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Abstract This paper presents a novel
feature-aware rendering system that
automatically abstracts videos and
images with the goal of improving the
effectiveness of imagery for visual
communication tasks. We integrate
the bilateral grid to simplify regions
of low contrast, which is faster than
the separable approximation to the
bilateral filter, and use a feature
flow-guided anisotropic edge de-
tection filter to enhance regions of
high contrast. The edges detected
in this paper are smoother, more
coherent and stylistic than those of
the isotropic difference-of-Gaussian
filter. The presented algorithms are

highly parallel, allowing a real-time
performance on modern GPUs. The
implementation of our approach
is straightforward. Several experi-
mental examples are given at the
end of the paper to demonstrate the
effectiveness of our approach.

Keywords Non-photorealistic
rendering · Visual communication ·
Real-time video processing · Image
processing

1 Introduction

When artists design imagery to portray a scene, they do
not just render visual cues veridically. Instead, they se-
lect which visual cues to portray and adapt the information
each cue carries. In recent years, automatic abstraction
for efficient visual communication is becoming more and
more popular to make images and/or videos easier or
faster to understand.

Depicting information about shapes by line drawing is
clearly effective and natural, and has been used for tens of
thousands of years. It even outperforms photorealistic im-
agery in terms of efficacy of visual information transfer and
subject identification. Line drawing styles can be found in
many contexts, such as cartoon, storytelling, technical illus-
tration, architectural design and medical atlases.

Recently, Winnemöller et al. [25] presented an au-
tomatic, real-time video and image abstraction frame-
work. The system reduced contrast in low-contrast regions

using the bilateral filter and artificially increased contrast
in higher contrast regions with difference-of-Gaussian
(DoG) edges. On one hand, to attain real-time frame rates,
they used a separable approximation to the bilateral filter
with a small kernel size and iterated the approximation to
obtain a sufficiently large spatial support. Chen et al. [7]
introduced the new bilateral grid data structure with GPU
implementation to achieve an even higher time efficiency.
On the other hand, the DoG edge model has proven to be
efficient in computation on GPUs and non-uniform thick-
ness scales. However, it is not without drawbacks. Due to
the nature of isotropic filter kernels, the aggregate of edge
pixels may not clearly reveal the sense of “directedness”
and thus it may look less like lines [13].

In this paper, we present a real-time video and image
abstraction system by employing the bilateral grid to sim-
plify regions of low contrast and using a feature flow-
guided anisotropic edge detection filter to enhance regions
of high contrast.
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Our approach has three contributions:

– By optimizing the algorithm of [13], a fast, efficient,
and highly anisotropic edge detection filter driven by
the “flow” of salient image features, is implemented.

– By integrating both the bilateral grid and our edge de-
tector, an improved automatic real-time feature-aware
video and image abstraction system, as compared
with [25], is developed.

– The algorithms presented in this paper are highly par-
allel, enabling a real-time implementation on modern
GPUs.

The rest of the paper is organized as follows. Section 2
gives an overview of some previous work. Section 3 de-
scribes our new approach, whereas experimental results
and related discussions are presented in Sect. 4. Finally,
Sect. 5 concludes the paper.

2 Related work

2.1 Image-based stylization and abstraction

Several video and image abstraction systems have been
extensively developed but most of them are computa-
tionally expensive. Collomosse et al. [8], and Wang et
al. [23] extended the mean-shift-based stylization ap-
proach of Decarlo and Santella [9]. Bousseau et al. [4]
created watercolor-like effects with temporal coherence
by incorporating bidirectional texture advection.

Other real-time stylization techniques have been
studied. Fischer et al. [11] applied stylization effects in
augmented reality applications. Gooch et al. [12] automat-
ically created monochromatic human facial illustrations
using DoG filters. Winnemöller et al. [25] extended this
technique to abstract imagery by modifying the contrast
of visually important features. We use a similar pipeline
as Winnemöller’s, that is with real-time performance and
temporal coherence but producing smoother, more coher-
ent and stylistic edges.

2.2 Bilateral filter

The bilateral filter is a non-linear diffusion filter [18]
which blurs small discontinuities and sharpens edges
[1, 20, 22]. It is produced by combining range filtering
with domain filtering.

