
Computers & Graphics 35 (2011) 800–809
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

$This
� Corr

E-m

jqfeng@
journal homepage: www.elsevier.com/locate/cag
Technical Section
Real-time ray casting of algebraic B-spline surfaces$
Feifei Wei, Jieqing Feng �

State Key Laboratory of CAD&CG, Zhejiang University, 310058, China
a r t i c l e i n f o

Article history:

Received 25 October 2010

Received in revised form

10 April 2011

Accepted 19 April 2011
Available online 10 May 2011

Keywords:

Piecewise algebraic surface

B-spline

Newton–Raphson method

Regula falsi

Polygonization

Polar surface

Silhouette
93/$ - see front matter & 2011 Elsevier Ltd. A

016/j.cag.2011.04.002

article was recommended for publication by

esponding author.

ail addresses: weifeifeicad@gmail.com (F. We

cad.zju.edu.cn (J. Feng).
a b s t r a c t

Piecewise algebraic B-spline surfaces (ABS surfaces) are capable of modeling globally smooth shapes of

arbitrary topology. These can be potentially applied in geometric modeling, scientific visualization,

computer animation and mathematical illustration. However, real-time ray casting the surface is still

an obstacle for interactive applications, due to the large amount of numerical root findings of nonlinear

polynomial systems that are required. In this paper, we present a GPU-based real-time ray casting

method for ABS surfaces. To explore the powerful parallel computing capacity of contemporary GPUs,

we adopt iterative numerical root-finding algorithms, e.g., the Newton–Raphson and regula falsi

algorithms, rather than recursive ones. To facilitate convergence of the Newton–Raphson or regula falsi

algorithm, their initial guesses are determined through rasterization of the isotopic isosurface, and the

isosurface is generated based on regular criteria for surface domain subdivision. Meanwhile, polar

surfaces are adopted to identify single roots or to isolate different roots, i.e., ray and surface

intersections. As an important geometric feature, the silhouette curve is elaborately computed to

floating-point accuracy, which can be applied in further anti-aliasing processes. The experimental

results show that the proposed method can render thousands of piecewise algebraic surface patches of

degrees 6–9 in real time.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Because of its advantages in intersection, blending, offset, and
arbitrary topology, the algebraic polynomial representation is an
alternative to parametric surfaces in geometric modeling. The
piecewise algebraic surface in terms of B-splines, which is
abbreviated as ABS in this paper, was first introduced by Patri-
kalakis and Kriezis [23]. The ABS surface is capable of modeling
globally smooth shapes of arbitrary topology without explicitly
specifying smoothing constraints as in A-patch [3] or NURBS
surface [6] modeling. Compared to subdivision surfaces, which
can also model globally smooth shapes of arbitrary topology, the
ABS surface has an analytical expression, which is important to
perform geometry computations and shape interrogation in geo-
metric modeling, e.g., evaluations of normal, curvatures, offset,
intersection. Jüttler and Felis [10], and Tong et al. [29] present ABS
surface fitting algorithms for reconstruction of scatter data.
However, shape modeling via ABS surfaces is beyond the scope
of this paper.

Unlike its parametric counterpart, high quality ABS surface
display is not trivial. The ray casting approach can reveal elaborated
surface topology and geometric details, thus, it is free of sampling
artifacts in pixel accuracy. Furthermore, only polynomial coefficients
ll rights reserved.

D. Gutierrez.

i),
of the surface are required to use a ray casting algorithm, which
leads to lower memory and bus bandwidth consumption than does
the use of prevalent triangle rendering pipelines. However, the ray
casting approach involves a large number of ray and surface
intersections. As far as we know, there are no real-time ray casting
methods for ABS surfaces.

In this paper, we present a GPU-based real-time ray casting
method for ABS surfaces via iterative root-finding algorithms, e.g.,
the Newton–Raphson and regula falsi. The initial guess of the root-
finding algorithm is first given via rasterization of an isosurface
obtained from an isotopic ABS surface polygonization. The first root
is isolated by analyzing configurations between ABS surfaces and
their polar surfaces. Finally, the Newton–Raphson algorithm or
regula falsi algorithm is used to compute the first hit point. Mean-
while, the polar surface is also employed to compute silhouette
points to floating-point accuracy. And the silhouette points can be
applied for further anti-aliasing. The hit point is computed in object
space, and thus the overhead of functional composition between the
ray and surface is avoided. Furthermore, the surface normal for
shading is a byproduct of the iterative root-finding algorithm. The
proposed method can display an ABS surface of degrees 6–9, which
is composed of thousands of piecewise patches, in real time.

The contributions of the proposed method are summarized as
follows:
�
 real-time ray casting of ABS surfaces on GPU;

�
 rather than solving a univariate polynomial equation, we

iteratively solve a nonlinear tri-variate polynomial system in

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2011.04.002
mailto:weifeifeicad@gmail.com
mailto:jqfeng@cad.zju.edu.cn
dx.doi.org/10.1016/j.cag.2011.04.002


F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809 801
object space to find the first hit point, where an initial guess is
determined via isotopic polygonization;

�
 roots isolation by using polar surfaces;

�
 explicitly computing the silhouette and anti-aliasing along the

silhouette.

