x

∗
, y∗)

ω1(x, y) =
∂w1

∂x∗
(x− x∗) +

∂w1

∂y∗
(y− y∗) +ω1(x

∗
, y∗)

ω2(x, y) = 1−ω0(x, y)−ω1(x, y)

(1)

Primitive ID and depth information: In addition to the
coverage information, the primitive ID of the coverage tri-
angle and the screen-resolution depth information are also
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Figure 4: An example of shading sample filtering for sub-pixel P. (a) Two foreground triangles (orange and grey) and one back-
ground triangle (yellow) near P. The red dots represent the shading samples stored in the G-buffer. (b) Exclusion of irrelevant
shading samples via coverage information. (c) Exclusion of unfaithful shading samples via depth information and primitive ID
information where multiple triangles (orange and yellow triangles) cover sub-pixel P. (d) 4 shading samples are identified. The
blue dashed lines is the approximated illustration of the estimated sub-pixel edges near P.

stored in this pass; these pieces of information can be ac-
quired from the rendering pipeline. The information in the
depth buffer includes the depth value of the pixel center and
the partial deriviates of the depth (dz/dx and dz/dy) on the
coverage triangle for each pixel.

The generated primitive ID information is stored in 32-
bit format to meet the requirements of complex scenes. The
depth buffer is also stored in 32-bit format, containing depth
in 16 higher bits and depth deriviates in 16 lower bits (8 for
the x-direction and 8 for the y-direction), respectively. The
relatively low precision of the depth information is sufficient
in our algorithm, because the depth information is only used
to determine the relative positions of triangles. Furthermore,
the primitive ID buffer is also used to estimate the color of
“isolated” sub-pixels (see details in Section 3.3).

To summarize, 24-bit R8G8B8 format shading informa-
tion, 36-bit coverage information, 32 bits depth information
and 32-bit primitive ID information are generated in this
pass. These 124 bits of data can be packed into a single 128-
bit format texture. One advantage of TGAA is that the four
types of information are all in screen resolution and can be
stored in a single pass, whereas SRAA requires the screen
resolution color information and high resolution geometric
information using two passes. Furthermore, the relatively s-
mall G-buffer and compact storage require less memory re-
quirement than the high resolution G-buffer in the algorithm.

3.3. Anti-Aliasing Filtering

In this stage, the anti-aliased color of each screen pixel is de-
termined by sub-pixel-level filtering. As shown in Figure 2,
this stage includes the following steps:

Shading sample filtering: In this step, the filter deter-
mines how the shading samples in the filtering kernel of 8-

neighbor pixel area contribute to the sub-pixel color. Rele-
vant shading samples are identified with the G-buffer infor-
mation in the 8-neighbor pixels.

Figure 4 illustrates a typical example of shading sample
filtering for sub-pixel P in TGAA. We will explain the two
main steps of the filtering with this example.

1) Excluding irrelevant shading samples via coverage in-
formation. In this step, the coverage bitmasks stored in all 9
pixels are accessed. Accessing the 9 coverage bitmasks, we
can check the coverage between P and the three triangles. In
this way, we know the grey triangle and its three correspond-
ing pixels (right, bottom right and bottom) are irrelevant (see
Figure 4 (b)).

2) Excluding irrelevant shading samples via depth and
primitive ID information when multiple candidate triangles
cover sub-pixel P. Both the background yellow and the fore-
ground orange triangles meet the condition of coverage, but
the orange triangle is the actual coverage triangle of P that
we want to identify. Computing the depth values of P on each
candidate triangle can quickly eliminate those irrelevant tri-
angles and identify the real coverage triangle since the actual
coverage triangle is closest to the viewpoint. Thus, the com-
puted depth values are compared and the smallest value is
what we want to acquire (Figure 4 (c)).

Because of the possible floating point error in depth com-
putation, a little threshold (e.g., 10-5) is used to avoid erro-
neous triangle elimination. If the difference of two comput-
ed depth values is smaller than the threshold, the two corre-
sponding triangles can be considered identical. In this case,
primitive ID is adopted as a final check, preventing the case
that two triangles are different but have very close depth at
P.

