

Editorial Board

Supported by NSFC
.

Honorary Editor General GuangZhao ZHOU (Zhou Guang Zhao)

Editor General ZuoYan ZHU Institute of Hydrobiology, CAS, China

Editor-in-Chief Wei LI Beihang University, China

Advisory Committee

Cor CLAEYS
Interuniversity Microelectronics Centre, Belgium

Hiroshi IWAI
Tokyo Institute of Technology, Japan

YanDa LI
Tsinghua Univ., China

ShengGang LIU
Univ. of Electronic Science & Technology
of China, China

T. P. MA
Yale Univ., USA

Paul J. WERBOS
National Science Foundation, USA

Howard M. WISEMAN
Griffith University, Australia

YaQin ZHANG
Microsoft Co., Ltd, USA

Taieb ZNATI
The Univ. of Pittsburgh, USA

Executive Associate Editors-in-Chief
Hong MEI
Peking Univ., China

Dongming WANG
Centre National de la Recherche Scientifique,
France

Associate Editors-in-Chief
Lei GUO
Academy of Mathematics & Systems Science, CAS,
China

Ru HUANG
Peking Univ., China

XiaoHu YOU
Southeast Univ., China

Members

Cesare ALIPPI
Politecnico di Milano, Italy

Jordan M. BERG
Texas Tech Univ., USA

JianEr CHEN
Texas A&M Univ., USA

JingSheng Jason CONG
Univ. of California, Los Angeles (UCLA), USA

S. Barry COOPER
Univ. of Leeds, U.K.

Simon DELEONIBUS
Laboratorios LETI, France

Richard LiMin DU
Voxeasy Institute of Technology, China

Wen GAO
Peking Univ., China

ShuZhi Sam GE
National Univ. of Singapore, Singapore

JiFeng HE
East China Normal Univ., China

XiaoMing HU
Royal Institute of Technology, Sweden

ZhanYi HU
Institute of Automation, CAS, China

Jie HUANG
The Chinese Univ. of Hong Kong, Hong Kong,
China

Amir HUSSAIN
Univ. of Stirling, U.K.

YueFeng JI
Beijing Univ. of Post & Telecommunication, China

ZhongPing JIANG
Polytechnic Institute of NYU, USA

Hai JIN
Huazhong Univ. of Science & Technology, China

ZhongLiang JING
Shanghai Jiao Tong Univ., China

XueJia LAI
Shanghai Jiao Tong Univ., China

Joshua LeWei LI
Monash Univ., Australia

WeiPing LI

Univ. of Science & Technology of China, China

XueLong LI
Xi'an Institute of Optics & Precision, CAS, China

GuiSheng LIAO
Xidian Univ., China

DongDai LIN
Institute of Information Engineering, CAS, China

Zongli LIN
Univ. of Virginia, USA

DeRong LIU
Institute of Automation, CAS, China

KePing LONG
Univ. of Science & Technology Beijing, China

Teng LONG
Beijing Institute of Technology, China

Jian LÜ
Nanjing Univ., China

PingXi MA
China Electronics Coporation, China

David Z. PAN
Univ. of Texas at Austin, USA

Marios M. POLYCARPOU
Univ. of Cyprus, Cyprus

Long QUAN
The Hong Kong Univ. of Science &
Technology, Hong Kong, China

XianHe SUN
Illinois Institute of Technology, USA

ZhiMin TANG
Institute of Computing Technology, CAS, China

Jie TIAN
Institute of Automation, CAS, China

WeiTek TSAI
Arizona State Univ., USA

ChengXiang WANG
Heriot-Watt Univ., U.K.

JiangZhou WANG
Kent Univ., U.K.

Long WANG
Peking Univ., China

XiaoDong WANG
Columbia Univ., USA

ZiYu WANG
Peking Univ., China

Martin D. F. WONG
Univ. of Illinois, USA

Jie WU
Temple Univ., USA

WeiRen WU
Lunar Exploration and Aerospace Engineering
Center, China

XinDong WU
Univ. of Vermont, USA

YiRong WU
Institute of Electronics, CAS, China

Donald C. WUNSCH
Missouri Univ. of Science & Technology, USA

XiangGen XIA
Univ. of Deleware, USA

ChengZhong XU
Wayne State Univ., USA

Jun XU
Tsinghua Univ., China

Ke XU
Beihang Univ., China

ZongBen XU
Xi'an Jiaotong Univ., China

Qiang YANG
The Hong Kong Univ. of Science &
Technology, Hong Kong, China

Xin YAO
Univ. of Birmingham, U.K.

MingSheng YING
Tsinghua Univ., China

HuanGuo ZHANG
Wuhan Univ., China

FuChun ZHENG
Univ. of Reading, U.K.

Dian ZHOU
The Univ. of Texas at Dallas, USA

ZhiHua ZHOU
Nanjing Univ., China

Albert Y. ZOMAYA
The Univ. of Sydney, Australia

Editorial Staff Fei SONG Jing FENG JunQing LI Kai JIANG
Cover Designer Yu HU

SCIENCE CHINA
Information Sciences

Contents Vol. 57 No. 1 January 2014

RESEARCH PAPER

iMashup: a mashup-based framework for service composition .. 012101(20)

 LIU XuanZhe, HUANG Gang, ZHAO Qi, MEI Hong & BLAKE M. Brian

Structure guided texture inpainting through multi-scale patches and global optimization for image completion 012102(16)

 CHEN XiaoWu, ZHOU Bin, GUO Yu, XU Fang & ZHAO QinPing

Auxiliary stream for optimizing memory access of video decoders ... 012103(10)

 LIU ShaoLi, LI Ling, CHEN YunJi & HU WeiWu

Interpolation-tuned salient region detection .. 012104(9)

 LIU Yang, LI XueQing, WANG Lei & NIU YuZhen

Contour detection improved by frequency domain filtering of gradient image ... 012105(11)

 QU ZhiGuo, GAO YingHui, WANG Ping, WANG Peng, TAN XianSi & SHEN ZhenKang

Real-time rendering of algebraic B-spline surfaces via Bézier point insertion .. 012106(15)

 Wei FeiFei& FENG JieQing

Principle of a one-step MSD adder for a ternary optical computer .. 012107(10)

 SHEN YunFu & PAN Lei

Eliciting dependability requirements: a control cases based approach ... 012108(15)

 LIU Chun, WANG Yue, ZHANG Wei & JIN Zhi

Hierarchical clustering driven by cognitive features ... 012109(14)

 LI ChunZhong, Xu ZongBen, QIAO Chen & LUO Tao

Dual tree complex wavelet transform approach to copy-rotate-move forgery detection ... 012110(12)

 WU YunJie, DENG Yu, DUAN HaiBin & ZHOU LinNa

A secure routing model based on distance vector routing algorithm .. 012111(13)

 WANG Bin, WU ChunMing, YANG Qiang, LAI Pan, LAN JuLong & GUO YunFei

Constant-round zero-knowledge proofs of knowledge with strict polynomial-time extractors for NP ... 012112(14)

 LI HongDa & FENG DengGuo

Dynamic anti-windup design for anticipatory activation: enlargement of the domain of attraction .. 012201(14)

 WU XiongJun & LIN Zongli

On controllability and stabilizability of probabilistic Boolean control networks ... 012202(14)

 ZHAO Yin & CHENG DaiZhan

Cluster synchronization of a class of multi-agent systems with a bipartite graph topology .. 012203(11)

