
Visual Comput (2008) 24: 495–503
DOI 10.1007/s00371-008-0230-3 O R I G I N A L A R T I C L E

Wenwu Yang
Jieqing Feng
Xiaogang Jin

Shape deformation with tunable stiffness

Published online: 29 May 2008
© Springer-Verlag 2008

W. Yang · J. Feng (�) · X. Jin
State Key Lab of CAD&CG,
Zhejiang University,
Hangzhou 310027, P.R. China
{wwyang, jqfeng, jin}@cad.zju.edu.cn

Abstract The paper presents a 2D
or 3D shape deformation method
which incorporates global and local
stiffness controls. First, a geometric
object is embedded into a regular
lattice and then the deformation
is conducted on the lattice; thus,
the method is independent of the
underlying object representation.
The lattice cells are organized as
overlapping local rigid regions, and
the region width could be regarded
as a means of the global lattice
stiffness control. For each region,
there is a local stiffness coefficient
to control the lattice deformation
locally. During the deformation
a nonlinear objective function is
optimized to achieve the natural lat-
tice deformation with the prescribed
global and local stiffnesses. Then,

the lattice deformation is passed to
the embedded object through bilinear
or trilinear interpolation. In this way
we can deform the object in a more
physically plausible way with tunable
stiffness. Experimental results show
that the method is intuitive and
flexible.

Keywords Shape deformation ·
Stiffness · Rigidity

1 Introduction

Shape deformation is a useful tool of shape modeling
and animation in computer graphics. Direct shape ma-
nipulation is particularly attractive since it provides an
intuitive and flexible way to edit the object by specify-
ing a few position constraints on the geometry of the
model. Other kinds of constraints such as area or vol-
ume preservation of 2D or 3D shapes [10, 30] and the
free intersection [32] etc. have also been taken into ac-
count to achieve more natural deformations. Meanwhile,
in the real world, objects usually are made of different
types of materials and the materials may also be inhomo-
geneous. So, the object deformations will manifest differ-
ent stiffness behaviors. Thus, the deformation taking into

account the stiffness will be more flexible and physically
plausible.

This paper presents a 2D or 3D shape deformation
method that incorporates the global and local stiffness
properties of the object. The incorporation of stiffness
control provides an intuitive way for a user to specify the
rigidity of the object and allows us to mimic shape de-
formations composed of different materials. The method
deforms the shape under the position constraints with
the prescribed global and local stiffness parameters while
minimizing distortion. First, the shape is embedded into
a regular lattice and the lattice cells are organized as
overlapping local rigid regions with a specified width. In-
creasing (decreasing) the region width is equivalent to
increasing (decreasing) the global stiffness of the shape,

496 W. Yang et al.

Fig. 1a–e. A capsicum-like cartoon shape (a) is deformed under the same constraint with different global stiffnesses, where b–d cor-
respond to the lattice region half-widths w = 1, 3 and 6, respectively. The top row are deformation results and the bottom row are the
corresponding lattices. The mouth distortion in (d) is alleviated in (e) by increasing the local stiffness at the mouth region, which is
indicated by the gray part in the lattice of (e)

which effectively mimics the stiff (soft) object deforma-
tions (see Fig. 1b–d). A penalty coefficient for the distor-
tion of each local rigid region defines the local stiffness
and can also be adjusted to reflect the anisotropic stiffness
(see Fig. 1e). To achieve a physically plausible deform-
ation, a nonlinear energy function that measures the de-
viation of each rigid region transformation from a true
rigid transformation (i.e. translation, rotation or their com-
bination) is designed and will be minimized for the desir-
able deformation results. Meanwhile, the lattice regularity
could be exploited to improve the optimization efficiency
by using the fast summation technique [21].

2 Related work

As an important shape editing and animation technique,
shape deformation has been well studied for many years.
The relevant works are reviewed here.

Free-form deformation (abbreviated as FFD) [24] is
the most prevalent shape deformation method. The FFD
is conducted on a parametric volume in which the object
is embedded; thus, it separates shape editing complex-
ity from geometry complexity and shape representation.
However, the FFD is a shape editing tool geometrically
without any considerations of the object material ingre-
dients. Thus, it could not be applied to the stiffness-
awareness deformation directly [20].

For articulated models with jointed structures, it would
be better to use the skeleton-driven deformation tech-
niques [15]. The skeleton-based approach can provide
a binary gradation of stiffness. However, automatically de-
termining the skeleton configuration is not a trivial work
and most of the skeleton-based methods are not suitable
for non-articulated objects.