In the following, we first review related work in Section 2.
Then we describe the ABS surface in Section 3 and our algorithm
in Section 4. Isotopic polygonization and applications of the polar
surface are described in Section 4.2, 4.3 and 4.4, respectively.
Details of our implementation are given in Section 5. Numerical
examples, comparison and discussion are given in 6. Finally we
draw the conclusion and propose future work.
2. Related work

Currently, there are two kinds of methods used to display an
algebraic surface: sampling it and displaying proxy geometries,
e.g., triangles or particles and directly ray tracing or ray casting it.
Displaying an algebraic surface via discrete proxy geometries is
more suitable for prevalent triangle rendering pipelines. With the
rapid development of graphics hardware, parallelism of triangle
rendering pipelines is exploited thoroughly. Even for very high
throughput, the state of the art rendering pipelines are able to
produce stunningly realistic synthesis images in real time. The
prevalent approaches to approximate or sample an algebraic
surface are Wyvill’s polygonization [31], marching cubes [17],
Bloomenthal’s polygonization [5] and the particle system
approach [30]. However, sampling artifacts are the main flaw of
these approaches. Level-of-detail techniques can be employed to
alleviate the artifacts to some extent, which will cause additional
overhead. A comparison between ray casting and polygonization
is shown in Fig. 2. The polygonization resolution of the left surface
is up to 2003, however, it is still plagued by sampling artifacts.

Although ray casting can address the above problems, it usually
cannot meet the demands of real-time applications. Its most time-
consuming procedure is to find the first hit point between a ray and
the surface. In general, this is a root-finding problem of polynomials.
Analytical solutions exist for polynomials of degree 4 or lower.
According to this observation and some fundamental work in [4],
Loop and Blinn [16] proposed a real-time ray casting algorithm for
A-patches up to degree 4. However, it is not trivial to apply this
approach to render ABS surfaces directly since the configurations of
a cube projection on the screen plane are more complex than those
of a tetrahedron. It is also not efficient to process overlapped domain
cubes with complex depth relationships.

In the past decades, many numerical root-finding algorithms
have been employed to ray cast parametric or algebraic surfaces
of degrees above 4. Kajiya [11] reduced ray tracing of parametric
surfaces to root finding of a high degree polynomial using
Laguerre’s method. Hanrahan [8] implemented ray tracing of
algebraic surfaces by using the Descartes rule of signs for root
isolation and Newton’s method for root refinement. Kalra and
Barr [12] employed a Lipschitz constant and surface gradient to
guarantee correct ray and surface intersection. Interval arithmetic
constructs a convex hull around a function over a given domain.
By using this property, Mitchell [19] isolated the roots using
repeated interval bisection until an interval contains a single root.
Bézier clipping, proposed by Nishita et al. [21], finds the roots of a
Bernstein polynomial equation based on the convex hull property.
Recently, Mørken and Reimers [20] presented an unconditionally
convergent root-finding method via knot insertion for splines.

Utilizing the GPU, it is possible to achieve real-time ray tracing
of algebraic surfaces. Pabst et al. [22] and Kanamori et al. [13]
implemented an iterative version of the Bézier clipping with a
fixed-size stack on GPU for ray casting trimmed NURBS surfaces and
metaballs, respectively. Knoll et al. proposed an interval bisection
algorithm for real-time ray casting general algebraic surfaces via SSE
instruction-level optimization [15] and GPU [14], respectively. Both
an interval arithmetic and the Bézier clipping require recursive
subdivision until a tolerance is satisfied. Interval evaluation of the
Bernstein polynomials is numerically instable due to large numbers
of MAD (addition and multiplication) operations on GPU. Mean-
while, rounded interval arithmetic is conservative [18], but is
inefficient on GPU. Reimers and Seland [25] performed a functional
composition between ray and surface via polynomial interpolation
and employ B-spline knot insertion for root-finding. The root-finding
algorithm is iterative and more suitable for the SIMD architecture of
GPU than the Bézier clipping approach. However, functional com-
position is an additional overhead. Singh and Narayanan [27]
proposed an adaptive marching point method to find the first hit
point, wherein the step size is determined by distance from the
surface and its closeness to the silhouette. Although it is very
efficient on GPU, root isolation via rule of signs is not always robust.
Furthermore, threshold estimations of step size are not a trivial
work for piecewise surfaces, since they are patch dependent.
3. Algebraic B-spline surfaces

Let X¼ ½x0,x1, . . . ,xMþmþ1�, Y¼ ½y0,y1, . . . ,yNþnþ1� and Z¼
½z0,z1, . . . ,zQ þqþ1� be three non-decreasing knot vectors along
the x, y and z directions. An ABS surface is defined as

FABSðx,y,zÞ ¼
XM
i ¼ 0

XN

j ¼ 0

XQ

k ¼ 0

wijkNm
i ðxÞN

n
j ðyÞN

q
k ðzÞ ¼ 0 ð1Þ

where Nm
i ðxÞ,N

n
j ðyÞ and Nq

k ðzÞ are the B-spline basis functions of
degrees m, n and q, defined by the knot vectors X, Y and Z. The
scalars fwijkg are weight coefficients. They have similar functions
to control points in their parametric counterpart and can be used
to adjust the shape of the ABS surface. In this paper, the degree of
the ABS surface along each direction is no greater than 3. They can
model the C0, C1 or C2 smooth shapes, which means that the shape
has common position, tangent and curvature values along the
boundaries of the patches, respectively. In general, they can meet
the requirements in the practical applications, e.g., C0 or C1

smooth shapes for computer animation and computer games,
and C1 or C2 shapes for product design. By using the knot insertion
algorithm of B-splines, the ABS surface defined on a knot box
½xi,xiþ1� � ½yj,yjþ1� � ½zk,zkþ1� ðmr irM,nr jrN,qrkrQ Þ can
be converted into an algebraic surface patch in terms of tensor-
product Bernstein polynomials:

Fðx,y,zÞ ¼
Xm
i ¼ 0

Xn

j ¼ 0

Xq

k ¼ 0

fijkBm
i ðuðxÞÞB

n
j ðvðyÞÞB

q
kðwðzÞÞ ¼ 0 ð2Þ

where

uðxÞ ¼
x�xi

xiþ1�xi
, vðyÞ ¼

y�yj

yjþ1�yj
, wðzÞ ¼

z�zk

zkþ1�zk

fijk are coefficients similar to wijk of ABS surfaces, and Bm
i ðuÞ, Bn

j ðvÞ

and Bq
kðwÞ are the Bernstein basis functions of degrees m, n and q.