Several researchers have proposed a variety of numer-
ical schemes for approximating the bilateral filter to re-
duce processing time. Pham et al. [19] described a separa-
ble approximation and Winnemöller et al. [25] parallelized
it on GPUs. Weiss [24] maintained local image histograms,
which limited his approach to box spatial kernels instead
of smooth Gaussian kernels. Paris and Durand [17] recast
the computation as a higher-dimensional linear convolu-
tion followed by a trilinear interpolation and a division. Re-

cently, Chen et al. [7] generalized it into the bilateral grid
that enabled a variety of real-time edge-aware operations.

Other edge-preserving techniques are related to the bi-
lateral filter [2, 10]. Our video abstraction system is built
upon the method presented by Winnemöller et al. Chen
et al.’s bilateral grid for acceleration is also integrated into
our system, but it is irrelevant to the size of the vertex
buffer during grid creation in our system with the utiliza-
tion of the shader model version 4.0 features [3, 15].

2.3 Line drawing

In addition to the isotropic DoG edge detector which is
similar to the Marr-Hildreth edge detector [14] as men-
tioned in Sect. 1, there are a variety of edge detectors in
2D image applications. Canny edges [6] are guaranteed
to lie on any real edge in an image, and are used in sev-
eral works [9, 11, 16]. Son et al. [21] extracted lines based
on the likelihood of finding the genuine shape boundaries.
Kang et al. [13] introduced the notion of flow-guided [5]
anisotropic filtering for detecting highly coherent lines
while suppressing noise. However, most of these edge de-
tectors are computationally expensive, and thus they can-
not be used in real-time applications. Due to the nature of
isotropic filter kernels for the traditional DoG detector, the
aggregate of edge pixels may not clearly reveal the sense
of “directedness”. Inspired by the idea of Kang et al., we
propose a fast, efficient and highly anisotropic edge detec-
tion filter driven by the “flow” of salient image features.
The edge detector in this paper is highly parallel, which
allows a GPU-based and real-time implementation.

3 Our approach

3.1 Pipeline overview

Our goal is to develop an automatic and real-time abstrac-
tion system for videos and images by simplifying their
visual content while preserving or even emphasizing most
of the perceptually important image features. Intuitively,
high contrast is linked to high visual salience, and low
contrast to low salience.

Our video abstraction system is built upon the method
presented by Winnemöller et al., and the framework of
our approach is the same as theirs. The pipeline is de-
scribed as follows. Firstly, the system collects input im-
ages from static image files, static video files, or even
live video capturing devices (see Fig. 1a). Then, the input
image is converted from RGB color-space to CIE-Lab-
space [26], which is known to be a perceptually uniform
color-space based on a large body of psychophysical
data concerning color-matching experiments performed
by human observers. In order to smooth small discon-
tinuities and enhance edges in real-time, we choose the
edge-aware bilateral grid operator to approximate the
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Fig. 1a–d. Our approach takes as input (a) an image and produces a variety abstraction effects: b bilateral filtered, c coherent line attached,
d soft luminance quantized. Note how fiber and hair (c, d) are emphasized and stylized using our feature flow-based DoG filter

anisotropic diffusion filter (see Fig. 1b). Next, our fea-
ture flow-based DoG filter is applied to detect edges. The
feature flow-based DoG filter controls the non-uniform
thickness scales as the traditional DoG filter, however,
the resulting lines are smoother, more coherent and more
stylistic (see Fig. 1c). Optionally, techniques such as soft
luminance quantization and image-based warping are used
to further enhance the abstraction effect with good tem-
poral coherence (see Fig. 1d). Lastly, the output image is
generated by converting the result back to RGB space.

3.2 Bilateral grid

Given an input image I , which maps pixel locations into
some feature space, the result of the bilateral filter is de-
fined by:

F(I, x, σs, σr) = 1

W(I, x, y)

∑

y∈N(x)

w(I, x, y)I(y) (1)

W(I, x, y) =
∑

y∈N(x)

w(I, x, y) (2)

w(I, x, y) = G(‖y − x‖, σs)G(|I(y)− I(x)|, σr) (3)

G(d, σ) = e
− 1

2

(
d
σ

)2

. (4)

In these formulae, x is a pixel location (x, y) in the
image, and N(x) are its neighboring pixels. The param-
eter σs defines the size of the spatial neighborhood used
to filter a pixel. Increasing σs results in more blurring, but
features may blur across significant boundaries if σs is too
large. The parameter σr determines how much an adjacent
pixel is downweighted because of the intensity difference.