 WANG Qiang & WANG YuZhen

Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems .. 012204(14)

 TONG ShaoCheng & LI YongMing

Identification of the gain system with quantized observations and bounded persistent excitations .. 012205(15)

 GUO Jin & ZHAO YanLong

A double-filter-structure based COMPASS/INS deep integrated navigation system implementation and tracking performance

evaluation ... 012206(14)

 LUO Yong, WU WenQi, BABU Ravindra, TANG KangHua & HE XiaoFeng

Adaptive fuzzy tracking control for a class of uncertain MIMO nonlinear systems using disturbance observer 012207(13)

 CHEN Mou, CHEN WenHua & WU QinXian

A cost-sharing method for the multi-level economic lot-sizing game .. 012208(9)

 LI GaiDi, DU DongLei, XU DaChuan & ZHANG RuYao

Target models and waveform design for detection in MIMO radar ... 012301(12)

 TANG Jun, LUO Jun, TANG Bo & DU JinSong

Simultaneous unidirectional and bidirectional chaos-based optical communication using hybrid coupling semiconductor lasers 012401(11)

 JIANG Ning, PAN Wei, LUO Bin, YAN LianShan & XIANG ShuiYing

BRIEF REPORT

A 4-GS/s 8-bit two-channel time-interleaved folding and interpolating ADC ... 019401(6)

 JIANG Fan, Wu DanYu, ZHOU Lei, WU Jin, JIN Zhi & LIU XinYu

Information for Authors ... (i)

 Go To Website

http://info.scichina.com:8084/sciFe/EN/volumn/volumn_6777.shtml

. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

January 2014, Vol. 57 012106:1–012106:15

doi: 10.1007/s11432-012-4722-4

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 info.scichina.com link.springer.com

Real-time rendering of algebraic B-spline surfaces

via Bézier point insertion

WEI FeiFei & FENG JieQing∗

State Key Laboratory of CAD & CG, Zhejiang University, Hangzhou 310058, China

Received July 14, 2012; accepted October 17, 2012; published online December 28, 2012

Abstract This paper presents a GPU-based real-time raycasting algorithm for piecewise algebraic surfaces in

terms of tensor product B-splines. 3DDDA and depth peeling algorithms are employed to traverse the piecewise

surface patches along each ray. The intersection between the ray and the patch is reduced to the root-finding

problem of the univariate Bernstein polynomial. The polynomial is obtained via Chebyshev sampling points

interpolation. An iterative and unconditionally convergent algorithm called Bézier point insertion is proposed

to find the roots of the univariate polynomials. The Bézier point insertion is robust and suitable for the SIMD

architecture of GPU. Experimental results show that the proposed root-finding algorithm performs better than

other root-finding algorithms, such as Bézier clipping and B-spline knot insertion. Our rendering algorithm can

display thousands of piecewise algebraic patches of degrees 6–9 in real time and can achieve the semi-transparent

rendering interactively.

Keywords real-time rendering, algebraic B-spline surface, root finding, depth peeling

Citation Wei F F, Feng J Q. Real-time rendering of algebraic B-spline surfaces via Bézier point insertion. Sci

China Inf Sci, 2014, 57: 012106(15), doi: 10.1007/s11432-012-4722-4

1 Introduction

Because of its advantages on intersection, blending, offset, arbitrary topology, etc., the algebraic surface

is an important alternative to the parametric surface. The algebraic surfaces in terms of tensor product

B-spline, abbreviated as ABS in this paper, introduced by Patrikalakis and Kriezis [1] can model globally

smooth shapes of complex topologies. The coefficients of the ABS surface have intuitive geometry means

and can be used to adjust the surface shape, while those of the general algebraic surfaces have no such

property. Compared to the NURBS surfaces [2] and the piecewise algebraic surfaces defined in the Bézier

tetrahedrons, i.e. A-patches [3], the ABS surface is capable of modeling the globally smooth shapes with

arbitrary topologies without explicitly specifying smoothness constraints along the patch boundaries.

Compared to the subdivision surfaces, the ABS surface has analytical expression. Thus the related

geometric computations and shape interrogations can be performed straightforwardly. Patrikalakis and

Kriezis [1] also proposed two modeling methods for the ABS surfaces. The first one is to fit the lower

dimensional geometries by using least-squares approximation, and the second one is to manipulate the

existing ABS surfaces. Jüttler et al. [4], and Tong et al. [5] proposed different least-squares methods

∗Corresponding author (email: jqfeng@cad.zju.edu.cn)

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:2

to fit given scattered data. However, the topics of modeling free-form shapes with the ABS surfaces go

beyond the scope of this paper.

Although the ABS surfaces have many potential advantages on shape modeling and shape interroga-

tion, their real-time and high quality display is still an open problem. This paper will address the problem

of real-time ray casting and semi-transparent rendering of the ABS surfaces. To exploit the SIMD archi-

tecture of GPU, 3DDDA and depth peeling algorithms are adopted to traverse the piecewise patches of

ABS surface efficiently. An iterative and efficient root finding algorithm is proposed, namely Bézier point

insertion, which performs better than the prevalent GPU-based root finding algorithms, such as Bézier

clipping [6], B-spline knot insertion [7], etc. Our approach fully leverages the tremendous computing

powers of contemporary GPU. Experimental results shows that the proposed method can high-quality

render the ABS surfaces of degrees 6–9 containing thousands of patches in real time.

2 Related work

Besides contouring method proposed by Patrikalakis et al. [1], there are also other methods to display the

ABS surfaces. Witkin et al. [8] adopted particles to sample and control the shape of implicit surfaces,

which include the ABS surface. The polygonization is the most prevalent visualization method for the

algebraic surfaces [9,10]. It fits the polygon rendering pipeline very well. However, these methods suffer

from sampling artifacts.

Ray casting or ray tracing can reveal the topological and geometric details of the algebraic surface

in pixel accuracy. Thus it is free of sampling artifacts under the condition of raster display resolution.

However, it contains huge amount of computational costs in general, especially in the computations of

the rays and surface intersections. Analytical solutions only exist for algebraic surfaces of degree 4 or

lower. Based on this observation, Loop et al. [11] proposed a real-time rendering algorithm for A-patch

surfaces up to degree 4 defined on the tetrahedron domains. However, it cannot guarantee correct α-

blending results for complex shape defined by a large number of piecewise A-patches. Furthermore, it

is prohibitively difficult to be extended to other domain cases, e.g. the rectangular domain of the ABS

surface.

Many numerical root finding methods are adopted to compute the ray and algebraic surface intersec-

tions. Hanrahan [12] proposed a ray tracing algebraic surface method by using the Descartes, rules of

signs for root isolation and the Newton’s method for root refinement. Kalra et al. [13] adopted Lipschitz

constant of the function and gradient to guarantee correct ray and implicit surface intersection. Inter-

val arithmetic can estimate a conservative convex hull of function over a given domain. By using this

property, Mitchell [14] isolated the roots by using repeated bisections till the interval contains a single

root.

All the methods above focused on the root-finding problem of univariate polynomials in terms of power

basis. Farouki et al. [15] proved that the polynomials in Bernstein form offer better numerical condition

and accuracy than their power basis counterparts. The subdivision method proposed by Lane et al.