As a result, we can obtain ðM�mþ1Þ � ðN�nþ1Þ � ðQ�qþ1Þ
piecewise algebraic surfaces in the Bernstein form.
4. Rendering algorithm

4.1. Algorithm overview

In general, ray and surface intersection can be reduced to a
root-finding problem of a univariate polynomial equation via



F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809802
functional composition. Functional composition between an ABS
surface and a ray is a complex procedure [7], and is impractical
for the SIMD architecture. In our setting, ray and surface inter-
section is performed in object space as a root-finding problem of a
tri-variate nonlinear system as follows:

Fðx,y,zÞ ¼ 0

ahxþbhyþchzþdh ¼ 0

avxþbvyþcvzþdv ¼ 0

8><
>:

ð3Þ

where F is a piecewise tensor-product Bernstein polynomial
described in Eq. (2), and the two linear equations are the
horizontal and vertical scan planes that pass both the viewpoint
and current pixel, respectively. Reimers and Seland adopted
functional composition to reduce the ray and the algebraic surface
intersection to a root-finding problem of univariate polynomial
[25], which may contain many evaluations of the algebraic sur-
face. In our approach, Eq. (3) is solved in the object space directly.
Thus additional computational costs for functional compositions
are saved.

The nonlinear system (3) can be solved via the Newton–
Raphson method, which can converge quadratically if a good
initial guess is given. A rough initial guess can be obtained via
rasterization of an isosurface of the underlying ABS surface, which
is an isotopic polygonization as stated in Section 4.2. However,
the initial guess cannot guarantee convergence of the root finding
algorithm near the silhouette due to ill-conditioned computa-
tions. To overcome this problem, the silhouette, which is the
intersection between the underlying ABS surface and its polar
surface, is processed specially and robustly. For regions near the
silhouette, the polar surface is employed again to isolate an
interval containing the first hit point. The regula falsi method is
adopted to find the first hit point in this interval. For other
regions, the Newton–Raphson method can achieve quadratic
convergence robustly. The flow chart for the proposed method
is shown in Fig. 1, and its description is given in Algorithm 1.
Fig. 1. Flow chart of real-time
Algorithm 1.
rendering
1.
 Input: ABS surface

2.
 Isotopic polygonization of ABS surface;

3.
 For each patch of ABS surface, check existence of its

polar surface via signs of control coefficients;

4.
 repeat

5.
 Peel i-th layer of visible isosurface rendering result as

initial guess;

6.
 Compute silhouette points and rectify the initial

guess near the silhouette;

7.
 Scan the initial guess and Sort them by patch index

to generate pixel clusters;

8.
 for each pixel cluster do

9.
 if there is no polar surface then

10.
 Compute first hit point between ray and patch via

the Newton–Raphson method by using the initial
guess;
11.
 Record surface normal in last iteration;

12.
 else

13.
 Compute first hit point between ray and polar

surface by using the Newton–Raphson method;

14.
 Compute first hit point between ray and patch via

regula falsi method in the interval bracketed by ray
entry and polar surface;
15.
 Calculate surface normal;

16.
 end if

17.
 end for

18.
 until No intersection is available.

19.
 Shading and anti-aliasing.
4.2. Isotopic polygonization

Topologically consistent polygonization of an implicit surface is
not trivial. Several algorithms have been proposed to address this
of ABS surfaces.



Fig. 2. Comparison between our methods and polygonization of the surface in

Fig. 6. The yellow parts are rendered by polygonization, while green by our

method. The examples illustrate that the ray casting images can always reveal the

details of the ABS surface more elaborately, such as the singular point and the

sharp edge, while the polygonization may miss these fine features. (For inter-

pretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Fig. 3. Illustration of classifications and iteration of silhouette computation. The

horizontal and vertical arrows indicate the horizontal and vertical scan planes. The

initial guesses in the gaps near the silhouette are obtained via linear interpolation.

F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809 803
problem, which are based on the Morse theory, stratification theory,
etc. [28,1,2]. Because the ABS is transformed to the Bernstein basis
representations in rectangular grids as in Eq. (2), and Alberti et al. [1]
proposed a regular criteria according to a generalization of Descartes’
rule that can guarantee that the resulting mesh is isotopic to the
algebraic surfaces. We keep subdividing the representation until the
surface in each box boils down to the case where the implicit object is
isotopic to its linear approximation in the cell. Thus, we can estimate
the maximum subdivision resolution of the ABS surfaces conserva-
tively by adopting the maximum resolution among all the algebraic
patches. Then the ABS surface is polygonized in parallel on the GPU
according to this resolution. Due to the tensor-product property of the
ABS surface and its low degree (less than 4 along each direction), we
augment the polygonization by use of accurate vertices in the
isosurface. The accurate vertex, i.e., the intersection between the
ABS surface and voxel edge, can be analytically evaluated by using
Blinn’s efficient GPU algorithm [4]. The additional cost of augmented
polygonization is less than 10 ms in general, according to our
implementations. However, accuracy improvement in polygonization
will be helpful to enhance the performance of ray and surface
intersection computation.

