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Real-time accurate free-form deformation in terms of

triangular Bézier surfaces

CUI Yuan-min FENG Jie-qing∗

Abstract. We implemented accurate FFD in terms of triangular Bézier surfaces as matrix

multiplications in CUDA and rendered them via OpenGL. Experimental results show that the

proposed algorithm is more efficient than the previous GPU acceleration algorithm and tessel-

lation shader algorithms.

§1 Introduction

Free-Form Deformation (abbreviated as FFD) is a widely used shape editing method in
computer animation and geometric modeling [21]. It has been integrated in many commercial
softwares due to its simpleness and intuitiveness. Without loss of generality, when deforming a
mesh model with a B-spline volume, traditional FFD is applied to the points of the model that
tends to produce aliased deformation result if sampling density is not high enough, whereas
accurate FFD is applied to the faces of the model and the Bézier surfaces are obtained as an
accurate deformation result [6, 7, 8].

Accurate FFD can generate high quality deformation results. But it contains intensive
computations, such as B-spline volume evaluations, Bézier surface interpolations, Bézier surface
tessellations, etc. Moreover, there is also huge data throughput between CPU and GPU or inside
of GPU when displaying the tessellated Bézier surfaces. All of the above factors make real-time
accurate FFD almost impossible for large scale models.

By fully exploiting parallel capacities of GPU, a new CUDA based GPU acceleration of
accurate FFD algorithm is proposed in this paper. All of intensive computations are designed
and implemented on GPU, and huge data transfer is also avoided. Experimental results show
that the proposed algorithm is more efficient than the previous ones. The main contributions
of the proposed algorithm include:

• Parallel evaluations of the B-spline volume on a regular grid.

• Reusable matrix multiplications for both interpolation and tessellation of triangular Bézier
surfaces, which are fully implemented via CUBLAS on GPU.

• Adopting of vertex buffer objects for OpenGL rendering to reduce data transfer.
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Digital Object Identifier(DOI): 10.1007/s11766-014-3239-6.
Supported by the National Natural Science Foundation of China (61170138 and 61472349).



456 Appl. Math. J. Chinese Univ. Vol. 29, No. 4

This paper is organized as follows: the related work is introduced in Section 2. The proposed
GPU acceleration algorithm is described in detail in Section 3. The implementation results,
comparisons and discussions are given in Section 4. Finally, conclusions are drawn and future
research is indicated in Section 5.

§2 Related works

Free-Form Deformation is an intuitive method to manipulate and deform geometric models.
It is widely used in computer animation and geometric modeling. FFD is first proposed by
Sederberg and Parry [21]. The main idea of FFD is to embed an object into an intermediate
volume, e.g. a Bézier, B-spline, or NURBS volume. Users edit the shape of the volume, then
the deformation of the volume is transfered to the embedded object. Since the method is
independent of geometric representation of the object, it is simple and intuitive. There are a
lot of successive work on FFD. Most of them focus on the improvements of the original FFD
from the aspects of intermediate volume shape, interactive means, etc. Gain and Bechmann [10]
give a detailed survey of them. There are some new progress of FFD these years. For example,
Xu, et al.[23] proposed a new method to manipulate the model directly based on curve-based
FFD [14]. The main target of this algorithm is to minimize the change of the control polygons
and the length of the model. In the mean time, the algorithm preserves geometry details of the
model by using a method based on Laplacian coordinates.

Traditionally, FFD acts on the vertices of a model, thus the deformation result depends
heavily on the sampling density of the deformed model. Many researchers try to solve this
problem via an adaptive sampling way [20, 11, 9]. They take the surface curvature and polygon
size into account and upsample the deformed model if necessary. Due to the intrinsic insuffi-
ciency of adaptive sampling methods, the proposed solutions cannot handle some special cases
well.