[16] is the pioneering work that can solve the univariate Bernstein polynomials robustly. Bézier clipping

proposed by Nishita et al. [17] is based on the convex hull property of Bézier curve and surface, and it

is applied to ray tracing trimmed parametric surfaces. Spencer further explored the intuitive geometric

properties of the Bernstein polynomial and proposed more efficient root finding algorithms [18]. Other

variants and extensions of Bézier clipping algorithm [19–21] exploited different levels of convex hulls of

the Bézier curves.

Recently, with the rapid development of performance and emergence of flexible programming languages,

GPU becomes an attractive platform for scientific computing. Many GPU-based approaches are proposed

to address the interactive ray tracing of algebraic surfaces. Pabst et al. [22] and Kanamori et al. [6]

proposed iterative versions of Bézier clipping with fixed size stacks on GPU. Knoll et al. [23] proposed

an iterative interval bisection root finding algorithm by using the SSE instruction-level optimization and

coherently traversal methods. They extended their work to modern graphics hardware GPU by simulating

the stack traversals [24]. Both the Bézier clipping and the interval arithmetic algorithms suffer from their

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:3

Figure 1 An ABS surface and its “control coefficients” on their abscissa positions. Light grey points inside the shape

and dark grey points outside the shape indicate negative and positive coefficients respectively.

branching and irregular memory access and lead to poor efficiency on GPU. Reimers and Seland [7]

transformed an implicit surface to its frustum form via the polynomial interpolation, and adopted the

iterative B-spline knot insertion algorithm [25] for root finding. The algorithm is tailored for the SIMD

architecture of GPU. However, they only process single algebraic surface, rather than piecewise ones.

Recently, Wei and Feng propose a fast raycasting algorithm for the piecewise ABS surfaces [26], which

combines the marching cube and the Newton-Raphson method. However its robustness greatly suffers

from the ill-conditioned initial values.

3 Preliminary and algorithm overview

3.1 Algebraic B-spline surface

Before describing the proposed algorithm in detail, we first introduce the definition of algebraic B-spline

surface. Let X = [x0, x1, . . . , xM+m+1], Y = [y0, y1, . . . , yN+n+1] and Z = [z0, z1, . . . , zQ+q+1] be three

knot vectors in x, y and z directions respectively. An algebraic tensor product B-spline surface is defined

as

FABS(x, y, z) =

M
∑

i=0

N
∑

j=0

Q
∑

k=0

wijkN
m
i (x)Nn

j (y)N
q
k (z) = 0, (1)

where Nm
i (x), Nn

j (y) and N q
k (z) are the B-spline basis functions of degrees m, n and q, determined by

the knot vectors X, Y and Z respectively. The degree of the ABS surface is d = m+ n+ q. The scalars

{wijk} in Eq. (1), namely control coefficients, have the similar function to the control points of parametric

B-spline surface. An ABS surface example is illustrated in Figure 1.

In this paper, the degrees of ABS surfaces considered are no greater than 3×3×3, which is adequate to

model complex shapes of arbitrary topologies. The proposed rendering algorithm is implemented on GPU

with SIMD architecture. In general, a GPU has much more processor cores (ALUs) than a CPU. However,

each GPU core runs significantly slower than a CPU core and is not designed for solving complex problems.

It is suitable for simple, data or computation intensive operations. By using the knot insertion algorithm,

the ABS surface defined on [xi, xi+1]× [yj , yj+1]× [zk, zk+1] (m 6 i 6 M,n 6 j 6 N, q 6 k 6 Q,) can be

converted into an algebraic patch in terms of tensor product Bernstein polynomials as follows:

F (x, y, z) =

m
∑

i=0

n
∑

j=0

q
∑

k=0

FijkB
m
i (u(x))Bn

j (v(y))B
q
k(w(z)) = 0, (2)

where

u(x) =
x− xi

xi+1 − xi

, v(y) =
y − yj

yj+1 − yj
, w(z) =

z − zk
zk+1 − zk

,

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:4

Input ABS surface

CPU
Transform ABS surface
into piecewise patches in
terms of Bernstein basis

Pre-compute Bernstein
polynomial interpolation

matrix

Obtain queue of patch indices for
each pixel via 3DDDA, discard

pixels with empty queue

Peel i-th layer for each
non-empty queue

Sample d+1 Chebychev points
along the line segment

Sort and cluster pixels based
on patch indices

Compute ray and algebraic
patch intersection

Compact unfinished pixels

N

Y

No pixel left?

Exit
GPU

Shading Shading and
alpha blending

GPU

Find all roots
via BPI method

Find the first root
via BPI method

Transparent?

N Y

Obtain coefficients of intersection
function between ray and algebraic

patch via interpolation

Compute intersection line segment
between ray and rectangular domain

0.2

4.1

4.2

4.3

4.4

4.5

5

4

3

2

1

0.1

Figure 2 Flowchart of the proposed algorithm.

and Bm
i (u), Bn

j (v) and Bq
k(w) are the Bernstein basis functions of degree m, n and q respectively.

Thus, we can compute the intersection between the ray and the ABS surface patch by patch. And

the coefficients of F (x, y, z) can be load into on-die memory and shared by neighbor threads, which is

very efficient on GPU. When the control coefficients of F (x, y, z) have the same sign, i.e., all positive

or negative, the algebraic patch defined by Eq. (2) will be null according to the convex hull property of

Bernstein polynomials. This observation will help us to reject null algebraic patches quickly.

3.2 Algorithm overview

The flowchart of the proposed algorithm is shown in Figure 2. In the algorithm, the input ABS surface is

first converted into piecewise algebraic patches in terms of Bernstein polynomials, whose domains form a

3D rectangular grid. For each ray, the 3DDDA algorithm is employed to traverse the rectangular domains

and obtain a queue of patch indices. Then the depth peeling algorithm is adopted to process the queues

in parallel. By using the functional composition via polynomial interpolation in Subsection 4.2, the ray

and the patch intersection is reduced to a root finding problem of an univariate Bernstein polynomial. An

iterative and unconditionally convergent root finding algorithm, namely Bézier point insertion (abbrevi-

ated as BPI in this paper), is proposed in Subsection 4.3. Finally the shading computation is performed

after the smallest root is found. To render the semi-transparent effect, which is helpful to reveal the

complex topology of the ABS surface, the queue of patch indices should be traversed in a back-to-front

order so that all the zeros of the univariate polynomial are evaluated.

4 Real-time raycasting ABS surfaces via Bézier point insertion

4.1 Ray traversal

Unlike its parametric counterpart, the domains of the piecewise algebraic patches in Eq. (2) have the

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:5

Queue

1
2

6
8

..
.

1 2

3 4

1

2

6

8

8

6

7

5

R

Figure 3 A ray traverses the rectangular domains of the algebraic patches. A queue of patch indices is obtained for the

ray.

regular spatial structure, i.e., a 3D rectangular grids. As a preprocessing step of root finding, it is naturally

to check whether the ray intersects the rectangular domains or not. The task can be accomplished

efficiently via the 3DDDA algorithm [27], which is illustrated in Figure 3. By clipping the domains

against the near and far clipping planes and skipping the domains that contain no surface via sign

check of the control coefficients, a queue of patch indices is obtained, with which the ray may intersect

potentially. In general, the queue will be traversed in the front-to-back order to compute the first hit

point. To render the semi-transparent surface, the queue should be traversed in the back-to-front order

to compute all of the intersections.

Loop and Blinn computed the intersections analytically between a ray and an A-patch of degree [11].