Physical-based simulation can naturally [7, 8, 13, 18,
19, 23, 29] incorporate the material properties into the
shape deformation and tends to produce realistic results
with physical accuracy and correctness. However, the

Shape deformation with tunable stiffness 497

physical equations which govern the deformation are usu-
ally complicated and expensive to be solved. Furthermore,
it is not a trivial work to find an intuitive control means
to tune the physical equations’ parameters for desirable
deformation effects.

Geometry-based differential domain approaches
[27, 31] can achieve detail-preserving deformation results
through optimizing the local transformations and pre-
serving the differential coordinates simultaneously. It is
a nonlinear optimization problem since either 2D or 3D
rotation transformations cannot be expressed as a lin-
ear function of planar or space position. For the sake of
the computational efficiency, the rotation transformation
is linearly approximated by local linearization [11, 27],
transformation propagation [31, 32] or transformation in-
terpolation [16]. However, the linear approximation may
lead to a suboptimal result corresponding to undesirable
shape distortions, etc. [5]. The nonlinear approaches can
effectively avoid the suboptimal results and achieve high-
quality deformations by an iterative optimization [2, 3, 14,
30]. Usually, these nonlinear methods solve the deforma-
tions on specified subspaces for the sake of efficiency and
stability [1, 4, 10, 28].

Some geometry-based methods [4, 11, 20, 26] can ad-
just the local stiffness of the object in the deformation.
The method in [26] defines an overlapping local cell at
each mesh vertex as one-ring neighboring vertices, and
keeps the transformation of each cell as rigid as possible
during the deformation. By adjusting the size of local
cells, the overall rigidity of the object can also be ad-
justed. However, the computational costs of the deform-
ation algorithm will increase with the increase of the local
cell size. Therefore, the method is more appropriate to
simulate soft objects rather than stiff ones. In addition,
the method may generate results with inconsistent con-
straints under large deformations, especially for the ‘stiff’
model (see Fig. 4). The inconsistency could be alleviated
by imposing additional constraints, which needs more user
interactions.

The proposed deformation method incorporates the
global and local stiffness controls but is free of the above
problems in [26]. Unlike the method in [26] primarily de-
signed for mesh surfaces, the method presented here is
independent of shape representation since it deforms the
lattice instead of the geometry itself.

3 Shape deformation with tunable stiffness

In this section, we first introduce the lattice definition and
some notation. Then, we describe how to design the non-
linear deformation objective function on the overlapping
regions with the specified stiffness. An efficient and robust
iterative scheme is adopted to solve the above nonlinear
optimization problem. Finally, an intuitive means is de-

signed to tune the local and global object stiffnesses for
the physically plausible results.

3.1 Shape discretization and local rigid regions

The object could be 2D or 3D. It is first voxelized as
a regular lattice of 2D square or 3D cubic cells by employ-
ing the voxelization method [12], as illustrated in Fig. 3.
The object is then embedded into the generated lattice by
the bilinear or trilinear mapping. Let L denote the lattice
with n nodes, and pi (qi) be the initial (deformed) node
position. For each node i , its w-ring neighborhood set Ri
comprises the nodes whose chess board distance to the
node i is not greater than w, which is shown in Fig. 2.

Having the object voxelized, a local rigid region is
defined at each lattice node as its w-ring neighborhood,
and w is also called the region half-width in the paper.
Here, the local rigid region definition is similar to that
in [21] where the lattice regions are used for real-time
large-scale dynamic simulation of the embedded object.
Intuitively, a stiff model is more difficult to be bent or
stretched than the soft model.

Obviously, the set of indices of all local rigid regions
to which the node i belongs is equivalent to Ri . In gen-

Fig. 2. The region width is adopted as the global stiffness control
means. Each hexagon in the top row represents a local rigid region.
The bottom row shows the corresponding deformation results under
the same constraint where the right-hand one (w = 2) is more rigid
than the left-hand one (w = 1)

Fig. 3. The 2D or 3D object is voxelized as a regular lattice. The
lattice cell is a square in 2D or a cube in 3D

498 W. Yang et al.

eral, a local rigid region is a square in 2D (cube in 3D)
with side length 2w+1 except for the boundary cases.
Obviously, the adjacent local rigid regions are overlapped
together. They seem to be glued together for the sake of
the smooth lattice deformation. And, with the increase of
the half-width w, the neighboring local rigid regions will
be more tightly tied, such that the local rigid regions are
more difficult to be stretched or bent (see Fig. 2). Thus, the
half-width w could be regarded as the global stiffness par-
ameter, i.e. a large value for a stiff object while a small
value for a soft object.