The bilateral grid is a primary data structure that en-
ables a variety of edge-aware operations in real-time [7].
Essentially, it is a 3D array (see Fig. 2), where the first
two dimensions (x, y) correspond to 2D pixel position and

Fig. 2. Illustration of the bilateral grid. The red points denote input
image pixels and they locate in corresponding grid voxels

form the spatial domain, whereas the third dimension z
corresponds to the intensity range. Both the bilateral filter
and the edge detector in this paper are the major time-
consuming components in our real-time application, thus
we choose the bilateral grid method instead of the separa-
ble one used in [25].

The bilateral grid is implemented in three steps. First,
the grid Γ is constructed by accumulating the value of
each input pixel into the appropriate grid voxel, which is
inherently a scatter operation in the vertex shader in GPU
implementation. The bilateral grids are stored in a 2D tex-
ture by tiling the z levels across the texture plane.

Initialization: Γ(i, j, k) = (0, 0) (5)
Filling: Γ([x/ss], [y/ss], [I(x)/sr])+ = (I(x), 1), (6)

where ss and sr are the sampling rates of the spatial axis and
range axis, respectively. [·] is the closest-integer operator.
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We use a vertex shader to rasterize the input pixel pos-
ition and then determine the output grid voxel position.
Chen et al. [7] rasterized a vertex array of single pixel
points using a pre-computed vertex buffer, which may
consume extra memory space and transfer time. Instead,
we rasterize the input pixel position directly in the ver-
tex shader. We utilize the value SV_VERTEXID which is
automatically generated by theinput assembler in the Dir-
ect3D 10 pipeline [3]. The input position is then computed
according to the value SV_VERTEXID for each vertex
and the image size (width and height). As a result, we ren-
der the pointlist with the image pixel number, however, no
vertex buffer is required.

Next, the Gaussian convolution on the grid is applied
to each dimension using a pixel shader. The user-defined
bandwidths of the Gaussian σs and σr automatically deter-
mine the sampling rates ss and sr.

Finally, we slice the grid to extract the final out-
put image by accessing the grid at (x/ss, y/ss, I(x, y)/sr)
using a trilinear interpolation. By taking advantage of the
hardware bilinear interpolation, the values in the two near-
est z levels are sampled from the grid texture, and are then
interpolated.

3.3 Feature flow construction on GPU

Inspired by the idea of Kang et al. [13], who proposed
a kernel-based nonlinear vector-smoothing technique and
a flow-based anisotropic DoG filter, our approach takes
into account the “direction” of the local image structure
in the DoG filtering and applies DoG filters only in a di-
rection perpendicular to that of the local “feature flow” as
well. However, our approach can be paralleled on graphics
hardware, allowing a variety of real-time image process-
ing applications related to the edge detection technique.

To gain smooth, coherent, and stylistic lines, firstly the
approximated feature flow field V from the input image I
is constructed. The feature flow field is a vector perpen-
dicular to the image gradient g(x) = ∇ I(x). Kang et al.
proposed three requirements that V must satisfy: (1) The
vector flow must describe the salient-edge tangent direc-
tion in the neighborhood; (2) the neighboring vectors must
be smoothly aligned except at sharp corners; (3) import-
ant edges must retain their original directions. In order to
achieve real-time performance, we modify the feature flow
filter as follows:

V new′
(x) = 1

kh

∑

y∈Ωh(x)

wm(x, y)wd(x, y)V cur(y) (7)

V new(x) = 1

kv

∑

y∈Ωv(x)

wm(x, y)wd(x, y)V new′
(y), (8)

where Ωh(x), Ωv(x) denote the horizontal direction and
vertical direction neighborhood of x respectively, and kh,
kv are corresponding normalizing terms.