As indicated by Alberti et al. [1], the above isotopic polygonization
is confined to a smooth surface with finite singular points, where a
singular point is defined as f ¼ fx ¼ fy ¼ fz ¼ 0. Thus we also assume
that the ABS surface has finite singular points in this paper. The
singular points can be found robustly via the projected polyhedron
algorithm [24]. The isosurface near a singular point is described as a
cone-like shape [1]. We suppose that the ABS surfaces are potentially
more suitable to model smooth shapes, rather than shapes with sharp
features such as infinite singular points or self-intersections.

For the same viewpoint as that of the following recasting, the
isosurface is first sent to the traditional polygonal rendering
pipelines. Then, a rasterized image together with its z-buffer is
obtained. Each z-value in the z-buffer together with its corre-
sponding pixel (x, y) is coalesced as a coarse initial guess for the
following root-finding iteration in the raycasting.

4.3. Silhouette and polar surfaces

The silhouette plays an important role in the high quality display
of an algebraic surface. Sederberg and Zundel [26] first proposed the
concept of the polar surface to compute the silhouette. Its definition
is described in homogenous coordinate space. For an algebraic
surface Fðx,y,z,wÞ ¼ 0 of degree n in homogeneous coordinate space,
its polar surface Pðx,y,z,wÞwith respect to viewpoint Eðxe,ye,ze,weÞ is
of degree n�1 and is defined as

Pðx,y,z,wÞ ¼ xeFxþyeFyþzeFzþweFw ¼ 0 ð4Þ
At this point the polar surface is rewritten in the Euclidean
space by setting w¼we. If the projection is orthogonal, we¼0; if
perspective, we¼1. For the sake of convenience, the polar surface
is still noted as Pðx,y,zÞ ¼ 0. The degree of the ABS surface in
Eq. (1) is ðmþnþq�1Þ. To facilitate the following computations
on GPU, its degree is elevated to m�n� q. The silhouette curves
with respect to a viewpoint is defined as the intersection between
the ABS surface and its polar surface [26]. We then perform scan
conversion of silhouette points horizontally or vertically accord-
ing to the following system:

Fðx,y,zÞ ¼ 0

Pðx,y,zÞ ¼ 0

akxþbkyþckzþdk ¼ 0, k¼ v or h

8><
>:

ð5Þ

where the third linear equation represents the scan plane.
Eq. (5) is solved via the Newton–Raphson method on GPU as

indicated in the sixth step of Algorithm 1. The silhouette of the
isosurface can be adopted as its initial guess, namely the silhou-
ette initial guess, via edge detection of its rasterized image.
To perform a well-conditioned iteration, the horizontal or vertical
scan plane should be selected carefully in Eq. (5). The gradient
vector of Fðx,y,zÞ at the silhouette initial guess is projected onto
the screen plane, which is noted as ðnx,nyÞ. If jnxj � jnyj, both the
horizontal plane and vertical scan plane should be selected as
shown in Fig. 3. There are two silhouette points obtained,
which is important for the convex silhouette. If jnxj4 jnyj, the
vertical scan plane should be selected; otherwise, the horizontal
scan plane should be chosen. If a silhouette curve segment is
convex, then there will be a gap region between the isosurface
silhouette and surface silhouette. In this gap region, there is no
initial guess definition for ray and surface intersection. The
missed initial guess can be obtained via linear interpolation of
the initial guess at the isosurface silhouette and the actual
silhouette point.

4.4. Root isolation via polar surface

To compute the intersection between a ray and the ABS
surface, we solve Eq. (3) via the Newton–Raphson method by
using the initial guess, which is obtained from isosurface raster-
ization in Section 4.2 or linear interpolation in Section 4.3.
However, near the silhouette, a ray and the ABS surface tends to
intersect at two points P1 and P2, as shown in Fig. 4. Thus the
Newton–Raphson iterations with the initial guess Pm may not



Fig. 4. Root isolation using the polar surface near the silhouette.

Fig. 5. An hourglass shape surface with one singular point and its polar surface.

The polar surface isolates two intersection points of the ray and surface: (a) front

view and (b) side view.

Fig. 6. (a) is an ABS patch of degree 7 with a singular point constructed from the

‘‘Dingdong’’ surface. The sharp edge of (b) is constructed via multiple knots: (a) 1

patch, G0, 57.62 fps and (b) 3 patches, G0, 97.65 fps.

F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809804
converge to the first hit point P1. To address this problem, we first
isolate the first hit point by using the polar surface. Then, the
regular falsi method is employed to compute the first hit point.
The details of root isolation via polar surfaces are provided in
Appendix. Here we give two corollaries of the polar surface:

Corollary 1. If the polar surface fðx,y,zÞ : Pðx,y,zÞ ¼ 0g is null, the ray

will intersect the surface at one point at most, i.e., Eq. (3) has at most

one root.

Corollary 2. The intersection point between the ray and the polar

surface can isolate two adjacent intersection points between the

same ray and the corresponding algebraic surface.

As stated in Algorithm 1, two iterative root-finding methods
are adopted: the Newton–Raphson method and a two-phases
method (root isolation plus regula falsi). According to Corollary 1,
if there is no polar surface defined in R3, a ray and the ABS surface
will intersect in one point at most. In this case, the Newton–
Raphson method with a rough initial guess will converge quad-
ratically. Otherwise, the initial guess will be close to the silhou-
ette as shown in Fig. 4, and the Newton–Raphson iterations will
be ill-conditioned due to a near singularity of the Jacobian matrix
of Eq. (3). To overcome this problem, we isolate the first hit point
P1 of the ray and the ABS surface by using the polar surface
according to Corollary 2. Because the ray tends to be orthogonal
to the polar surface near the silhouette, we can compute
the ray and the polar surface intersection pp by using the New-
ton–Raphson method. Let the ray and the patch domain intersect
at two points, i.e., pentry and pexit. The interval ½pentry,pp� or ½pp,pexit �

is selected as the initial interval for the regula falsi method, in
which Fðx,y,zÞ has opposite signs at the interval ends. The
regula falsi method is robust, as the first root has been bracketed,
even for the pixels near a singular point. An example is shown in
Fig. 5.