3.2 Deformation energy

The algorithm defines a nonlinear energy function to pre-
serve the rigidity of local rigid regions during the shape
deformation. We first introduce the rigid transformation of
a local rigid region.

Given a local rigid region Ri at the lattice node i ,
the initial and deformed positions of the node j ∈ Ri
are pj and qj , respectively. If the deformation of the local
rigid region is rigid, the optimal rigid transformation Ai
is found by matching all initial node positions {pj}j∈Ri to
the deformed positions {qj}j∈Ri such that

qj −qi
c = Ai

(
pj − pi

c

)
, ∀ j ∈ Ri, (1)

where pi
c and qi

c are the initial and deformed rotation cen-
ters. Since the deformation could not be rigorously rigid,
an optimal rigid transformation Ai is found to fit Eq. 1 in
a least-square sense, i.e. minimizing

E(Ri) =
∑

j∈Ri

∥∥qj −qi
c − Ai

(
pj − pi

c

)∥∥2
. (2)

It is a shape matching problem [9]. In the 2D case, Ai
has an analytical expression[22], i.e.

Ai = 1

µs

∑

j∈Ri

(
p̂j − p̂⊥

j

)(
q̂T

j

−q̂⊥T
j

)

, (3)

where

µs =
√√√
√

(∑

j

q̂T
j p̂j

)2 +
(∑

j

q̂T
j p̂⊥

j

)2
(4)

with p̂j = pj − pi
c and q̂j = qj −qi

c, where ⊥ is a 2D vec-
tor operator such that (x, y)⊥ = (−y, x). Although there is
no analytical solution for the above Ai in the 3D case [17],
a least-square solution of Ai can be expressed as the rota-
tional part of

At =
∑

j

(
qj −qi

c

)(
pj − pi

c

)T
. (5)

The rotational part of At can be obtained by using the
polar decomposition At = RS, where R is an orthogonal
identity matrix and S is a diagonally symmetric ma-
trix [25]. Since the diagonally symmetric matrix S in-
cludes only stretching, the matrix R should be the rota-
tional part.

To approximate the rigid transformations of all over-
lapping local rigid regions, a global energy function is
defined as a weighted summation of the deviations of all
region transformations from their optimal rigid transform-
ations:

E(L) =
n∑

i

wi E(Ri)

=
n∑

i

wi

∑

j∈Ri

∥
∥qj −qi

c − Ai
(

pj − pi
c

)∥∥2
. (6)

The weight wi is a penalty factor for the deviation of each
local rigid region transformation, and could be regarded as
a local stiffness control parameter, as illustrated in Figs. 1e
and 9.

The energy formulation of Eq. 6 is similar to that
in [26] for the rigidity of the local cell at each mesh vertex.
The subtle, but important, difference is that the initial and
deformed rotation centers (pi

c and qi
c) are directly selected

as the cell’s centers (which is equivalent to pi and qi in
our formulation) in [26], whereas our algorithm specifies
them in a more quasi-physical way. As described above,
each local rigid region transformation is expected to be
as rigid as possible; thus, a local rigid region could be
assumed as a rigid body unit where all nodes are trans-
formed as a whole. With this assumption it is obvious that
if a constraint node in the local rigid region is translated or
fixed, the other nodes in this region should follow the same
transformation. Thus, it is heuristic to define pi

c and qi
c as

follows:
⎧
⎨

⎩

pi
c = pi; qi

c = qi for each j ∈ Ri is not a constraint
node,

pi
c = ps; qi

c = qs ∃s ∈ Ri is a constraint node.
(7)

In our experiments, the deformations governed by the
energy function in [26] may be inconsistent when the

Fig. 4. Deformation of lattice in Fig. 2 under the energy function
in [26]. The result is inconsistent when the global stiffness is in-
creased

Shape deformation with tunable stiffness 499

global stiffness increases, as illustrated in Fig. 4. However,
the proposed energy function can effectively avoid such
an inconsistency, which is illustrated at the bottom row
of Fig. 2.