Feng, et al. [6, 7, 8] proposed the concept of accurate FFD to solve the sampling problem
in another way. Different from the traditional FFDs, accurate FFD deforms each face of the
model as a triangular Bézier surface or trimmed Bézier surface patches based on Bernstein
polynomials composition [3, 4]. At the costs of antialiased deformation results, accurate FFD
contains intensive computations and huge data transfers. It is a challenge to achieve real-time
accurate FFDs implemented on CPU.

With rapid developments of general-purpose GPU, some GPU based and efficient FFD
methods are proposed in recent years. Chua, et al. [1] design a new GPU architecture dedicated
to FFD. But none of vendors develops their GPU along this way. On the contrary, they are
continuously enhancing the general purpose computing capabilities of GPU. Schein, et al. [22]
implement a GPU accelerated FFD by NVIDIA CG language. Many programming tricks are
adopted to overcome the GPU pipeline limitations which makes it not prevalent. Jung, et
al. [15] achieve the same goal by NVIDIA CUDA, and embed it to the X3D system. Hahmann,
et al. [12] propose a GPU-based volume-preserving FFD. They employ the multi-linear property
of volume constraint and derive an explicit solution to the problem. Its GPU acceleration part
which is implemented by CUDA is 6.5 times faster than its CPU counterpart. In the field of
biomedicine, Modat, et al. [16] proposed a MRI non-rigid body registration method based on
GPU accelerated FFD.

Recently, Cui, et al. [2] propose a real-time accurate FFD via CUDA, where the deformation
result is represented in terms of trimmed tensor product Bézier patches. In fact, it is an
optimal GPU implementation of method [8]. It can achieve high performance even for a large
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scale model. However it tessellates the trimmed Bézier surfaces patch by patch, which is not an
efficient way. In the CPU implementations, the approach of accurate FFD in terms of triangular
Bézier surfaces [6, 7] is slower than the one in terms of trimmed Bézier surface patches [8].
However, after exploiting the parallel computing capacities of GPGPU and carefully analysing
the accurate FFD approaches [6, 7], a more efficient GPU-based accurate FFD is proposed in
this paper, where the object is accurately deformed as triangular Bézier surfaces [6, 7]. All the
computations, tessellations and data transfer are implemented on GPU optimally. As a result,
it can achieve higher performance than the method in [2].

§3 GPU Based accurate FFD in terms of triangular Bézier surfaces

3.1 Overview of accurate FFD algorithm in terms of triangular Bézier
surfaces

Let R(u, v, w) be a B-spline volume of degree nu ×nv ×nw. It has mu, mv and mw control
points along u, v and w directions respectively:

R(u, v, w) =

mu−1
∑

i=0

mv−1
∑

j=0

mw−1
∑

k=0

RijkNi,nu
(u)Nj,nv

(v)Nk,nw
(w) (1)

where {Ni,nu
(u)}mu−1

i=0 , {Nj,nv
(v)}mv−1

j=0 and {Nk,nw
(w)}mw−1

k=0
are normalized B-spline basis

functions. Its knot vectors along three directions are {ui}
nu+mu

i=0 , {vj}
nv+mv

j=0 and {wk}
nk+mk

k=0

respectively. Each three dimension region [ui, ui+1]× [vj , vj+1]× [wk, wk+1] is called a knot box,
where nu ≤ i < mu, nv ≤ j < mv and nw ≤ k < mw respectively.

As described in the papers [6, 7], firstly, the polygons in the object are subdivided against
the knot boxes such that each of generated sub-polygons lies inside of a knot box. Secondly, non-
triangular sub-polygons are triangulated. The accurate FFD of such a sub-triangle by R(u, v, w)
is a triangular Bézier surface [6, 7], whose degree is (nu + nv + nw). Let the triangular Bézier
surface be noted as T(u, v, w):

T(u, v, w) =
∑

i+j+k=n
0≤i,j,k≤n

TijkBn
ijk(u, v, w), u, v, w ≥ 0, u + v + w = 1 (2)

where Bn
i,j,k(u, v, w) = n!

i!j!k!
uivjwk is Bernstein basis function defined on a 2D simplex, i.e.,

triangle. The degree of T(u, v, w) is n = nu + nv + nw and its control points are written as
{Ti,j,k | i + j + k = n}.