The magnitude weight function wm is defined as:

wm(x, y) = 1

2
(1+ tanh(η(ĝ(y)− ĝ(x)))), (9)

where ĝ(x) is the gradient magnitude at pixel position x.
When a neighboring pixel’s gradient magnitude is higher,
its function value is bigger, and vice versa. The value η
controls the fall-off rate, and is set to 1 throughout the
paper.

The direction weight function wd(x, y) is defined as:

wd(x, y) = V(x) · V(y), (10)

where V(x) denotes the previously calculated feature vec-
tor at x. As we can see, the value of this direction weight
function increases as the angle between the two vectors
decreases. If the angle is bigger than 90◦, the direction
of V(y) is reversed before smoothing, avoiding swirling
flows.

The filter actually uses a separable approximation to
construct the feature flow, and thus we can implement it
on the GPU by taking advantage of its parallelism. The
initial gradient field is calculated using the Sobel opera-
tor in this paper, and the initial feature flow field can be
easily obtained. Then our modified filter is iteratively ap-
plied to smooth the feature flow. Note that the gradient
field g evolves accordingly whereas the magnitude ĝ is un-
changed. In our GPU implementation, 2 or 3 iterations are
enough.

3.4 Coherent line extraction

After the feature flow field is filtered, feature lines are ex-
tracted by applying a flow-guided anisotropic DoG filter:

F(x) =
∑

s∈c(x)

G(‖s − x‖, σm)W(s) (11)

W(s) =
∑

y∈l(s)

(G(‖y − x‖, σc)−ρ · G(‖y − x‖, σs))I(y),

(12)

where c(x), l(s) denote the neighborhood along the tan-
gential direction at x ∈ I and perpendicular direction at
s ∈ c(x) to the flow direction, respectively. Moving along
both the positive and the negative directions of cx, a new
position s is obtained. Thus W(s) is convolved along the
line l s that is perpendicular to the direction vector V(s)
and intersects s, as illustrated in Fig. 4. Note l s is paral-
lel to the gradient vector g(s), and l s(0) = s. Again we
separate Eqs. 11 and 12 by drawing an image-sized quad
with two passes in the pixel shader. p ×q neighboring
points from the kernel are sampled using hardware tex-
ture lookups. In pass 1, the value of W(s) for each pixel
can be computed by bidirectionally following the gradi-
ent vector g(x) starting from x. Initially, we set z ← x,
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Fig. 3a–e. Comparison with other edge detection techniques. Note that our method can generate a similar result as proposed by Kang et
al., and is better than the traditional difference-of-Gaussian and Canny detector

Fig. 4. Feature flow-based DoG filter: (left) kernel at x, and (right)
Gaussian component

then iteratively obtain the next sample point by moving
along cx in one direction: z ← z + g(z); similarly, we ob-
tain the points on the other half of cx by −g(z). Then in
pass 2, F(x) is convolved along the line parallel to V(z)
using the same method. By taking advantage of graphics
hardware bilinear interpolation, we only need two texture
lookups to get the sampling position and then sample the
image intensity in the pixel shader. Here we set σs = 1.6σc
to make the shape of W(s) closely resemble that of the
Laplacian-of-Gaussian [14]. Again the user-defined band-
widths of the Gaussian σc and σm automatically determine
the convolution size T and S, and thus the sampling size p
and q. The threshold level ρ determines the sensitivity of
the edge detector. We use ρ = 0.99 throughout.

Once we obtain F for the input image from Eq. 11,
the edges can be extracted. Rather than converting them
to a black-and-white image by binary thresholding, as
used in [13], we define our anisotropic DoG edges using
a slightly smoothed step function, as suggested in [25]:

D(x) =
{

1, if (F(x) > 0);
1+ tanh(ϕe · F(x)), otherwise.

(13)

Here ϕe is a parameter controlling the line sharpness,
and σc determines the line thickness scale as the isotropic
DoG method (see Fig. 5). As the construction of the fea-

Fig. 5a–d. Line control. Abstraction using b fine edges (ϕe = 0.5,
σc = 2), c sharper edges (ϕe = 2, σc = 2), and d coarser edges
(ϕe = 2, σc = 5). For all images we set soft quantization steps
(q = 8, and sharpness values between [3, 14])

ture flow can be treated as a modified bilateral filter, small
discontinuities are omitted and salient edges are strength-
ened. In addition, we can perform real bilateral filtering
before extracting feature lines for a noisy image. Figure 3
shows the comparison of our method with other popu-
lar line extraction techniques. All images are converted to
black-and-white by binary thresholding for clarification.