They projected the tetrahedral domain onto the screen space to determine the extent of the A-patch,

then scan convert the projection of the domain, finally compute the first hit point for each pixel. For

overlapped A-patches, they employ z-buffer approach to find the first hit point. Their algorithm is not

applicable to the algebraic patch in terms of tensor product Bernstein polynomials since the projection of

the rectangular domain on the screen space is much more complex. Therefore we adopt the depth peeling

algorithm to traverse the queues in parallel [28,29]. In general, the depth peeling is terminated if the first

hit point is found or there are no patch index left in the queue. In the case of rendering semi-transparent

surface, the whole queue should be traversed in the back-to-front order.

4.2 Function composition

There are several methods to compute ray and surface intersections. They are two planar curves inter-

section method [30], Bernstein pyramidal polynomials method [31], ray marching and sampling method

[23,24,32], functional composition method [7,11,33], etc. The functional composition method converts

the ray and the algebraic surface intersection into a root finding problem of univariate polynomial. It

is universal and the resulting univariate polynomial can be solved by many numerical algorithms. The

functional composition between the ray and the metaball has analytical expression due to its simplicity

and low degree [33]. In the methods [7,11], the algebraic patch defined in the world coordinate system

is first transformed into the view coordinate system. Thus the functional composition between the ray

and the algebraic patch can be evaluated directly by substituting x and y coordinate values into the

transformed algebraic function. However it is not applicable to the ABS surface since the ABS surface

may contain thousands of piecewise algebraic patches in terms of Bernstein polynomials.

In our setting, the functional composition is performed in the world coordinate system directly. Ac-

cording to the theory of Bernstein polynomials [34], the functional composition between the ray and the

ABS surface function FABS(x, y, z) in Eq. (1) is an univariate piecewise polynomial in terms of B-splines,

which contains large numbers of knots and control coefficients. It is impractical to solve the B-spline

polynomial in GPU since GPU has limited registers and local memory resources in general. Alternatively,

we perform the functional composition between the ray and the algebraic patch in terms of Bernstein

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:6

polynomials F (x, y, z) in Eq. (2) as follows:

{

F (x, y, z) = 0,

R(t) = (x(t), y(t), z(t)) = (1− t)Rin + tRout,
(3)

where R(t) is the parametric equation of the view ray, Rin and Rout are two intersection points between

the ray R(t) and the rectangular domain of the algebraic patch, and t ∈ [0, 1]. By substituting each

component of R(t) into F (x, y, z), an univariate Bernstein polynomial of degree d = m + n + q can be

obtained as follows:

f(t) = F (x(t), y(t), z(t)) =

d
∑

i=0

fiB
d
i (t) = 0. (4)

There are mainly three methods to compute the coefficients {fi}
d
i=0: generalized de Casteljau method,

optimal method and polynomial interpolation method. Feng et al. [35] compared three methods in detail

and concluded that the polynomial interpolation method has advantages on computational cost, coding

efficiency, and storage cost. Furthermore its numerical stability is good enough for rendering the algebraic

patches of degrees no more than 3× 3× 3. Rather than sampling d+ 1 points of f(t) in [0, 1] uniformly,

d+ 1 Chebyshev points {ci}
d
i=0 are adopted to reconstruct the polynomial f(t) as follows:

ci =
1

2

[

1− cos
(i + 1/2

d+ 1
π

)]

.

Then the coefficients {fi}
d
i=0 can be obtained via a multiplication between an (d+1)×(d+1) interpolation

matrix I and a d+ 1 vector f composed of function value of the Chebyshev sampling points, where the

I and f are defined as
{

I = {Iij}
d
i,j=0 = {Bd

j (ci)}
−1,

f = {f(ci)}
d
i=0.

Since the Chebyshev points are fixed for a polynomial of given degree, the interpolation matrix I can

be pre-computed and saved. Compared with the uniformly sampling approach, the Chebyshev sampling

approach offers better numerical condition. According to our experiments, the conditional number of

Chebyshev interpolation matrix I grows as an exponential function of degree whose base is 2, while the

base of uniformly sampling approach is about 2.3.

4.3 Root finding algorithm

After the functional composition in Subsection 4.2, computing the ray and the algebraic patch intersection

is reduced to a root finding problem of the univariate Bernstein polynomial of degree d = m + n + q,

which equals to the degree of the ABS surface. If d > 4, there is no analytic solution. In our setting, the

univariate Bernstein polynomial is solved numerically on GPU in parallel.

A detailed survey on root finding methods of univariate polynomials in geometric computing and

computer graphics was given by authors [36]. Inspired by the iterative knot insertion approach for B-

spline functions [25] and the recursive subdivision-based approach for Bernstein polynomials [37], a novel

BPI root finding method is proposed. The BPI method is iterative rather than recursive. Thus it is

suitable to be implemented in parallel and it can fully exploit the parallelism of contemporary GPU.

For the univariate Bernstein polynomial f(t) as in Eq. (4), its image (t, f(t)) is a planar Bézier curve

of degree d, whose control points are {(i/d, fi)}
d
i=0. For simplicity, f(t) also indicates its corresponding

Bézier curve in our paper. The coefficients are normalized with a scale factor that is merely the reciprocal

of the largest modulus of the coefficients in order to avoid floating-point overflow and underflow. The

BPI method first subdivides f(t) into a left sub-curve and a right sub-curve at the first zero t0 of its

control polygon via de Casteljau algorithm. Then the two sub-curves are checked sequentially from left

to right whether their control coefficients change signs. If there is no sign change for the left sub-curve,

we can purge it away safely. And if this happens to the right sub-curve also, we can determine that the

polynomial has no root. Otherwise, the sub-curve is subdivided at t1, i.e., the first zero of the control

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:7

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.1 0.2 0.3 0.4 0.5 0.6

(a) (b)

(c) (d)

0.7 0.8 0.9 1.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t1 = 0.133333

t2 = 0.942917 t3 = 0.932836

Figure 4 An example of implementing Bézier point insertion root finding algorithm. (a) The original polynomial; (b)–(d)

the 1st, 2nd and 3rd Bézier point insertion results and the errors of the root. After 6 subdivision, the error of the root is less

than 1.0× 10−6, which meets the prescribed accuracy requirement. ti = 0.133333, 0.942917, 0.932836, 0.932724, 0.932513,

0.932518, error |ti − t| = 7.99e−1, 1.04e−2, 3.19e−4, 2.07e−4, 0.40e−5, 1.00e−6. The {t2}6i=1 and {||t − ti||}
6
i=1 give six

iteration results and their numerical errors.

polygon of the sub-curve, and obtain two new sub-curves. Repeatedly performing above procedures, the

sequence of inserted points {tk} will converge to the first zero of f(t). The detailed BPI algorithm for the

smallest root is described in Algorithm 1. An implementation example of the BPI algorithm is shown in

Figure 4.

The BPI method can be regarded as an extension of knot insertion method [25] for the B-spline

polynomial, where a d multiple knot is inserted one time. As stated in [25], the knot insertion method

unconditionally and quadratically converges to a single root, while it does not require any initial guesses.

Thus the proposed BPI method also quadratically and unconditionally converges to a single root. The

BPI method only requires memory allocations for the coefficients of two sub-curves, which can also be

reused in each insertion step. However, the knot insertion method requires keeping both the knot vector

and the control coefficients of the B-Spline polynomial. Thus it consumes more memory than the BPI

method [25]. Since a GPU contains very limited on-die caches and registers, the BPI method is suit for

the GPU implementation. The results of the Section 6 validate that the BPI method is more efficient

than the knot insertion method.