3.2 Computing control points of triangular Bézier surface

T(u, v, w) has m = (n + 1)(n + 2)/2 control points, which can be expressed as a column
vector (Tn,0,0 Tn−1,1,0 . . .T0,0,n)T.

According to [7], the control points can be computed efficiently via polynomial interpolation.
To perform polynomial interpolation for T(u, v, w), m = (n + 1)(n + 2)/2 sampling points on
T(u, v, w) should be known in advance. They can be obtained via B-spline volume R(u, v, w)
evaluations, since the sampling points are on the deformed object in fact. For each triangular
Bézier surface, uniform sampling points are: {T( i

n
, j

n
, k

n
) | 0 ≤ i, j, k ≤ n, i + j + k = n}, whose

corresponding parameters for the B-spline volume are noted as {(ũi, ṽi, w̃i)}
m
i=1 Thus the m

sampling points on T(u, v, w) are {R(ũi, ṽi, w̃i)}
m
i=1 respectively. Next, the control points of

T(u, v, w) can be calculated by interpolating these m sampling points. The interpolation can
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be expressed as the following matrix multiplication:
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...
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m×1

= B
−1
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m×1

(3)

where

B =
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, 0)
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...
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m×m

(4)

Because all the triangles of the model will be deformed as the triangular Bézier surfaces of
degree n, their control points evaluation via formula (3) can be merged and rewritten as:
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1
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m, ṽf
m, w̃f

m)







m×f

(5)
which can be further simplified and rewritten as:

T = B
−1

Rs (6)

3.3 Uniform tessellations of triangular Bézier surfaces

After the triangular Bézier surfaces obtained, i.e., accurate FFD result, they will be tessel-
lated for rendering. Here uniform tessellation is adopted for each triangular Bézier surface. It
is a GPU friendly and efficient solution.

The uniform tessellation for a triangular Bézier surface is illustrated in Figure 1. The
triangular Bézier surface is tessellated as m2 triangles, where each edge of parametric domain
is uniformly sampled (m + 1) points.

Figure 1: Uniform tessellation of a triangular Bézier surface

One of advantages of uniform tessellation is that the numbers and positions of tessellation
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points on the adjacent edges are the same. Moreover, all the surfaces have the same tessellation
pattern, so the matrix multiplications involved in the tessellation operation can be reused,
which is in accordance with the SIMD architecture of GPU [17]. In the following, the detailed
formulae for tessellation will be derived.

For the triangular Bézier surface T(u, v, w) in (2), a tessellation point corresponding to
(u0, v0, w0) can be evaluated:

T(u0, v0, w0) =
[

Bn
n,0,0(u0, v0, w0) · · · Bn

0,0,n(u0, v0, w0)
]











Tn,0,0

Tn−1,1,0

...
T0,0,n











(7)

We assume that there are q points on the tessellated surface, their parameters are noted as
{(ui, vi, wi)}

q
i=1. The q tessellation points can be computed by the following formula:











T(u1, v1, w1)
T(u2, v2, w2)

...
T(uq, vq, wq)











q×1

= Bq











Tn,0,0

Tn−1,1,0

...
T0,0,n











m×1

(8)

where

Bq =











Bn
n,0,0(u1, v1, w1) · · · Bn

0,0,n(u1, v1, w1)

Bn
n,0,0(u2, v2, w2) · · · Bn

0,0,n(u2, v2, w2)
...

. . .
...

Bn
n,0,0(uq, vq, wq) · · · Bn

0,0,n(uq, vq, wq)











q×m

(9)

Because all the triangular Bézier surfaces have the same tessellation pattern, formula (8)
can be extended further for all f triangular Bézier surfaces and they can be merged as one
matrix multiplication as follows:
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(10)

The above matrix multiplication can be written concisely as:

P = BqT (11)

where P and T are tessellation points and control points of all triangular Bézier surfaces respec-
tively.