4.5. Shading and anti-aliasing

The surface normal is important for illumination calculations.
In functional-composition-based ray casting approaches, the sur-
face normal is computed via an additional procedure, either
analytically or approximately. The root-finding procedure in our
approach is performed in object space thoroughly, and the extra
overhead of normal computation can be avoided. For example, in
the Newton–Raphson iteration, the surface normal rF is com-
puted in each step. The rF computed in the final iteration can be
adopted as the surface normal.

In Section 4.3, the silhouette points have been computed to
floating-point accuracy. In screen space, the slope at each silhou-
ette point can be obtained via projection of the normal. In this
way, each silhouetting pixel can be anti-aliased by using a
percentage coverage filtering methodology.
5. Implementation on GPU

The proposed algorithm is designed for GPU with SIMD
architecture. Except for isosurface rendering via a traditional
graphics pipeline, the proposed algorithm is implemented com-
pletely in NVIDIA CUDA. CUDA provides a C language interface for
general-purpose programming on the GPU. It exposes many
important parallel computing capabilities of the GPU so as to
facilitate data-parallel computations, e.g., an efficient scatter-
gather mechanism. The common operations, such as scan, reduce
and sort, have been released in CUDPP [9], which can be reused
conveniently as shown in Algorithm 1.

The major difference between the rendering of single algebraic
surfaces and ABS surfaces is that ABS surfaces have a large
number of control coefficients. The manner in which the piece-
wise surface patch data is accessed seriously affects the perfor-
mance of the rendering algorithm.



Fig. 7. Morphing between two ABS surfaces of degree 6 with different topologies. The morphing is generated by interpolating the control coefficients of the source and

destination surfaces on-the-fly. This can be achieved at approximately 29–35 fps with a 1024�768 resolution.

Table 1
The ABS surfaces information and a comparison of different methods, where ‘‘segments’’ is the number of valid domains of the ABS surface when transformed into the

Bernstein form as in Eq. (2), i.e., ðM�mþ1Þ�ðN�nþ1Þ�ðQ�qþ1Þ, ‘‘#(patches)’’ is the number of non-empty algebraic patches in terms of the Bernstein basis, ‘‘sub’’ refers to

the subdivision resolution of the isotopic polygonization, ‘‘acc(ms)’’ and ‘‘lerp(ms)’’ represent the polygonization run time, where the vertices of the mesh are computed

accurately or linearly approximated, respectively.

Figure Degree Segments #(Patches) Polygonization Frame rate (fps) Speedup

sub acc(ms) lerp(ms) KSN08 RS08 Ours Ours

KSN08

Ours

RS08

6 (a) 2�2�3 1�1�1 1 16 0.67 0.28 11.59 13.10 57.62 4.97 4.39

6(b) 2�2�2 1�1�3 3 4 0.94 0.54 23.62 27.44 97.65 4.13 3.55

10(a) 2�2�2 17�17�17 1636 4 6.96 1.82 10.66 11.54 49.57 4.65 4.29

10(b) 2�2�2 13�9�9 566 4 3.20 0.79 13.80 14.71 55.32 4.00 3.76

10(c) 2�2�2 16�16�16 2188 8 7.95 2.20 7.88 8.40 42.07 5.33 5.00

10(d) 2�2�2 13�13�5 248 4 0.98 0.80 14.03 14.95 60.05 4.27 4.01

10(e) 2�2�2 14�24�24 1185 4 6.88 2.32 28.26 32.19 86.17 3.04 2.67

10(f) 3�3�3 4�18�18 648 4 5.87 0.88 11.12 12.67 50.77 4.56 4.00

11(a) 2�2�2 19�15�15 1145 4 6.39 1.71 18.13 19.67 70.50 3.88 3.58

11(b) 2�2�2 9�20�20 1376 1 4.66 1.32 23.69 25.11 78.07 3.29 3.10

11(c) 2�2�2 37�38�38 3622 1 6.25 1.35 16.78 17.90 49.75 2.96 2.77

11(d) 2�2�2 23�19�19 1063 1 3.97 1.13 28.69 30.80 92.35 3.21 2.99

11(e) 2�2�2 18�18�18 937 4 7.52 2.27 16.66 18.20 66.47 3.98 3.65

11(f) 2�2�2 19�19�19 1494 4 7.27 1.81 13.13 14.08 56.17 4.27 3.98

Fig. 8. The numbers of function evaluations in our method on the left and in the

RS08 method on the right, while the RS08 and KSN08 methods have similar

convergence properties.

F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809 805
According to the specification of CUDA, allocating more
threads per block is better for efficient time slicing. However,
the more threads per block, the fewer registers are available per
thread due to limited register resources on GPU. As a result, the
coefficients of each surface patch and its polar surface could cause
high memory throughput. If we implement the Newton–Raphson
method trivially, it will load more coefficients when the iterations
jump from one patch onto its neighbor. Thus it is impractical to
load surface patch data into registers for every pixel. On the other
hand, the simultaneous memory access of adjacent pixels could
not be coalesced into a single memory transaction, which would
result in a performance penalty.

To address this problem, we propose a patch index-based
clustering scheme. First, each initial guess is associated with a
patch index according to its position. We sort and cluster the
initial guesses by their associated patch index. Then we launch
these clusters in blocks. In this way, threads in each block can
share the same patch data, which can be loaded into the on-chip
shared memory. This scheme provides efficient memory access as
fast as registers, meanwhile limited registers are saved and could
be applied to deeper parallelism.