There are three ways to compute all the roots of f(t). The first one is deflation approach. After the first

root is found via the BPI method, the deflation is performed to reduce the degree of f(t). The deflation

method is perfect in theory. However it is very sensitive to the numerical error of the root. Repeatedly

performing the deflations will accumulate the numerical errors rapidly [18]. Finally, the evaluated root

will lose its numerical accuracy. The second one is to compute all roots in parallel by inserting Bézier

points at all the zeros of the control polygon in each step. Due to the complexity of parallel programming

and much more storage costs, designing an efficient parallel algorithm for all roots is difficult. We adopt

the third way, i.e., computing all roots sequentially in the increasing order via the BPI method. When

the smallest zero is computed, f(t) is subdivided at this point. The the right sub-curve is adopted to

compute the next smallest zero, and so on. The algorithm of computing all roots via the BPI method is

described in Algorithm 2.

4.4 Shading and anti-aliasing

After the first hit point is obtained, the normal at the hit point should be evaluated for the shading

computation. There are three methods to compute the normal. They are analytical method, difference

method and fitting method.

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:8

Algorithm 1 Bézier point insertion (BPI).

1: Input: A Bernstein polynomial f(t) =
∑d

i=0 fiB
d
i (t) on [0, 1]; τ is tolerance of zero function value; ǫ is tolerance

of converged interval size;

2: if ‖f0‖ < τ , Output: 0; {If left end of f(t) passes zero, then t = 0 is the first root.}

3: Initialize: fc
i ← f l

i ← fi, f
r
i ← 1, for i = 0, 1, . . . , d; f∗ ← fc; tcur ← told ← 1; tact ← 0, dt← 1; {fc(t) =

∑d
i=0

fc
i B

d
i (t) is the currently processed sub-curve, f l(t), fr(t) are the left and right sub-curve respectively. f∗ is a

pointer to one of them. tcur, told are current and previous zeros of control polygons of sub-curves respectively; tact

is the zero with regards to [0, 1]; dt is the interval size of currently processed sub-curve.}

4: while ‖fr
0 ‖ > τ do

5: Find the smallest k such that f l
k
f l
k+1 < 0;

6: if all the coefficients of f l have the same sign then

7: Find the smallest k such that fr
k
fr
k+1 < 0;

8: if all the coefficients of fr have the same sign. Output: −1;//no root.

else

9: f∗ ← fr; flag ← right; fc
i ← fr

i ;//purge away left sub-curve.

end if

10: else

11: f∗ ← fc; flag ← left;

12: end if

13: if
f∗

k

d(f∗

k
−f∗

k+1
)
< ǫ, then tcur ←

k
d
+ ǫ;

14: if flag == left then

15: tcur ← tcur ∗ told;

16: else

17: tact ← tact + dt ∗ told; dt← dt ∗ (1− told);

18: end if

19: Subdivide f∗ at tcur via de Casteljua algorithm, generate new sub-curves f l(t) and fr(t);

20: told ← tcur;

21: end while

22: Output: tact + dt ∗ told.

The normal of the algebraic patch in Eq. (2) is the gradient function ∇F (P) = (Fx(P), Fy(P), Fz(P)).

All three derivatives are also in terms of Bernstein polynomials and their degrees are d−1. To compute the

∇F (P) in GPU efficiently, the coefficients of Fx(P), Fy(P) and Fz(P) should be loaded into shared mem-

ories and additional evaluation routines should be written for three components. The difference method is

to approximate the normal by the difference formulae (F (x+ ǫ, y, z)/ǫ, F (x, y + ǫ, z)/ǫ, F (x, y, z + ǫ)/ǫ)

with a proper scalar ǫ. The computational cost of the difference approach is almost same with that of

the analytical approach, which requires 3 function evaluations of F (P). However the difference approach

is more efficient for reusing GPU codes. In the fitting approach, a plane is computed to fit the hit point

and its neighbor pixels. The normal of the fitting plane is adopted as the approximate normal. The

three normal computation approaches can produce the similar shading effects. The fitting approach is

the most efficient one since there is no additional function evaluations of F (P). However it is not worked

in the semi-transparent rendering case since there is no neighboring pixel information available in each

step of depth peeling. Thus the fitting approach is adopted in our setting. For the semi-transparent effect

rendering, the difference solution approach is adopted alternatively. An example of comparison among

shading effects by using three normal computation methods are shown in Figure5.

The shaded pixels on the silhouette and boundary of the algebraic patch tend to suffer from the

sampling artifact in general. To alleviate it, anti-aliasing computations should be performed for these

pixels. In our implementation, a 4×4 rotated grid super-sampling (RGSS) approach is adopted [38] since

it can avoid samples aligning on the horizontal or vertical axis and greatly improve anti-aliasing quality

for the most commonly encountered cases. An illustration of RGSS is shown in the bottom right corner

in Figure 6. To facilitate the RGSS, the pixels on the silhouette and boundary should be detected and

gathered first.

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:9

Result of accurate normal Difference method & error Fitting method & error

0.10

0.08

0.06

0.04

0.02

0

Figure 5 (Color online) Comparison among shading effects by using three different normal computation methods. The
left figure is the shading result by using accurate normal. The middle and right figures show the shading results and
brightness errors of in the HSV color space by using the difference method and the fitting method respectively. The errors
of hue and saturation are less than 1.0e–3. They are omitted.

RGss
Samping

Figure 6 (Color online) Anti-aliasing rendering of silhouette. The small figure at bottom right corner shows 4× 4 RGSS

kernel.

Algorithm 2 BPI method to find all roots.

1: Input: f(t), τ , and ǫ as in Algorithm 1.

2: Output: Nr the root number of f(t), [Ri]
d
i=0 the root array.

3: if ‖fd‖ < τ , then rEndInter=true;

4: fc
i ← fi, for i = 0, 1, . . . , d;//reuse the fc(t) in Algorithm 1;

5: repeat

6: t = BPI(fc(t), τ, ǫ);

if t > 0&& t 6 1− ǫ then RNr++ = t; t+ = ǫ;

else break;

endif

7: Subdivide f(t) at t via de Casteljua algorithm, choose the right sub-curves as new fc(t);

8: until t > 1

9: if rEndInter==true;, then RNr++ = 1;

In theory, the silhouette is defined as the intersection between a surface and its polar surface with

respect to the viewpoint [31]. For a given horizontally or vertically scan plane, the silhouette points are

defined as the roots of the following non-linear system:

F (x, y, z) = 0,

P (x, y, z, w) = xeFx + yeFy + zeFz + weFw = 0,

akx+ bky + ckz + dk = 0, k = h or v,

(5)

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:10

45
×104

Ray casting
Semi-
transparentt

35

25

15

10

20

30

40

5

0

P
ix

el
 n

u
m

b
er

1 3 5 7 9 11 13 15 17 19 i-th depth

24

16

8

1

Figure 7 The left figure shows the depth color-map of the opaque algebraic patch. The middle one shows the semi-

transparent case, where each ray traverses in a back-to-front order. The right one shows the pixel number distribution in

each depth peeling step for the resolution 1024 × 768 pixel.

where P (x, y, z, w) is the polar surface, E(xe, ye, ze, we) is the homogeneous coordinates of the viewpoint.