In the energy function Eq. 6, we carefully separate
the node j and the region i , so that optimization com-
putation can be speeded up, which is described in detail
in Sect. 3.3.1.

3.3 Energy function optimization

Now, we describe the optimization method that minimizes
the energy function Eq. 6 subject to the user’s constraints.

Let us first discuss how to specify the constraints. In
the 3D case, a user manipulates the model by selecting
constraint primitives (vertices or faces) on the object. The
specified constraints are automatically mapped to the lat-
tice node constraints where the cells intersect the con-
straint faces or contain the constraint vertices. In the 2D
case, a user can simply select the lattice nodes as the con-
straints.

After the constraints are specified, the algorithm com-
putes the deformed positions of the other lattice nodes {qi}
by minimizing the energy E(L). It is a nonlinear opti-
mization problem since the rigid transformations {Ai}n

i=1
are dependent on the unknown variables {qi} and can-
not be linearly parameterized [26]. Like methods in
[4, 26, 30], the problem can be solved by using an iterative
Newton-type method. Starting from initial guesses of {qi},
the iterative process works as follows.

At the kth iteration, first the rigid transformations
{Ai}(k) are solved by minimizing the energy E(L) where
the node positions {qi}(k−1) are chosen as the values
computed at the last iteration. Then, the new node pos-
itions {qi}(k) are computed by using the current rigid
transformations {Ai}(k) and the positions of constraints.
The iteration process stops when the local energy min-
imization is reached. In our implementation, the initial
guesses of {qi} are taken as the deformed positions of lat-
tice nodes at the last deformation step, which works well
in our implementation.

Since each term in the energy sum E(L) in Eq. 6 in-
volves only the local region rigid transformation Ai , the
optimal rigid transformation for each local rigid region
can be computed regardless of other local rigid regions
and their optimal rigid transformations. Thus, each rigid
transformation Ai can be computed by minimizing the
local rigid region energy E(Ri) in Eq. 2. The solutions
to Ai of the 2D and 3D cases are Eq. 3 and the rota-
tional part of Eq. 5, respectively, which were described
in Sect. 3.2.

With the specified constraints and the computed opti-
mal rotations {Ai}, the unknown lattice node positions {qi}
can be computed through Eq. 6 by solving a linear least
square problem. After computing the gradients of E(L)
with respect to the unknown node positions {qi} and set-

ting the gradients to zero, the following sparse linear sys-
tem of functions is obtained:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For each j ∈ Ri is not a constraint node∑

j∈Ri

−wi(qj −qi)+wj
(
qi −q j

c
)

=
∑

j∈Ri

−wi Ai(pj − pi)+
∑

j∈Ri

wj Aj
(

pi − p j
c
)
,

∃s ∈ Ri is a constraint node∑

j∈Ri

wj
(
qi −q j

c
) =

∑

j∈Ri

wj Aj
(

pi − p j
c
)
,

(8)

which can be rewritten in a compact matrix form:

Mq = b, (9)

where q is a vector composed of all unknown nodes qi
and b is a vector whose ith entry is the right-hand side
of the ith expression of the linear system Eq. 8. Note that
the vector b should also be updated to incorporate the con-
straints into the system at each iteration.

3.3.1 Optimization implementation

At each iteration of the nonlinear optimization process, the
sparse linear system Eq. 9 needs to be solved, and it is ne-
cessary to compute the coefficient matrix M and the vec-
tor b. Note that the matrix M depends only on the initial
local rigid region configuration. Thus, a direct solver with
pre-factorization can be employed for minimizing E(L),
where the matrix M need to be factored only once [6]. In
this way, the system Eq. 9 could be solved efficiently.

To compute the vector b in Eq. 9, the optimal rigid
transforms {Ai} in Eq. 3 or the rotational part of Eq. 5
should be computed first. It is obvious that the computa-
tional costs of {Ai} and b depend on the size of the local
rigid region, which increases quadratically in 2D (cubi-
cally in 3D) with the region half-width w. Thus, the naive
calculation scheme will be slow for the stiff model. In our
implementation the fast summation algorithm is adopted
to address this problem [21]. The essence of the fast sum-
mation algorithm is to reuse the redundant summation
computations on the lattice regions, and eventually reduce
the runtime of calculations on each region to be constant
and independent of the region half-width w. Here, we
briefly introduce the fast summation operator and describe
how to accelerate the computations of 3, 5 and the vector b
by expressing them in terms of summations.