During the implementation of the Newton–Raphson or
regula falsi method, the iteration could cross the boundary
between two patches. In this case, we still use current patch data
via surface patch extrapolation. After the iteration terminates, we
scan the pixels and cluster those that actually converge to the
adjacent patch. Then we refine these with additional iterations.
Such pixels are typically found near the patch boundary, and
thus the pixel number is limited in general. The additional
iterations can also be performed efficiently even if we read the
patch data through texture memory fetching. The operations of
‘‘scan’’ and ‘‘sort’’ are both implemented by using the CUDPP
library on GPU.



F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809806
6. Results and comparison

The algorithm has been implemented on a PC with an Intel
Core2 Q9550 2.83 GHz CPU and an NVIDIA GeForce GTX 570 GPU.
Fig. 10. Rendering results. (f) is globally C2 smooth, and all others are C1 smooth: (a) 16

fps, (d) 248 patches, C1, 60.05 fps, (e) 1185 patches, C1, 86.17 fps and (f) 648 patches,

Fig. 9. Artifacts caused by ill-conditioned computations.
The rendering resolution is 1024�768, and the ABS surfaces
roughly fill the screen. The termination criteria in the root-finding
of Eq. (3) is that the value of jFðx,y,zÞj or the iterative step of
consecutive iterations is less than 1.0�10�6, which is the thresh-
old of single precision floating-point arithmetic.

We constructed several examples using the ABS surfaces. The
shapes in Figs. 5 and 6(a) both have one singular point, while
Fig. 6(b) has sharp edges. Fig. 10(f) is C2 smooth, and all the others
are C1 smooth in all directions. Their topologies vary, e.g., genus 0 in
Fig. 10(e), genus 1 in Figs. 10(b) and (d), genus 5 in Fig. 10(f) and
even genus 12 in Fig. 10(c). Some of these are regular shapes, as the
torus and revolution surface in Fig. 11(f); some are free-form shapes,
e.g., bunny and knot in Fig. 11. From these examples, we conclude
that the ABS surface can not only represent globally smooth shapes,
but also able to model shapes with sharp features. However, the
modeling of the ABS surfaces goes beyond the scope of the paper
and is omitted here.

Because the algebraic surface is capable of processing a dynamic
topology, an example of topological morphing between two ABS
surfaces is given in Fig. 7, where the source and the destination ABS
surfaces have genus 0 and 5, respectively. Because the proposed
algorithm is purely on-the-fly, it can be applied to render dynamic
ABS surfaces and explore the topological changes.
36 patches, C1, 49.57 fps, (b) 566 patches, C1, 55.32 fps, (c) 2188 patches, C1, 42.07

C2, 50.77 fps.



F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809 807
Information regarding these ABS surfaces, the subdivision
resolution of the isotopic polygonization, running time statistics
and comparisons are listed in Table 1. In our algorithm, only
the maximum subdivision resolution and singular point detec-
tion in the isotopic polygonization are evaluated by the CPU.
The successive polygonization is computed once or on-the-fly for
the static or dynamic ABS surface on GPU, respectively. All remain-
ing parts of the algorithm are performed on-the-fly on GPU.

We implemented the KSN08 [13] method and the RS08 [25]
method as a comparison. The rendering times and the speedup of
our methods are shown is Table 1. The RS08 method is extended
to render the ABS surface by adopting depth peeling as in KSN08.
According to our experiments, the Bézier clipping method [13] is
slightly slower than the knot insertion method [25] due to an
increase in the number of operations in each step. Aside from
root-finding, the functional composition itself will consume many
function evaluations of the ABS surface F, the surface normal rF

and the univariate polynomial. These are the most time-consum-
ing parts in both our method and functional composition meth-
ods. The color maps in Fig. 8 show the number of these function
evaluations in their methods and ours before a hitting point is
determined for an ABS surface of degree 6. Their methods involve
many more function evaluations than ours. As a result, our
algorithm achieves a 3–5-fold speedup as shown in Table 1. Even
when runtime of the isotopic polygonization in the preprocess
step is taken into account, our method is faster than the
functional composition methods. Two key reasons for the
speedup are the initial guesses provided by the rasterization of
the isosurface and the root isolation by adopting polar surfaces,
and both of these can save us from heavy overhead functional
composition for piecewise algebraic surfaces, because the func-
tional composition contains large number of the function
evaluations.
Fig. 11. Rendering results. The models are constructed by approximation of triangle m

78.07 fps, (c) 3622 patches, C1, 49.75 fps, (d) 1063 patches, C1, 92.35 fps, (e) 937 patch
7. Conclusion and future work

In this paper, we presented a GPU-based real-time ABS surface
rendering algorithm, which performs ray and surface intersection
computations in object space. According to regular termination
criteria of domain subdivision of an ABS surface, an enhanced
polygonization is performed on GPU, where the isosurface has
accurate vertices and is isotopic to the ABS surface. The raster-
ization result of the isosurface via traditional rendering pipelines
provides a rough initial guess for numerically solving for the ray
and ABS surface intersection. The silhouette, defined as the
intersection between the ABS surface and its polar surface
is scan-converted in floating-point accuracy via the Newton–
Raphson method. Then, the initial guess in the gap region
between the ABS surface and isosurface can be obtained via linear
interpolation. The polar surface is also employed to isolate the
root near the silhouette so as to improve the robustness of the
root-finding procedure. Apart from the silhouette and its vicinity,
most of the hit points between the ray and ABS surface can be
solved via the quadratically convergent Newton–Raphson
method. Furthermore, the surface normal that is important during
illumination computation is the byproduct of the Newton–Raph-
son method. We also design an efficient and flexible data access
to facilitate the performance on GPU via the programming
language CUDA. The experimental results show that the proposed
method can render the ABS surfaces of degrees 6–9 composed of
thousands of patches in real time.