The third linear equation is either horizontally or vertically scan plane. The system (5) can be solved via

quadratically convergent Newton-Raphson method if the well-defined initial guesses are given. Unfortu-

nately, it is non-trivial to provide a good initial guess due to the complex configurations of the surface.

Furthermore, the system is ill-conditioned near the singular or self-intersection points. Thus it is not a

feasible solution to detect the silhouette points via numerically solving the system (5).

Here an alternative silhouette point detection method is proposed. In the depth channel of primary

rendering image, the depth gradient norm at the silhouette, singular or self-intersection point is much

greater than those of the regular points on the surface. Thus the silhouette pixels in the screen space

can be detected via central second order difference of depth values. If the difference is greater than a

threshold, the pixel is regarded as a potential silhouette pixel. Of course, it may also be singular point

pixel or self-intersection point pixel. Anyway, it is a conservative but a feasible solution. The pixels on

the patch boundaries can be determined straightforwardly.

After all the pixels to be anti-aliased are gathered, each of them is subdivided into 4 × 4 sub-pixels,

and we select 4 sub-pixels of them as shown in Figure 6. Another rendering pass for these sub-pixels is

performed, which has the same flowchart as in Figure 2. An example of anti-aliasing rendering effect is

shown in Figure 6.

5 GPU implementations in CUDA

The proposed algorithm is implemented in NVIDIA CUDA. CUDA provides a C language interface

for general-purpose programming on the NVIDIA GPU. Due to its efficient scatter-gather mechanism,

CUDA exposes many important parallel computing capabilities of the NVIDIA GPU so as to facilitate

data-parallel computations, such as scan, reduce and sort, etc. All the operations have been released in

CUDPP [39].

Figure 7 shows the depth layer distributions of the opaque and semi-transparent surfaces in depth

peeling. There are total 15 and 21 layers of patches for the opaque and semi-transparent renderings. In

the naive solution, a pixel will correspond to a thread in each peeling step. With the increase of peeled

depth, the pixel number will decrease accordingly. Thus many GPU cores will be on idle. To fully explore

the parallel capability of GPU, the “Compact” operation should be employed to reduce the pixel number

in each peeling step. Besides it, the “Compact” operation can also cull the empty queues in the 1st step

in Figure 2 and RGSS anti-aliasing. The “Compact” operation is accomplished by using the parallel

prefix sum (Scan) operation in the CUDPP.

It is obviously that we need process different numbers of pixels in each peeling step, which belong to

different patches, as shown in Figure 7. The situation is very different from those of the general algebraic

surfaces rendering algorithms in [7,32]. In their settings, only one algebraic surface is considered. Thus

the routines, such as function evaluation, functional composition, etc., can share the algebraic surface

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:11

Figure 8 Morphing between three ABS surfaces of degree 6, where the 1st, 4th and 6th ones are key surfaces. The

morphing is generated by interpolating the control coefficients of the key surfaces on the fly. It can achieve around 50–60

fps with 512× 512 resolution.

data in the GPU. The approach cannot be extended trivially for rendering the ABS surface with many

patches. To compute the intersection between a ray and an algebraic patch of degree 3 × 3 × 3, 43

coefficients should be loaded into the on-die memory at least. If all pixels were processed in parallel

trivially, i.e., each pixel will load 43 coefficients, it would cause heavy burden for the bandwidth and

register memory of GPU. The more registers per thread allocated, the less threads worked in parallel

are available. Furthermore, the simultaneous memory access of adjacent pixels may not be coalesced

into a single memory transaction, which will lead to performance penalty. To address these problems,

a patch-index based clustering scheme is proposed for each peeled depth, which is adopted in the 3rd

step in Figure 2. Firstly, each pixel is associated with a patch index in the 3DDDA traversal. Then the

pixels are sorted and clustered according to their associated patch indices. These clusters are launched in

blocks. In this way, the threads in each block can share the same patch data, which can be loaded into the

on-chip shared memory. This scheme provides very efficient memory access as fast as those of registers.

Meanwhile the registers are saved greatly and could be applied to deeper parallelism. Therefore, the

“sorting” operation is a key step in our GPU implementation, which is accomplished via the radix sort

routine provided by CUDPP [39].

6 Results and comparison

The algorithm has been implemented on a PC with an Intel Core2 Q9550 2.83 GHz CPU, 4 GB Memory

and an NVIDIA GeForce GTX 280 GPU. The rendering resolution of all examples is 512 × 512. The

corresponding ABS surfaces almost fill the screen. Since the algebraic surface is capable of processing

dynamic topology, an example of topological morphing between three key ABS surfaces is given in Figure

8, where the key ABS surfaces have different topologies. Since the proposed algorithm is purely on-the-fly,

it can be applied to render dynamic ABS surfaces and explore their topological changes.

There are five algorithms, which are closely related to real-time rendering piecewise algebraic surface.

They are analytical approach [11], Bézier clipping approach [6], B-spline knot insertion approach [7],

interval arithmetic approach [24] and ray marching approach [32].

The analytical approach is designed for rendering the piecewise algebraic patches whose degrees are

not greater than 4 and whose domains are tetrahedrons. Z-sorting algorithm is adopted to determined

the first hit point [11]. Of course, the analytical root finding algorithm can be replaced by a numerical

algorithm so that the approach can be extended to render the piecewise algebraic patches of degrees

greater than 4. To render the ABS surface, the functional composition and the BPI root finding should

be incorporated into the original analytical approach. However z-sorting algorithm need to compute all

the hit points. Thus all the univariate polynomials along each view ray will be stored for the potential

root finding, which is very storage consuming. For the example in Figure 7, almost 75% of the univariate

polynomials have no root. To render the ABS surface with 720P resolution, it will exhaust all of 1GB

memory of GTX280! Thus the scalability of the modified algorithm is limited. On the other hand, our

depth peeling approach always reuse small amount of memory in each peeling step, which is very memory

efficient.

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:12

Due to the limited precision of floating point in GPU, the numerical instability will occur for the interval

arithmetic when a lot of MAD (multiplication and addition) operations are consumed to evaluate the

tri-variate tensor product Bernstein polynomials. Furthermore, the small but necessary interval tolerance

in the root finding algorithm may cause numerical artifacts. Thus the interval arithmetic approach [24]

is not applicable to the ABS surface rendering. The adaptive marching points method proposed by Singh

and Narayanan [32] isolate the root via rule of signs and approximate the root via bisection. However

rule of signs is not a robust root isolation method. The bisection method can approximate first hit

point efficiently, however it cannot determine the non-intersection case efficiently. The latter one is very

common when a ray traverses a piecewise ABS surface. Furthermore the threshold estimation for each

step is not a trivial work for the piecewise algebraic patches, since they are patch-dependent. Thus we

did not implement the method for the ABS surface.

Comparisons between the BPI algorithm and the other root finding algorithms on CPU, such as

RPoly, Laguerre’s method, Bézier clipping, B-spline knot insertion, high degree clipping, GeoClip etc.

can refer to the survey [36]. Among these methods, the Bézier clipping and the B-spline knot insertion

algorithms are implemented and compared with our approach on GPU [6,7]. The original B-spline knot

insertion approach is designed for a single algebraic patch [7]. Thus it contains a lot of pre-computations

and transformations on CPU, which is infeasible for the ABS surface case. As the comparison, our

implementation of the B-spline knot insertion approach is almost same with our proposed algorithm

except for the root finding part, which is replaced as the B-spline knot insertion algorithm.