Using fast summation algorithm. The fast summation op-
erator indicates the sum of an attribute vj over j ∈ Ri [21]:

F {vj} ≡
∑

j∈Ri

vj (using fast summation).

500 W. Yang et al.

Fig. 5a–c. Comparison of our approach (c) with the method in [11] (b). The upper row results of (c) are with different global stiffnesses
from soft to stiff (w = 1, 3 and 6), while the stretching result at the lower row is with the medium global stiffness (w = 3)

Fig. 6a–c. Comparison of our approach (c) with the nonlinear method in [30] (b). The latter produces shrinkages at the right knee and the
left elbow

Note that the fast summation could not directly ap-
plicable to 3, 5 and the right-hand side of Eq. 8 because
of the coupling of the node j and the region i . How-
ever, these dependences can be decoupled by simply ex-
panding and restating the formula. For example, the term∑

j∈Ri
wj Aj(pi − p j

c) on the right-hand side of Eq. 8 can
be expanded as follows:

∑

j∈Ri

wj Aj
(

pi − p j
c
) =

(∑

j∈Ri

wj Aj

)
pi −

∑

j∈Ri

wj Aj p j
c

= F {wj Aj}pi −F
{
wj Aj p j

c
}
. (10)

Given wj , Aj and p j
c defined on each lattice node,

the term Eq. 10 can be efficiently calculated by using the
fast summation algorithm. Another term

∑
j∈Ri

−wi Ai
(pj − pi) on the right-hand side of Eq. 8 can be processed
similarly, as may 3 and 5.

To further speed up the computation of {Ai} and b,
it will be helpful to pre-compute and reuse informa-
tion as much as possible. For example, in the 2D case,∑

j∈Ri
pj = F {pj} can be pre-computed and used in all

expanded terms of Eq. 3 at each iteration.

3.4 Stiffness tuning

In the proposed deformation, global and local stiffness
controls are provided. By adjusting the global and local

stiffness parameters, i.e. w and wi , users can effectively
control the deformation behaviors of a model, as illus-
trated in Figs. 1, 5c, 8 and 9. For the interaction considera-
tion, an intuitive interface is designed to specify the global
and local stiffness parameters.

The default value of {wi}n
1 is 1 for a homogeneous

object. To mimic the inhomogeneous object deform-
ation, {wi}n

1 should be specified differently. For the sake
of simplicity, three levels (standard, enhanced, hard)
of local stiffness are provided with the corresponding
wi = {1, (2w+1), (2w+1)2}. An intuitive sketch inter-
face is designed to assign the desired local stiffness. Our
experiments show that this strategy provides enough flexi-
bility to adjust the local stiffness. Of course, the levels
could be extended and it is also reasonable to assign the
desired wi directly to the selected components.

The global stiffness can also be specified in a similar
manner with three pre-defined levels, i.e. ‘Soft’, ‘Medium’

Fig. 7a–d. A cartoon motion sequence is generated by manipulating
only two constraints at the foot

Shape deformation with tunable stiffness 501

Fig. 8a–d. A cup is deformed with different global stiffnesses

Fig. 9a–d. A bar is twisted and bent with different local stiffnesses at the middle part where the global stiffness w = 3

and ‘Stiff’ corresponding to w = 1, 3 and 6, respectively.
Similar to the local stiffness control, the levels for global
stiffness control can be extended and w can also be user
specified.

4 Implementation and discussion

The method has been implemented and tested for 2D and
3D models on a PC with a 2.4 GHz Pentium 4 CPU and
2 GB memory. In our implementations, the nonlinear op-
timization will be convergent after 6 to 12 iterations in
general. Table 1 shows the statistics of geometry data and
runtime for the examples presented in the paper, where
the optimization includes all iterations. The time for trans-
forming the lattice deformation to the object is neglected
because it is less than 1 ms for all examples in the pa-
per. With the increase of the region width w, the number
of non-zero elements in the sparse linear system Eq. 9
will also increase, which leads to the sparse linear system

solver performance drop as well [6]. Due to employing the
fast summation algorithm, the proposed deformation can
still be performed interactively for not only soft models
but also stiff models which are voxelized with a modest
number of lattice nodes as shown in Table 1.