4 Experimental results and discussions

We have developed a new real-time video and image ab-
straction system based on Direct3D 10 APIs and Shader
Model version 4.0, and tested it on some scenes in order to
evaluate its efficiency. All tests were conducted on a PCwith
a 1.83 GHz Intel Core 2 Duo 6320 CPU, 2 GB main mem-
ory, an NVIDIA Geforce 8800 GTS GPU, 320 MB graphics
memory, and Windows Vista 64 bit operating system.

Table 1. Statistics of frames per second of our system and process-
ing time of edge detection

Window resolution 1.3 M 1.0 M 800 K 500 K
(Pixels)

Frames per second 32 40 50 75
Processing time (ms) 19 15 12 8
for edge detection
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The efficiency statistics of our abstraction system are
listed in Table 1. Using our GPU acceleration techniques,
we are able to perform video abstraction at 32 Hz in a win-

Fig. 6a–c. Comparison with the case that the foreground objects have low contrast, whereas background regions have high contrast

Fig. 7a–j. Abstraction effects of various input images using our feature-aware method. Regions of low contrast are simplified and ab-
stracted, whereas regions of high contrast are strengthened. It can be seen that the underlying features in the input images are also stylized

dow resolution of 1.3 mega-pixels, satisfying the real-time
requirement on most PC monitors. In the naive CPU im-
plementation of Kang et al., the processing time for edge
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detection is about 6–10 s for a 512×512 image [13]. Our
GPU implementation outperforms it by 2 ∼ 3 orders of
magnitude speedup.

In Fig. 6b we show a failure case of Winnemöller
et al.’s abstraction approach, where all high frequency fea-
tures of background carpet were emphasized too much.
Introducing user interactions can easily remove detail
edges regardless of their contrast [16]. However, user
manipulations are not feasible in automatic abstraction
systems. In this paper, the feature flow filter is actu-
ally a modified bilateral filter, small discontinuities are
smoothed while salient edges are strengthened. As a re-
sult, unnecessary high frequency features are smoothed
out, whereas the major edges on the carpet are smoother
and more coherent (see Fig. 6c). However, as both the bi-
lateral filter and the edge detector operate on local kernels,
a global scale subjective abstraction effect is still hard to
generate.

Other abstraction effects automatically generated in
our system are shown in Fig. 7. We can see how regions
of low contrast are simplified and abstracted, and how re-
gions of high contrast are strengthened. It can be seen that
the underlying features in the input images are also styl-
ized using our new method. Moreover, the accompanying
video demonstrates that our video abstraction system can
generate vivid visual perception. The video applications
are decoded on the CPU in a separate thread that runs
in parallel with the GPU. The frame sampling rate of the
video capturer is 30 Hz.

Our approach performs our abstraction technique after
transforming the original image to CIE-Lab color-space.
It works well in most cases since luminance carries a lot
of the feature information. However, when iso-luminance
color regions “touch” each other in the input image, our
method tends to fail to generate the correct effect. More-
over, the bilateral grid-based bilateral filter with a small

spatial kernel requires fine sampling, which results in large
memory and computation costs.

5 Conclusions and future work

In this paper, we present a non-photorealistic feature-
aware rendering system that automatically abstracts videos
and images by integrating the bilateral grid to simplify re-
gions of low contrast and utilizing a feature flow-guided
anisotropic edge detection filter to enhance regions of
high contrast. The algorithms are highly parallel, allowing
a real-time implementation on modern GPUs. Experimen-
tal results have shown that our proposed feature flow-
based DoG filter is hundreds of times faster than Kang’s
method, while the lines are smooth, coherent, and stylistic
as well. Additionally, the experimental results demon-
strate both the feasibility and efficiency of our proposed
algorithms.

Limitations mentioned above will be addressed in our
future work. In addition, our future work includes explor-
ing better methods for abstracting video by user control,
adopting faster algorithms for very large high-definition
video, extending to real-time HDR image and video ab-
straction, and investigating the extension to real-time in-
formation recognition.
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