Several aspects of the proposed method can be improved in
future research. In the isotopic polygonization, each patch corre-
sponds to a grid resolution. We should choose the maximum
resolution, so that the isosurface is free of cracks. This will lead
to additional costs. Aliasing artifacts may arise due to ill-condi-
tioned calculations. For example, when one patch is almost
eshes and are all C1 smooth: (a) 1145 patches, C1, 70.50 fps, (b) 1376 patches, C1,

es, C1, 66.47 fps and (f) 1494 patches, C1, 56.17 fps.



F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809808
planar, and is viewed from an extremely flat angle, silhouette
computation will be very sensitive to numerical noise as shown in
Fig. 9. Currently, other root-finding methods also struggle to
handle this case well because the nonlinear system will be
under-determined. However, the region with artifacts is very
small in general. Nevertheless, we are looking forward to seeking
a more robust and precise root-finding algorithm to address this
problem. The criteria used to determine whether a polar surface is
null or not is conservative. As a result, some overheads for root
isolation are required even in the case of a single root. The
situation can be improved by the use of more accurate function
estimation.
Acknowledgment

The research is funded by the NSF of China (60933007,
60873046), the 973 program of China (2009CB320801). We
would like to thank Dr. Aaron Knoll for his valuable suggestions,
which clarify the advantages and difficulties in root-finding.
Appendix A. Proof of root isolation via polar surface

Let Eðxe,ye,zeÞ and dðdx,dy,dzÞ be a viewpoint and ray direction,
respectively. Then, the ray originated from E can be expressed as

xðtÞ ¼ xeþt � dx

yðtÞ ¼ yeþt � dy

zðtÞ ¼ zeþt � dz

8><
>:

ðA:1Þ

The ray and surface intersection can be obtained by solving the
following univariate polynomial equation:

f ðtÞ ¼ FðxðtÞ,yðtÞ,zðtÞÞ ¼ 0 ðA:2Þ

Its derivative polynomial is

f 0ðtÞ ¼ Fx � dxþFy � dyþFz � dz ¼ Fx
x�xe

t

� �
þFy

y�ye

t

� �
þFz

z�ze

t

� �

¼
nF�weFw�xeFx�yeFy�zeFz

t
¼

nF�P

t
ðA:3Þ

where the third step is obtained according to Euler’s law, which is
the relationship between a homogeneous polynomial of degree n

and its derivative:

Fðx,y,z,wÞ ¼
xFxþyFyþzFzþwFw

n
ðA:4Þ

By using Eq. (A.3), the functional composition between the ray
(A.1) and the polar surface (4) can be written as

pðtÞ ¼ nf ðtÞ�tf 0ðtÞ ðA:5Þ

This is a linear combination of f(t) and its derivative f 0ðtÞ.

Theorem 1. Assuming that a polynomial f(t) has two adjacent single

roots t0 and t1 in an interval [a, b]. We define a new polynomial as

gðtÞ ¼ c0f ðtÞþc1f 0ðtÞ ðA:6Þ

where c0 and c1 are non-zero real numbers. Then for any given c0 and

c1, g(t) has at least one root in the interval ðt0,t1Þ.

Proof. Let the root of g(t) in the interval ðt0,t1Þ be noted as
rðc0,c1Þ. When c1-0, rðc0,c1Þ can approach its lower and upper
bounds t0 and t1, respectively.

If t0at1, then according to Rolle’s’ theorem, f 0ðtÞ has at least one

root t2A ½t0,t1�. Without loss of generality, we assume f ðt2Þ40.

There exist t3A ½t0,t2� and t4A ½t2,t1� such that f ðt3Þ ¼ f 0ðt3Þ and
f ðt4Þ ¼�f 0ðt4Þ. Let k¼ c1=c0, because f(t) and f 0ðtÞ are continuous,

there is at least one root rðc0,c1Þ for gðtÞ ¼ 0 in
1.
 ½t0,t3� if kAð0,�1�;

2.
 ½t3,t2� if kA ½�1,�1Þ;

3.
 ½t2,t4� if kAð1,1�;

4.
 ½t4,t1� if kA ½1,0Þ.
It is similar to the case of f ðt2Þ40. Therefore, g(t) has at least one
root in the interval ðt0,t1Þ. &

Appendix B. Supplementary material

Supplementary data associated with this article can be found
in the online version of 10.1016/j.cag.2011.04.002.
References

[1] Alberti L, Comte G, Mourrain B. Meshing implicit algebraic surfaces: the smooth
case. In: Schumaker L, Mæhlen M, Mørken K, editors. Mathematical methods for
curves and surfaces: Tromsø’04, Nashboro, Tromsø Norway. p. 11–26.

[2] Alberti L, Mourrain B, Técourt JP. Isotopic triangulation of a real algebraic
surface. J Symbolic Comput 2009;44:1291–310. Effective Methods in
Algebraic Geometry.

[3] Bajaj CL, Chen J, Xu G. Modeling with cubic a-patches. ACM Trans Graph
1995;14:103–33.

[4] Blinn J. Jim Blinn’s corner, how to solve a cubic equation. IEEE Comput Graph
Appl 2007;27:78–89.

[5] Bloomenthal J. An implicit surface polygonizer. In: Graphics gems IV. San Diego,
CA, USA: Academic Press Professional Inc.; 1994. p. 324–49.