To render the tessellated surfaces, the normals at the tessellation points should be evaluated.
It is straightforward to evaluate tangent vectors at the tessellated points with respect to both
u and v directions, and then compute their cross products as the normals. Before rendering,
the normals should be normalized. Two tangent vectors can be evaluated via the following
formulae:

∂P

∂u
=

∂Bq

∂u
T,

∂P

∂v
=

∂Bq

∂v
T (12)
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They can be written concisely as:

Pu = BquT, Pv = BqvT (13)

where Pu and Pv are the tangent vectors with respect to u and v respectively at the tessellation
points.

3.4 GPU parallel computing sampling points R
s
in B-spline volume

Rs in formula (6) has mf elements, each of them is a sampling point on the triangular
Bézier surface, evaluated via the B-spline volume. There are two typical methods to evaluate
a point in a B-spline volume [5]: de Boor-Cox algorithm and matrix multiplication algorithm.
The former is numerically stable, but it is not suitable for GPU implementation since there are
many nested loops in it, and it is also time-consuming. Thus the latter is preferable. Since
all the mf elements in Rs are independent of each other, each thread can calculate one of the
elements. It is in accordance with the SIMD structure of GPU, i.e., Single Instruction and
Multiple Data [17].

Because all the triangular Bézier surfaces correspond to the same number of sampling points,
i.e., the number of control points of the triangular surface, the task allocation is straightforward:
assume the thread number of each thread block is blockDim, then the number of thread blocks
is ⌈mf/blockDim⌉. The thread with index (blockIdx, threadIdx) can be labeled with a global
index:

globalIdx = blockDim ∗ blockIdx + threadIdx (14)

According to (14), the sampling point with index globalIdx belongs to the ⌊globalIdx/m⌋th
triangular Bézier surface, and it is the (globalIdx%m)th sampling point in it. If globalIdx ≥
mf , the thread will be idle. The above strategy guarantees each CUDA thread evaluates one
B-spline point. The workload is balanced, and the number of the idle threads is less than
blockDim. In this way, GPU parallel computing capacity is fully exploited.

3.5 Efficient tessellation points evaluation algorithm

After the sampling points obtained, the triangular Bézier surfaces, i.e., accurate FFD re-
sult, can be obtained via polynomial interpolation according to formula (6). To display the
surfaces, the tessellation points on the surface should be evaluated according to formula (11).
By substituting (6) into (11), we can obtain:

P = BqB
−1

Rs (15)

where Rs denotes all sampling points, B
−1 is the matrix for triangular surface interpolation,

Bq is the matrix of Bernstein polynomials for triangular Bézier surface evaluation. It is similar
to the tangent vector evaluations, which are described in formula (13):

Pu = BquB
−1

Rs, Pv = BqvB
−1

Rs (16)

There are two methods to evaluate (15) and (16). One method is to evaluate the control
points of the triangular Bézier surfaces T = B

−1
Rs first, and then evaluate the tessellation

points and their tangent vectors:

P = BqT, Pu = BquT, Pv = BqvT (17)

The other one is to evaluate the product of first two matrices and obtain three intermediate
matrix Bb, Bbu and Bbv as follows:

Bb = BqB
−1, Bbu = BquB

−1, Bbv = BqvB
−1 (18)
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and then evaluate the tessellation points and their tangent vectors via Bb, Bbu and Bbv as
follows:

P = BbRs, Pu = BbuRs, Pv = BbvRs (19)

Intuitively, the complexities of the two methods seem the same. After carefully analysis, it
shows that they are different and suitable for different cases.