Figures 1 and 5–7 illustrate the 2D shape deforma-
tions. As shown in these examples, the nonlinear energy
function for the overlapping local rigid regions can gener-
ate the natural and physically plausible deformations with
a few constraints. For example, in Fig. 7, a natural motion
sequence of the 2D character is achieved by manipulating
only two lattice nodes at the feet. The result is comparable
to that by the nonlinear method [30], as well as the lin-
ear method [11]. In some cases, our nonlinear method can
produce more physically plausible results than [11], which
is illustrated in Fig. 5. Meanwhile, the proposed method
can manifest the shape rigidity well by enforcing the rigid-
ity of the boundary and the interior of the shape. The
method in [30] tries to preserve the local areas with the
mean value coordinates and edge length constraints; it is
not enough to keep the shape’s interior rigidity and makes

502 W. Yang et al.

Table 1. Performance statistics. VER NUM: number of vertices;
NOD NUM: number of lattice nodes; VOX: runtime of initial vox-
elization; w: region half-width; PRE: runtime of pre-computation;
OPTM: runtime of Newton-type iterations

Fig. VER NOD VOX w PRE OPTM
NUM NUM (ms) (ms) (ms)

1 607 1415 0.05 1 12.5 9.3
3 42.95 18.6
6 109.2 32.7

7 537 1313 0.01 3 31.2 14.1
8 5668 3243 218 1 92.05 98.1

3 697.35 248.1
6 1634.9 276

9 2946 780 17 3 24.95 23.4
10 35 448 1224 437 1 14.85 37.5

the deformation results shrunken sometimes. By using the
shape which appears in Fig. 8 of [30], we compare the
deformations between our method and [30] in Fig. 6.

Since our method provides the intuitive local and
global stiffness controls, the deformation is more flexible.
Figures 1 and 5c show the deformations with the differ-
ent global stiffness parameters from soft to stiff under the
same constraints. In Fig. 1e, the local stiffness has been
adjusted to manifest the anisotropic material of the object.

The method has also been applied to 3D models. By
observing the examples in Figs. 8–10, the deformation re-
sults generated by our algorithm are comparable to those
generated by the state-of-the-art nonlinear [10] or linear
methods [27]. Figure 8 shows the deformations of a cup
model with different global stiffness parameters from soft
to stiff under the same constraints conducted on the cup
sides. We can see that the deformation results in Fig. 8b–d
are similar to the deformations of the cups made of mud,
sponge and iron, respectively. Another example is shown
in Fig. 9, which illustrates the deformation results of dif-
ferent local stiffnesses at the middle part of a bar under
the same twist and bend constraints. By enhancing the
local stiffness, the twisting and bending at the middle
part has been effectively alleviated. Figure 10 shows the
shape editing on a trianglar soup model. The 3D character
model is converted from a triangular mesh and it contains
some deliberately produced self-intersections and degen-
erated triangles. Since the proposed algorithm decouples
the deformation from the underlying geometry represen-
tation, it can handle the disconnected components and
self-intersections easily.

Fig. 10a,b. A triangular soup model is deformed with the global
stiffness w = 1

5 Conclusion and future work

The paper proposed a shape deformation algorithm that
incorporates global and local stiffness controls. The algo-
rithm voxelizes the object as a regular lattice, and orga-
nizes the lattice cells as overlapping local rigid regions.
During deformation, a nonlinear energy function is opti-
mized to minimize the distortion of the overlapping local
rigid regions, which yields physically plausible deforma-
tions. Combining the fast summation technique, the inter-
active deformation is achieved for not only soft but also
stiff objects.

In our setting, the region width determines the global
stiffness and a penalty coefficient for each local rigid re-
gion controls the local stiffness; thus, the user can adjust
the global and local stiffnesses conveniently and intu-
itively for the desired deformation behaviors.

There are still improvements for the proposed method.
Currently, the user can increase (decrease) the region width
to increase (decrease) the global stiffness. However, some-
times it is desirable to decide the region width automatically
so that the global stiffness corresponds to a specified mate-
rial in the real world, e.g. wood, iron or steel. Meanwhile, it
is possible to learn the local stiffness from given examples
using the technique in [20]. In addition, we are consider-
ing using an adaptive lattice to approximate the object to
improve the algorithm efficiency further.

Acknowledgement The authors would like to thank Dr. Kun
Zhou for providing the software and the 2D shape in Fig. 6,
and Dr. Takeo Igarashi for the 2D shape in Fig. 7. The work
is jointly supported by the NSF of China (Nos. 60743002 and
60736019), the NSF of Zhejiang Province (No. R106449), the Doc-
toral Program of Higher Education (Specialized Research Fund)
(No. 20050335069) and the China Postdoctoral Science Foundation
(No. 20070421184).