The method in [26] is 2–4 times faster than the method in this paper since it adopted different root-

finding technique. However, the proposed method in this paper has three main advantages as follows,

which is designed to solve the problems in [26]. The BPI method is more robust than the Newton-

Raphson method, because the robustness of the Newton-Raphson method greatly depends on its initial

guess of the first step. In many ill-conditioned cases, the Newton-Raphson method cannot guarantee

the convergence of iterations. In contrast, the unconditioned convergence of the BPI method is proved

in [25]. The method in [26] cannot display the ABS surfaces with semi-transparent effect, which is useful

to reveal the complex topology of the ABS surfaces. We can adopt the proposed algorithm to find all the

roots along one ray by the BPI method and depth peeling. The ABS surface is a kind of piecewise surface

modeling approach, and the algorithm in [26] need extra strategies to process the boundaries between two

adjacent patches, the silhouettes and the regions near silhouettes respectively. In this paper, we traverse

the ABS surface patch by patch. Thus these additional steps are unnecessary.

We construct some globally C1 and C2 smooth ABS surfaces of degrees 6–9, as shown in Figure 9.

The modeling approach of these examples goes beyond the scope of the paper and is omitted here. The

termination criteria for the root-finding of Algorithm 1 is that |f(t)| < τ(= 1.0e–6) for single precision

floating-point arithmetic on GPU. The degrees, knot information, numbers of patches of the ABS surfaces,

the fps (frames per second) comparison statistics among the Bézier clipping approach [6], the B-spline

knots insertion approach [7], our approach for opaque and semi-transparent surface rendering, are given

in Table 1 in details. We can draw from the statistics that the proposed algorithm is faster than the

other two algorithms. The speedups are 10%–35% and 4%–20% respectively, and the speedup decreases

with the increase of depth complexity.

7 Conclusions and future work

In this paper, we present a GPU-based real-time ABS surface rendering algorithm by employing ray

traversal, functional composition, and a novel root-finding algorithm—Bézier point insertion. The ex-

perimental results show that our algorithm is capable of ray casting the ABS surfaces of degrees 6-9

containing thousands of patches in real time, and the proposed root-finding algorithm is suitable for

SIMD architecture of GPU and is superior to the Bézier clipping algorithm and the B-spline point inser-

tion algorithm.

However, we can draw that the semi-transparent rendering is still slow, which is useful to exploit the

complex topology of the algebraic surface. Another problem is how to efficiently determine whether an

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:13

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 9 (Color online) The ABS surface examples.

Table 1 The statistics for the ABS surfaces in Figure 9. BC, BKI, BPI, BPI-α indicates the Bézier clipping approach,

the B-spline knot insertion approach, our approach, our approach for semi-transparent rendering respectively. The runtime

statistics are fps

ABS Degree Knot segments Patches BC BKI BPI BPI-α

9(a) 2× 2× 2 10× 10 × 10 448 9.17 9.78 10.21 4.35

9(c) 2× 2× 2 8× 8× 8 376 9.58 10.63 11.39 5.98

9(e) 2× 2× 2 17× 17 × 17 1636 7.18 7.82 8.34 3.92

9(f) 3× 3× 3 4× 18× 18 1296 12.45 12.93 14.53 9.12

9(g) 2× 2× 3 1× 1× 1 1 16.92 17.72 20.03 14.83

9(h) 2× 2× 2 25× 17 × 17 1020 15.27 15.98 17.85 10.44

9(i) 2× 2× 2 23× 19 × 19 1063 15.28 16.20 18.10 10.46

9(j) 2× 2× 2 37× 38 × 38 3622 9.53 10.17 11.09 6.40

9(k) 2× 2× 2 17× 18 × 18 1083 13.79 14.33 16.11 9.87

9(l) 3× 3× 3 1× 2× 2 2 12.58 14.57 17.39 10.29

algebraic patch F (x, y, z) = 0 in Eq. (2) is null. In our setting, it is accomplished via sign check, which

is too conservative. In future, we are looking forward to seeking more efficient algorithms to purge away

no-root region before functional composition.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 60933007, 61170138),

National Basic Research Program of China (973 Program)(Grant No. 2009CB320801), Program for New Century

Excellent Talents in University (NCET-10-0728).

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:14

References

1 Patrikalakis N M, Kriezis G A. Representation of piecewise continuous algebraic surface in terms of B-splines. Visual

Comput, 1989, 5: 360–374

2 Che X J, Liang X Z, Li Q. G1 continuity conditions of adjacent nurbs surfaces. Comput Aided Geom Des, 2005, 22:

285–298

3 Bajaj C L, Chen J, Xu G L. Modeling with cubic A-patches. ACM Trans Graph, 1995, 14: 103–133

4 Jüttler B, Felis A. Least-squares fitting of algebraic spline surfaces. Adv Comput Math, 2002, 17: 135–152

5 Tong W H, Feng Y Y, Chen F L. Hierarchical implicit tensor-product B-spline surface and its application in surface

reconstruction (in Chinese). J Softw, 2006, 17: 11–20

6 Kanamori Y, Szego Z, Nishita T. GPU-based fast ray casting for a large number of metaballs. Comput Graph Forum,

2008, 27: 351–360

7 Reimers M, Seland J. Ray casting algebraic surfaces using the frustum form. Comput Graph Forum, 2008, 27: 361–370

8 Witkin A P, Heckbert P S. Using particles to sample and control implicit surfaces. In: Proceedings of the 21st Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 94), Orlando, 1994. 269–277

9 Lorensen W E, Cline H E. Marching cubes: A high resolution 3d surface construction algorithm. ACM SIGGRAPH

Comput Graph, 1987, 21: 163–169

10 Bloomenthal J. An implicit surface polygonizer. In: Heckbert P, ed. Graphics Gems IV. San Diego: Academic Press

Professional, Inc., 1994. 324–349

11 Loop C, Blinn J. Real-time GPU rendering of piecewise algebraic surfaces. In: Proceedings of the 21st Annual

Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 06), Boston, 2006. 664–670

12 Hanrahan P. Ray tracing algebraic surfaces. In: Proceedings of the 10th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH 83), Detroit, 1983. 83–90

13 Kalra D, Barr A H. Guaranteed ray intersections with implicit surfaces. In: Proceedings of the 16th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH 89), Boston, 1989. 297–306

14 Mitchell D P. Robust ray intersection with interval arithmetic. In: Proceedings on Graphics Interface ’90, Halifax,

1990. 68–74

15 Farouki R, Rajan V. On the numerical condition of polynomials in bernstein form. Comput Aided Geom Des, 1987,

4: 191–216

16 Lane J M, Riesenfeld R F. Bounds on a polynomial. Bit, 1981, 21: 112–117

17 Nishita T, Sederberg T W, Kakimoto M. Ray tracing trimmed rational surface patches. In: Proceedings of the 17th

Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH 90), Dallas, 1990. 337–345

18 Spencer M R. Polynomial real root finding in bernstein form. Dissertation for the Doctoral Degree. Provo: Brigham

Young University, 1994

19 North N S. Intersection algorithms based on geometric intervals. Thesis for the Master’s Degree. Provo: Brigham

Young University, 2007

20 Bartoň M, Jüttler B. Computing roots of polynomials by quadratic clipping. Comput Aided Geom Des, 2007, 24:

125–141

21 Liu L G, Zhang L, Lin B B, et al. Fast approach for computing roots of polynomials using cubic clipping. Comput

Aided Geom Des, 2009, 26: 547–559

22 Pabst H F, Springer J P, Schollmeyer A, et al. Ray casting of trimmed nurbs surfaces on the GPU. In: Proceedings

of IEEE Symposium on Interactive Ray Tracing, Salt Lake City, 2006. 151–160

23 Knoll A, Wald I. Interactive ray tracing of arbitrary implicit functions. In: Proceedings of the 2nd IEEE/EG Sympo-

sium on Interactive Ray Tracing, Ulm, 2007. 11–18

24 Knoll A, Hijazi Y, Kensler A, et al. Fast ray tracing of arbitrary implicit surfaces with interval and affine arithmetic.