Method 1: The triangular Bézier surface, T = B
−1

Rs is evaluated first. T has mf elements,
where m is the number of control points of the triangular Bézier surface, f is the number of
the triangular Bézier surfaces. Each of them can be obtained via m MADs (multiply and add
operation). Thus the overall MAD number in T = B

−1
Rs is m2f . After T is obtained, P, Pu

and Pv are evaluated via (17).

Among them, P has qf elements, that q is the number of tessellation points of each surface,
evaluating an element requires m MADs. Thus the overall MAD number for all tessellation
points is mqf . To exploit the parallel computing capacity, the matrices Bqu and Bqv are
expanded as the q × m ones with zero column vector, such that Pu and Pv have the same
number of MADs with P. In summary, Method 1 requires (mad1 = m2f + 3mqf) MADs. It
is noted that the evaluation of B-spline volume point for each element in Rs is omitted, whose
complexity is a constant for two methods.

Method 2: Three matrices Bb, Bbu and Bbv in (18) are evaluated first. Bb has mq elements.
Evaluating one element of Bb requires m MADs. Thus the overall MAD number for evaluating
Bb is m2q. Bbu and Bbv have the same number of MADs with Bb due to the same above
mentioned reason.

Similar to Method 1, evaluating the tessellation points and their tangent vectors P, Pu

and Pv require 3mqf MADs overall. In summary, Method 2 requires mad2 = (3m2q + 3mqf)
MADs.

To compare two methods, we obtained

mad1 − mad2 = m2f − 3m2q = m2(f − 3q) (20)

where f is the number of triangular Bézier surfaces in accurate FFD result, q is the number of
tessellation points on each triangular Bézier surface. If f > 3q, i.e., the number of surfaces is
greater than three times of the number of tessellation points, then Method 2 is more efficient
than Method 1. Otherwise, f < 3q, i.e., a coarse mesh model that contains dozens of vertices,
then Method 1 is better. In practical application, f > 3q is the common case. Thus Method

2 is preferable, i.e., six matrix multiplications in (18) and (19). They can be further optimized
respectively as follows.

3.6 GPU implementation of triangular Bézier surfaces tessellations

In general, the degree of B-spline is 1 ≤ nu, nv, nw ≤ 3 which can satisfy most of require-
ments in practical applications. Thus, the degree of the corresponding triangular Bézier surface
is 3 ≤ n ≤ 9. As described before, the matrix B

−1 in (4) for surface interpolation only depends
on the surface’s degree, thus {B−1

i }9
i=3 can be precomputed and stored. The matrices Bq, Bqu

and Bqv in (11) and (13) for tessellation only depend on the degree of the triangular Bézier
surface and the tessellation pattern. They can also be precomputed and stored if the B-spline
volume’s degree and tessellation pattern are determined. The three matrices Bq, Bqu and Bqv

remain unchanged when the shape of the B-spline volume is edited.

The CUBLAS is a library of optimized implementation of BLAS on GPU [18]. BLAS is an
API for basic linear algebra operations, e.g. vector and matrix multiplications. It is 6∼17 times
faster than its CPU counterpart. Thus the CUBLAS is adopted to perform the above matrix



462 Appl. Math. J. Chinese Univ. Vol. 29, No. 4

multiplications. The CUBLAS supports four kinds of data types: float, double, float complex,
double complex. The matrix multiplications in (18) can be implemented straightforwardly by
calling CUBLAS. In (19), the sampling points and their tangent vectors P, Pu and Pv are
in terms of 3D point, thus the matrix multiplications in (19) should be decomposed into 9
componentwise matrix multiplications corresponding to x, y, z components respectively:

Px = BbRsx, Py = BbRsy, Pz = BbRsz (21)

Pux = BbuRsx, Puy = BbuRsy , Puz = BbuRsz (22)
Pvx = BbvRsx, Pvy = BbvRsy , Pvz = BbvRsz (23)

After having finished all these matrix multiplications by using function cublasSgemm pro-
vided by CUBLAS, the results, i.e., tessellation points and their normals, are stored into a
Vertex Buffer Object(VBO), and then are rendered by the OpenGL efficiently. Because the
formats of the matrix multiplication results of (21), (22) and (23) are not compatible with the
VBO, a copy function is called to rearrange them. The copy operation is straightforward: each
CUDA thread takes charge in one tessellation point, first calculates the cross product of the
tangent vectors with respect to u and v directions then normalize the cross product as the
normal, finally copy the coordinates and normals of the tessellation point to the VBO.