References
1. Au, O.K.C., Fu, H., Tai, C.L.,

Cohen-Or, D.: Handle-aware isolines for
scalable shape editing. ACM Trans. Graph.
(SIGGRAPH 2007) 26(3), 83 (2007)

2. Au, O.K.C., Tai, C.L., Liu, L., Fu, H.: Dual
Laplacian editing for meshes. IEEE Trans.
Vis. Comput. Graph. 12(3), 386–395
(2006)

3. Botsch, M., Pauly, M., Gross, M.,
Kobbelt, L.: PriMo: coupled prisms for
intuitive surface modeling. In: SGP ’06:
Proceedings of the Fourth Eurographics

Shape deformation with tunable stiffness 503

Symposium on Geometry Processing.
Eurographics Association, Cagliari,
Sardinia, Italy (2006)

4. Botsch, M., Pauly, M., Wicke, M.,
Gross, M.: Adaptive space deformations
based on rigid cells. Comput. Graph. Forum
(Eurographics 2007) 26(3), 339–347 (2007)

5. Botsch, M., Sorkine, O.: On linear
variational surface deformation methods.
IEEE Trans. Vis. Comput. Graph. 14(1),
213–230 (2008)

6. Davis, T.A.: UMFPACK: unsymmetric
multifrontal sparse LU factorization
package. http://www.cise.ufl.edu/research/

sparse/umfpack/. Visit on 10.12.2007
7. Gibson, S., Mirtich, B.: A survey of

deformable modeling in computer graphics.
Tech. Rep. No. TR-97-19, Mitsubishi
Electric Research Lab., Cambridge (1997)

8. Güdükbay, U., Özgüç, B., Tokad, Y.: A
spring force formulation for elastically
deformable models. Comput. Graph. 21(3),
335–346 (1997)

9. Horn, B.K.P.: Closed-form solution of
absolute orientation using unit quaternions.
J. Opt. Soc. Am. A 4, 629–642 (1987)

10. Huang, J., Shi, X., Liu, X., Zhou, K.,
Wei, L.Y., Teng, S.H., Bao, H., Guo, B.,
Shum, H.Y.: Subspace gradient domain
mesh deformation. ACM Trans. Graph.
(SIGGRAPH 2006) 25(3), 1126–1134
(2006)

11. Igarashi, T., Moscovich, T., Hughes, J.F.:
As-rigid-as-possible shape manipulation.
ACM Trans. Graph. (SIGGRAPH 2005)
24(3), 1134–1141 (2005)

12. James, D.L., Barbič, J., Twigg, C.D.:
Squashing cubes: automating deformable
model construction for graphics. In:
SIGGRAPH ’04: ACM SIGGRAPH 2004
Sketches, p. 38. ACM Press, Los Angeles,
CA (2004)

13. James, D.L., Pai, D.K.: ArtDefo: accurate
real time deformable objects. In:
SIGGRAPH ’99: Proceedings of the 26th
Annual Conference on Computer Graphics
and Interactive Techniques, pp. 65–72.
ACM Press, Los Angeles, CA (1999)

14. Kraevoy, V., Sheffer, A.: Mean-value
geometry encoding. Int. J. Shape Model.
12(1), 29–46 (2006)

15. Lewis, J.P., Cordner, M., Fong, N.: Pose
space deformation: a unified approach to
shape interpolation and skeleton-driven
deformation. In: Akeley, K. (ed.)
SIGGRAPH ’00: Proceedings of the 27th
Annual Conference on Computer Graphics
and Interactive Techniques, pp. 165–172.
ACM Press, New Orleans, LA (2000)

16. Lipman, Y., Sorkine, O., Levin, D.,
Cohen-Or, D.: Linear rotation-invariant
coordinates for meshes. ACM Trans.
Graph. (SIGGRAPH 2005) 24(3), 479–487
(2005)

17. Müller, M., Heidelberger, B., Teschner, M.,
Gross, M.: Meshless deformations based on
shape matching. ACM Trans. Graph.
(SIGGRAPH 2005) 24(3), 471–478 (2005)

18. Nealen, A., Müller, M., Keiser, R.,
Boxerman, E., Carlson, M.: Physically
based deformable models in computer
graphics. In: Eurographics: State of the Art
Report. Eurographics Association, Dublin,
Ireland (2005)