Color interpolation: The sub-pixel color can be interpo-
lated once the identified neighboring shading samples are
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determined. Whereas other algorithms compute the filter
weight using a geometric similarity function, TGAA can
take the 2-D distance between the sub-pixel and i shading
samples as the filter weights (ωi) since the actual filter is
within the triangle. In this manner, the reconstructed sub-
pixel color (csub) is estimated as distance-weighted average
of shading sample colors (si), as denoted in Equation 2. The
final pixel color can be obtained by averaging the recon-
structed sub-pixel colors.

csub =
∑ωi si

∑ωi
(2)

Figure 5: (a) Isolated sub-pixel with high-frequency geome-
tries. (b) Unavailable coverage information. (c) Illustration
of morphological estimation. The four estimated lengthes
of the edges (green arrows) determine the blending weights
with neighboring pixels (red arrows).

Morphological estimation for isolated sub-pixels:
Based on the proposed filter above, we must find at least
one coverage triangle, equivalently one or more correspond-
ing shading samples, for each sub-pixel. However, if there
is not any available triangle information for the sub-pixel,
MLAA estimation strategy makes a good complement to
deal with those isolated sub-pixels (see Figure 5 (a) and (b)).
This issue is common for sub-pixel anti-aliasing algorithms,
which has not been specified in related post-processing anti-
aliasing studies.

The morphological anti-aliasing introduced by Reshetov
[Res09] has been extended for GPU implementation
[JME∗11, JESG12]. The main concept is to detect the edge
and compute the edge length in the horizontal and ver-
tical directions using the color or depth information, and
then blending the 4 neighboring color according to the edge
length. TGAA inherits this strategy and only makes two
modifications:

1) The primitive ID is employed to detect the length of ge-
ometric edge rather than color or depth. The shader increases
the edge length by one pixel-size for each iteration, until the
primitive IDs of the two subsequent pixels are different;

2) TGAA considers the sub-pixel position as the start
point in edge length evaluation, which achieves more ac-
curate length of the edge in four directions. The sub-pixel

position should be consider while evaluating the length of
the edge.

This additional step increases the overhead of the filter on-
ly sightly for two reasons. First, isolated sub-pixels occupy a
very small proportion in the entire screen. In our testing sce-
narios, less than 0.1% of sub-pixels are isolated. Second, the
computational cost of morphological anti-aliasing is main-
ly influenced by the number of iterations in the edge length
computation step. This step typically requires 1∼5 iterations
near the high-frequency geometries.

4. Implementation Results and Discussion

We have implemented the proposed anti-aliasing algorith-
m with DirectX 10.1 and HLSL shader mode 4.0 on a PC
with Intel Core i5 760@2.8GHz, 16 GB of physical mem-
ory and NVIDIA GeForce GTX 780 GPU, 4 GB memo-
ry. The Windows 7 operation system was used. The testing
screen resolutions varies from 1280× 720 to 2560× 1440,
adapting from the mobile device to the PC display. The im-
plementation results indicate that TGAA can generate high-
quality anti-aliasing images, which approximate the refer-
ence SSAA images (Figure 6). In this paper, SRAA [CM-
L11] and SMAA [JESG12] are selected as the represen-
tative geometry-assisted and image-based post-processing
anti-aliasing algorithms, respectively, for detailed compar-
isons. Figure 7 shows a comparison of various algorithms
and highlights two typical features. The generated images
in this paper are provided without PDF compression in the
supplemental files.

4.1. Comparison with SRAA

G-buffer size: One of the main advantages of TGAA is the
small size G-buffer and low memory requirement. In our ex-
periments, both TGAA and SRAA were implemented using
full-screen geometry storage, with no storage compression
techniques. The detailed G-buffer format and statistics of
the G-buffer data size of the two algorithms are provided
in Table 1. At the testing sub-pixel sampling rates of 4× and
16×, the G-buffer size of TGAA is only 44.3% and 22.1%
of SRAA, respectively, because the supersampling depth and
normal G-buffer in SRAA are expensive to store and access.
Remarkably, even the memory requirement of 16× TGAA
is lower than 4× SRAA, which demonstrates that TGAA is
more scalable with an increasing sub-pixel sampling rate.