[6] Che X, Liang X, Li Q. G1 continuity conditions of adjacent nurbs surfaces.
Comput Aided Geom Des 2005;22:285–98.

[7] DeRose TD, Goldman RN, Hagen H, Mann S. Functional composition algo-
rithms via blossoming. ACM Trans Graph 1993;12:113–35.

[8] Hanrahan P. Ray tracing algebraic surfaces. In: SIGGRAPH ’83: proceedings of
the 10th annual conference on computer graphics and interactive techniques.
New York, NY, USA: ACM; 1983. p. 83–90.

[9] Harris M, Owens J, Sengupta S, Zhang Y, Davidson A. Cudpp homepage,
/http://www.gpgpu.org/developer/cudpp/S; 2007.

[10] Jüttler B, Felis A. Least-squares fitting of algebraic spline surfaces.
Adv Comput Math 2002;17:135–52, doi:10.1023/A:1015200504295.

[11] Kajiya JT. Ray tracing parametric patches. In: SIGGRAPH ’82: proceedings of
the ninth annual conference on computer graphics and interactive techni-
ques. New York, NY, USA: ACM; 1982. p. 245–54.

[12] Kalra D, Barr AH. Guaranteed ray intersections with implicit surfaces. In:
SIGGRAPH ’89: proceedings of the 16th annual conference on computer graphics
and interactive techniques. New York, NY, USA: ACM; 1989. p. 297–306.

[13] Kanamori Y, Szego Z, Nishita T. Gpu-based fast ray casting for a large number
of metaballs. Comput Graph Forum 2008;27:351–60.

[14] Knoll A, Hijazi Y, Kensler A, Schott M, Hansen C, Hagen H. Fast ray tracing of
arbitrary implicit surfaces with interval and affine arithmetic. Comput Graph
Forum 2009;28:26–40.

[15] Knoll A, Wald I. Interactive ray tracing of arbitrary implicit functions. In:
Proceedings of the second IEEE/EG symposium on interactive ray tracing,
p. 11–8.

[16] Loop C, Blinn J. Real-time GPU rendering of piecewise algebraic surfaces.
ACM Trans Graph 2006;25:664–70.

[17] Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface
construction algorithm. SIGGRAPH Comput Graph 1987;21:163–9.

[18] Maekawa T, Patrikalakis NM. Computation of singularities and intersections
of offsets of planar curves. Computer Aided Geometric Design 1993;10:
407–29.

[19] Mitchell DP, Robust ray intersection with interval arithmetic. In: Proceedings
on graphics interface ’90. Toronto, Ont., Canada: Canadian Information
Processing Society; 1990. p. 68–74.

[20] Mørken K, Reimers M. An unconditionally convergent method for computing
zeros of splines and polynomials. Math Comput 2007;76:845–65.

[21] Nishita T, Sederberg TW, Kakimoto M. Ray tracing trimmed rational surface
patches. In: SIGGRAPH ’90: proceedings of the 17th annual conference on
computer graphics and interactive techniques. New York, NY, USA: ACM;
1990. p. 337–45.

[22] Pabst HF, Springer JP, Schollmeyer A, Lenhardt R, Lessig C, Froehlich B. Ray
casting of trimmed nurbs surfaces on the gpu. In: Proceedings of IEEE
symposium on interactive ray tracing. Salt Lake City, UT, USA, 2006.
p. 151–60.

[23] Patrikalakis NM, Kriezis GA. Representation of piecewise continuous
algebraic surface in terms of B-splines. Vis Comput 1989;5:360–74.

dx.doi.org/10.1016/j.cag.2011.04.002
http://www.gpgpu.org/developer/cudpp/
dx.doi.org/10.1023/A:1015200504295


F. Wei, J. Feng / Computers & Graphics 35 (2011) 800–809 809
[24] Patrikalakis NM, Maekawa T. Shape interrogation for computer aided design
and manufacturing. Secaucus, NJ, USA: Springer-Verlag New York Inc.; 2002.

[25] Reimers M, Seland J. Ray casting algebraic surfaces using the frustum form.
Comput Graph Forum 2008;27:361–70.

[26] Sederberg TW, Zundel AK. Scan line display of algebraic surfaces. In:
SIGGRAPH ’89: proceedings of the 16th annual conference on computer
graphics and interactive techniques. New York, NY, USA: ACM; 1989.
p. 147–56.

[27] Singh JM, Narayanan PJ. Real-time ray tracing of implicit surfaces on the gpu.
IEEE Trans Vis Comput Graph 2010;16:261–72.

[28] Stander BT, Hart JC. Guaranteeing the topology of an implicit surface
polygonization for interactive modeling. In: SIGGRAPH ’97: proceedings of
the 24th annual conference on computer graphics and interactive techniques.
New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.; 1997.
p. 279–86.

[29] Tong W, Feng Y, Chen F. Hierarchical implicit tensor-product B-spline
surface and its application in surface reconstruction. J Software 2006;17:
11–20.

[30] Witkin AP, Heckbert PS. Using particles to sample and control implicit
surfaces. In: SIGGRAPH ’94: proceedings of the 21st annual conference on
computer graphics and interactive techniques. New York, NY, USA: ACM;
1994. p. 269–77.

[31] Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects. Vis Comput
1986;2:227–34.


	Real-time ray casting of algebraic B-spline surfaces
	Introduction
	Related work
	Algebraic B-spline surfaces
	Rendering algorithm
	Algorithm overview
	Isotopic polygonization
	Silhouette and polar surfaces
	Root isolation via polar surface
	Shading and anti-aliasing

	Implementation on GPU
	Results and comparison
	Conclusion and future work
	Acknowledgment
	Proof of root isolation via polar surface
	Supplementary material
	References