19. Platt, J.C., Barr, A.H.: Constraints methods
for flexible models. ACM Comput. Graph.
(SIGGRAPH 1988) 22(4), 279–288
(1988)

20. Popa, T., Julius, D., Sheffer, A.:
Material-aware mesh deformations. In: SMI
’06: Proceedings of the IEEE International
Conference on Shape Modeling and
Applications 2006, p. 22. IEEE Computer
Society, Matsushima, Japan (2006)

21. Rivers, A.R., James, D.L.: Fastlsm: fast
lattice shape matching for robust real-time
deformation. ACM Trans. Graph.
(SIGGRAPH 2007) 26(3), 82 (2007)

22. Schaefer, S., McPhail, T., Warren, J.: Image
deformation using moving least squares.
ACM Trans. Graph. (SIGGRAPH 2006)
25(3), 533–540 (2006)

23. Schiwietz, T., Georgii, J., Westermann, R.:
Freeform image. In: Proceedings of Pacific
Graphics 2007, pp. 27–36. IEEE Computer
Society, Maui, Hawaii (2007)

24. Sederberg, T.W., Parry, S.R.: Free-form
deformation of solid geometric models.
ACM Comput. Graph. (SIGGRAPH 1986)
20(4), 151–160 (1986)

25. Shoemake, K., Duff, T.: Matrix animation
and polar decomposition. In: Booth, K.S.,
Fournier, A. (eds.) Proceedings of the
Conference on Graphics Interface ’92,
pp. 258–264. Morgan Kaufmann Publishers
Inc., Vancouver, British Columbia (1992)

26. Sorkine, O., Alexa, M.:
As-rigid-as-possible surface modeling. In:
SGP ’07: Proceedings of the Fifth
Eurographics Symposium on Geometry
Processing, pp. 109–116. Eurographics
Association, Barcelona, Spain (2007)

27. Sorkine, O., Cohen-Or, D., Lipman, Y.,
Alexa, M., Rössl, C., Seidel, H.P.:
Laplacian surface editing. In: SGP ’04:
Proceedings of the 2004
Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing. ACM
Press, Nice, France (2004)

28. Sumner, R.W., Schmid, J., Pauly, M.:
Embedded deformation for shape
manipulation. ACM Trans. Graph.
(SIGGRAPH 2007) 26(3), 80 (2007)

29. Terzopoulos, D., Platt, J., Barr, A.,
Fleischer, K.: Elastically deformable
models. ACM Comput. Graph.
(SIGGRAPH 1987) 21(4), 205–214
(1987)

30. Weng, Y., Xu, W., Wu, Y., Zhou, K.,
Guo, B.: 2d shape deformation using
nonlinear least squares optimization. Visual
Comput. 22(9), 653–660 (2006)

31. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H.,
Guo, B., Shum, H.Y.: Mesh editing with
Poisson-based gradient field manipulation.
ACM Trans. Graph. (SIGGRAPH 2004)
23(3), 644–651 (2004)

32. Zhou, K., Huang, J., Snyder, J., Liu, X.,
Bao, H., Guo, B., Shum, H.Y.: Large mesh
deformation using the volumetric graph
Laplacian. ACM Trans. Graph.
(SIGGRAPH 2005) 24(3), 496–503
(2005)

WENWU YANG is a Ph.D. candidate in the
State Key Lab of CAD&CG, Zhejiang Univer-
sity, Peoples’ Republic of China. He received
his M.Sc. degree in computer graphics from
Zhejiang University in 2005. His research in-
terests include computer graphics, geometric
modeling and computer animation.

JIEQING FENG is a professor in the State
Key Lab of CAD&CG, Zhejiang University,
Peoples’ Republic of China. He received his
B.Sc. degree in applied mathematics from the
National University of Defense Technology in
1992 and his Ph.D. degree in computer graphics
from Zhejiang University in 1997. His research
interests include geometric modeling, rendering
and computer animation.

XIAOGANG JIN is a professor in the State Key
Lab of CAD&CG, Zhejiang University, Peoples’
Republic of China. He received his B.Sc. degree
in computer science in 1989 and M.Sc. and
Ph.D. degrees in applied mathematics in 1992
and 1995, all from Zhejiang University. His
current research interests include implicit sur-
face computing, special effects simulation, mesh
fusion, texture synthesis, crowd animation, cloth
animation and non-photorealistic rendering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