Quality: TGAA is designed with a similar framework of
SRAA; triangle-based geometry is used in TGAA for a more
faithful anti-aliasing filtering. Figure 8 presents a typical ex-
ample and compares SRAA and TGAA. The marked hori-
zontal edge is located near the floor and the shortest building
in the scene, and there is no clear variation in depth and nor-
mal for these pixels. In this case, SRAA’s filter degrades to
an unfaithful blur and introduces erroneous color in the fil-
tering. TGAA consider only those reasonable shading sam-
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Figure 6: Comparison of 4 × TGAA, 16 × TGAA and reference 64 × SSAA images in Tank (214K triangles).

Table 1: Comparison of the G-buffer data size (Mbytes) of
SRAA and TGAA with various screen resolutions and sam-
pling rates. The detailed G-buffer format of both algorithms
are listed below (n represents the number of sub-pixels in
each pixel).

G-buffer size
screen TGAA SRAA
resolution 4× 16× 4× 16×
1280×720 13.6 25.5 30.8 115.3
1600×900 21.3 39.9 48.1 180.0
1920×1080 30.7 57.4 69.3 259.4
2560×1440 54.5 102.1 123.2 461.1
TGAA: 24 bits color, n× 9 bits coverage,

32 bits primitive ID, and 32 bits depth
SRAA: 24 bits color, n× 32 bits depth and n× 32 bits normal

ples and avoids this artifact due to the triangle-based infor-
mation.

We also measure the anti-aliasing quality for both TGAA
and SRAA by comparing their color errors at sub-pixel lev-
el. The SSAA image with the same screen resolution and
same sub-pixel sampling rate is used as the ground truth
image. To quantitatively describe the sub-pixel color error
of a given algorithm, we computed the difference between
the corresponding sub-pixel color in the test image and the
SSAA image. Then we added the 3 RGB channels of the
color difference value to the measurement λ. The statistics
are described in Table 2. The color error of the sub-pixels

is distributed in different ranges. The statistics demonstrate
that TGAA reconstructs the anti-aliasing color more faith-
fully than SRAA.

Performance: TGAA achieves real-time performance
due to the simplicity of the algorithm framework and the low
G-buffer access overhead. Table 3 and 4 detail the analysis
of each step of the algorithm and the comparison between
SRAA and TGAA under relatively low and high screen res-
olution.

These experimental results demonstrates that TGAA has
little advantage of the performance with both 1280 × 720
and 2560×1440 resolution. In the G-buffer storage step, the
main overhead of TGAA is the geometric processing in the
geometry shader stage of the rendering pipeline, whereas
high resolution rasterization dominates the performance of
SRAA. TGAA display a slight advantage over the SRAA’s
two-pass rendering due to the simplicity of generating screen
resolution G-buffers in a single pass. In the anti-aliasing fil-
tering step, SRAA must access a relatively large G-buffer,
but its bilateral filtering is straightforward and simple. How-
ever, the computational cost of selecting reasonable shading
samples is higher in the filtering pass of TGAA, which leads
to slightly lower performance on this pass compared to that
of SRAA.

4.2. Comparison with SMAA

TGAA and the representative image-based anti-aliasing al-
gorithm SMAA were also compared. Morphological meth-
ods tend to generate unfaithful anti-aliasing results near
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Figure 7: Comparison of various algorithms in Traffic (958K triangles), 1280 × 720. Details in red square: SMAA blurs the
1 × shading image with a heuristic approach, whereas SRAA and TGAA can reconstruct sub-pixel-level edges and generate
anti-aliasing images similar to the reference SSAA. Details in blue square: SRAA introduces unfaithful shading information to
sub-pixel color filter in such region of uniform geometry.

Figure 9: Comparison of SMAA and TGAA in Powerplant
(470K triangles).

some geometric edges due to the heuristic edge estimation
and the lack of the sub-pixel level geometry. As shown
in Figure 9, TGAA provides smooth geometric edges in
the anti-aliasing image, wheres SMAA produces segment-

ed edge according to the aliased image. However, SMAA is
more efficient than TGAA (see Table 5).

Table 2: Percentage of sub-pixel in different intervals of the
color error for 4 × SRAA and TGAA. The testing resolution
is 1280×720.