Comput Graph Forum, 2009, 28: 26–40

25 Mørken K, Reimers M. An unconditionally convergent method for computing zeros of splines and polynomials. Math

Comput, 2007, 76: 845–865

26 Wei F F, Feng J Q. Real-time ray casting of algebraic B-spline surfaces. Comput Graph, 2011, 35: 800–809

27 Fujimoto A, Tanaka T, Iwata K. Arts: accelerated ray-tracing system. IEEE Comput Graph Appl, 1986, 6: 16–26

28 Mammen A. Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE

Comput Graph Appl, 1989, 9: 43–55

29 Everitt C. Interactive order-independent transparency. White Paper, NVIDIA. 2001

30 Kajiya J T. Ray tracing parametric patches. In: Proceedings of the 9th Annual Conference on Computer Graphics

and Interactive Techniques (SIGGRAPH 82), Boston, 1982. 245–254

31 Sederberg T W, Zundel A K. Scan line display of algebraic surfaces. In: Proceedings of the 16th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH 89) Boston, 1989, 147–156

32 Singh J M, Narayanan P J. Real-time ray tracing of implicit surfaces on the GPU. IEEE Trans Vis Comput Graph,

Wei F F, et al. Sci China Inf Sci January 2014 Vol. 57 012106:15

2010, 16: 261–272

33 Nishita T, Nakamae E. A method for displaying metaballs by using bezier clipping. Comput Graph Forum, 1994, 13:

271–280

34 DeRose T D, Goldman R N, Hagen H, et al. Functional composition algorithms via blossoming. ACM Trans Graph,

1993, 12: 113–135

35 Feng J Q, Peng Q S. Bernstein polynomial composition through interpolation and its applications in curves and surfaces

(in Chinese). J Softw, 2002, 13: 2014–2020

36 Wei F F, Zhou F, Feng J Q. Survey of real root finding of univariate polynomial equation in CAGD/CG (in Chinese).

J Comput Aided Des Comput Graph, 2011, 23: 193–207

37 Rockwood A, Heaton K, Davis T. Real-time rendering of trimmed surfaces. SIGGRAPH Comput Graph, 1989, 23:

107–116

38 Beets K, Barron D. Super-sampling anti-aliasing analyzed. Technical Report, Beyond3D & 3dfx. 2000

39 Harris M, Owens J, Sengupta S, et al. http://www.gpgpu.org/developer/cudpp/

● Monograph
Rordam M, Larsen F, Lausten N. An introduc-
tion to K-theory for C*-algebras. Cambridge:
Cambridge University Press, 2000. 30－35

● Proceedings
Qin H R. The subgroups of a finite order in K(Q).
In: Bass H, Kuku A O, Pedrini C, eds. Algebraic
K-theory and Its Application. Singapore: World
Scientific, 1999. 600－607

● Conference proceedings
Minor H E. Spillways for high velocities. In:
Zurich V E, Minor H E, Hager W H, eds. Pro-
ceedings of International Workshop on Hydrau-
lics of Stepped Spillways, Rotterdam, the
Netherlands, 2000. 3―10

● Dissertation
Liu G X. Classification of finite dimensional
basic Hopf algebras and related topics. Dis-
sertation for the Doctoral Degree. Hangzhou:
Hangzhou University, 2005. 24－28

● Technical report
Phillips N A. The Nested Grid Model. NOAA
Technical Report NWS22. 1979

● Patent
Zhang W P. Experiment Apparatus of Diffraction
Imaging. China Patent, 02290557.X,
2003-12-03

● User manual
Wang D L, Zhu J, Li Z K, et al. User Manual for
QTKMapper Version 1.6, 1999

● Software
Hemodynamics III: The ups and downs of he-
modynamics. Version 2.2. Orlando: Computer-
ized Educational Systems. 1993

● CD
Anderson S C, Poulsen K B. Anderson’s Elec-
tronic Atlas of Hematology. Philadelphia: Lip-
pincott Wilkins, 2002

● Electronic version of a journal
Christine M. Plant physiology: plant biology in
the Genome Era. Science, 2003, 281: 331－
332 [cited Sep. 23, 2003]. Available from:
http://www. sciencemag. org/anatmorp.htm

Subscription information
ISSN print edition: 1674-733X

ISSN electronic edition: 1869-1919

Volume 57 (12 issues) will appear in 2014

Subscription rates

For information on subscription rates please contact:

Customer Service

China: sales@scichina.org

North and South America:

journals-ny@springer.com

Outside North and South America:

subscriptions@springer.com

Orders and inquiries:

China

Science China Press

16 Donghuangchenggen North Street, Beijing 100717,
China

Tel: +86 10 64015683

Fax: +86 10 64016350

North and South America

Springer New York, Inc.

Journal Fulfillment, P.O. Box 2485

Secaucus, NJ 07096 USA

Tel: 1-800-SPRINGER or 1-201-348-4033

Fax: 1-201-348-4505

Email: journals-ny@springer.com

Outside North and South America:

Springer Distribution Center

Customer Service Journals

Haberstr. 7, 69126 Heidelberg, Germany

Tel: +49-6221-345-0, Fax: +49-6221-345-4229

Email: subscriptions@springer.com

Cancellations must be received by September 30 to
take effect at the end of the same year.

Changes of address: Allow for six weeks for all
changes to become effective. All communications
should include both old and new addresses (with
postal codes) and should be accompanied by a mailing
label from a recent issue. According to § 4 Sect. 3 of
the German Postal Services Data Protection Regula-
tions, if a subscriber’s address changes, the German
Federal Post Office can inform the publisher of the new
address even if the subscriber has not submitted a
formal application for mail to be forwarded. Subscrib-
ers not in agreement with this procedure may send a
written complaint to Customer Service Journals, Karin
Tiks, within 14 days of publication of this issue.

Microform editions are available from: ProQuest. Fur-
ther information available at
http://www.il.proquest.com/uni

Electronic edition

An electronic version is available at springer.com/scp

Production

Science China Press

16 Donghuangchenggen North Street, Beijing 100717,
China

Tel: +86 10 64015683

Fax: +86 10 64016350

Printed in the People’s Republic of China

Jointly Published by

Science China Press and Springer

	封面.pdf
	YF封二.pdf
	ml1.pdf
	012101.pdf
	012102.pdf
	012103.pdf
	012104.pdf
	012105.pdf
	012106.pdf
	012107.pdf
	012108.pdf
	012109.pdf
	012110.pdf
	012111.pdf
	012112.pdf
	012201.pdf
	012202.pdf
	012203.pdf
	012204.pdf
	012205.pdf
	012206.pdf
	012207.pdf
	012208.pdf
	012301.pdf
	012401.pdf
	019401.pdf
	封三.pdf
	封底.pdf