λ ≤ 0.0001 λ ≤ 0.001 λ ≤ 0.01
Building SRAA 98.91% 99.10% 99.33%

TGAA 99.92% 99.96% 99.98%
Tank SRAA 96.51% 97.40% 98.79%

TGAA 96.67% 98.22% 99.42%
Powerplant SRAA 95.88% 97.25% 98.80%

TGAA 95.98% 98.34% 99.32%
Traffic SRAA 96.32% 97.38% 98.71%

TGAA 96.61% 97.98% 99.25%
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Figure 8: Comparison of (a) 1 × shading, (b) 4 × SRAA, (c) 4 × TGAA and (d) reference 4 × SSAA images in Building (9K
triangles).

Table 3: Runtime (milliseconds) comparison of SRAA and
TGAA with 1280×720 screen resolution.

Scene shading geo AA total
(#triangles) generation filtering

Building SRAA 0.5 1.2 1.6 3.3
(9, 000) TGAA 1.2 1.9 3.1

Tank SRAA 0.6 1.4 1.7 3.7
(214, 000) TGAA 1.7 1.9 3.6
Powerplant SRAA 0.6 1.5 1.7 3.8
(470, 000) TGAA 1.7 1.9 3.8

Traffic SRAA 0.6 1.8 2.0 4.4
(958, 000) TGAA 2.2 2.0 4.2

Table 4: Runtimes (milliseconds) comparison of SRAA and
TGAA with 2560×1440 screen resolution.

Scene shading geo AA total
(#triangles) generation filtering

Building SRAA 1.3 3.0 5.1 9.4
(9, 000) TGAA 3.0 5.5 8.5

Tank SRAA 1.5 3.2 5.4 10.1
(214, 000) TGAA 3.6 5.7 9.3
Powerplant SRAA 1.6 3.6 5.5 10.7
(470, 000) TGAA 3.7 5.8 9.5

Traffic SRAA 1.9 4.3 5.5 11.7
(958, 000) TGAA 4.1 6.4 10.5

4.3. Limitation

The main limitation of TGAA is that some sub-pixels would
fail in TGAA’s filter, and then degenerate to MLAA and in-
herit MLAA’s drawbacks. This fact are mainly lead by two
reasons: 1) TGAA is based on the coverage bitmask infor-
mation, which is a partial representation of the scene geom-
etry. The loss of triangle geometry will lead fail cases. 2)
TGAA’s filter is strictly within the actual coverage triangle
area to achieve faithful filtering. With this strategy, isolated
sub-pixels have to adopt MLAA as a backup strategy.

The effect of this limitation can be observed, especially

Table 5: Runtimes (milliseconds) comparison of SMAA and
TGAA.

SMAA TGAA SMAA TGAA
1280× 720 1280× 720 2560× 1440 2560× 1440

Building 2.5 3.1 7.0 8.5
Tank 2.7 3.6 7.4 9.3

Powerplant 2.7 3.8 7.9 9.5
Traffic 3.1 4.2 8.8 10.5

Figure 10: Illustration of the limitation of TGAA in Fo-
liage scene with highly-tesselated triangles and pixel-size
features.

in scenes with pixel-sized triangles or features. Figure 10
demonstrates a typical Foliage scene with highly-tesselated
triangles and pixel-sized geometric features. While generat-
ing smooth anti-aliasing quality for most geometric edges
(red rectangle), some pixels are partly degenerate to mor-
phological anti-aliasing result. It is hard to completely re-
construct those pixel-size or sub-pixel-size holes like the ref-
erence MSAA (blue rectangle).
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Flickering can be expected in animated scene since two
different anti-aliasing filters work together in TGAA. To to-
tally address this problem, combining TGAA with a reliable
temporal filter, e.g., temporal reprojection, could be consid-
ered as one solution. However, it is a new challenge to design
such an anti-aliasing framework efficiently.

5. Conclusion and Future Work

We have presented a new post-processing geometry-
assisted anti-aliasing algorithm termed TGAA. Using o-
riginal triangle-based geometric information, TGAA can
achieve real-time sub-pixel-level anti-aliasing. TGAA dis-
plays low memory requirements and faithful anti-aliasing
quality compared to the state-of-the-art post-processing anti-
aliasing algorithms.

As a post-processing geometry-assisted anti-aliasing al-
gorithm, the proposed TGAA does not consider texture
edges or shading edges. Image-based anti-aliasing approach-
es are more suitable for these artifacts. Our future plan is to
design a hybrid approach that can process geometric aliasing
and shading (or texture) aliasing robustly.
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