3.7 The optimization of GPU tessellation

In Section 3.6, the CUBLAS is adopted to accomplish matrix multiplications in the triangu-
lar Bézier surface tessellations. In SIMD architecture of GPU, combining several small matrix
multiplications to a large one can obtain a better performance, since it is a more intensive data
operation. According to this fact, the 12 matrix multiplications in (18), (21), (22) and (23) can
be further optimized as two ones:





Bb

Bbu

Bbv





3q×m

=





Bq

Bqu

Bqv





3q×m

(

B
−1

)

m×m
(24)





Px Py Pz

Pux Puy Puz

Pvx Pvy Pvz





3q×3f

=





Bb

Bbu

Bbv





3q×m

(

Rsx Rsy Rsz

)

m×3f
(25)

§4 Implementation results

The proposed algorithm is implemented on a PC with Intel Core i5 760@2.8GHz CPU,
4GB Memory, NVIDIA GeForce GTX 465 GPU. The operating system is Arch Linux x86 64.
The CPU part of our program is written by C++ and the GPU part is written by CUDA C.
Moreover, the direct manipulation algorithm proposed by Hu et al. [13] is integrated into our
system. In Figures 2-6, all the results are deformed by B-spline volumes of degree 2 × 2 × 2.
Each triangular Bézier surface is tessellated into 100 subtriangles. Among which the model in
Figure 2 is manipulated directly via Hu’s method.

4.1 The optimized matrix multiplications

Table 1 gives the statistics of direct CUBLAS implementations of (18), (21∼23) and opti-
mized implementations (24) and (25) for examples. It shows that the latter is 25%∼30% faster
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Table 1: The efficiency comparison between two matrix multiplication methods in section 3.6
and section 3.7 (ms)

model
face

algorithm
formula formula

total
(trivial - optimal) /

number (24) (25) trivial
bird

17119
trivial 0.024 3.954 3.978

28.66%
(Fig.2) optimal 0.011 2.827 2.838

amphora
19924

trivial 0.024 4.898 4.922
28.08%

(Fig.3) optimal 0.011 3.529 3.540
snail

46742
trivial 0.024 9.861 9.885

26.84%
(Fig.4) optimal 0.011 7.221 7.232

spaceship
96314

trivial 0.024 20.225 20.249
26.25%

(Fig.5) optimal 0.012 14.921 14.933
tree

113663
trivial 0.024 22.707 22.731

25.87%
(Fig.6) optimal 0.011 16.839 16.850

than the former one. The reason is that (24) and (25) are more data intensive operations than
(18), (21∼23), which is more suitable for GPU.

(a) (b)

Figure 2: A bird and its deformation

4.2 Comparison of the tessellation shader algorithm to CPU algo-
rithm

The proposed algorithm is implemented by CPU too. Compared with the CPU implementa-
tion of the accurate FFD in terms of triangular Bézier surfaces [7], the CPU implementation of
the proposed algorithm is also optimized for matrix multiplications as indicated in Section 3.7.
Besides the sampling points in the B-spline volume evaluated by CPU, the rest of intensive
computations involved in the evaluation and tessellation of triangular Bézier surfaces are ab-
stracted as matrix multiplications (24) and (25) and implemented by CBLAS library on CPU.
The results are given in Table 2.

Tessellation shader is a new GPU pipeline feature which can efficiently tessellate a patch
into many micropatches. Thus, it’s also suitable for rendering the triangular Bézier surfaces.
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(a) (b)

Figure 3: An amphora and its deformation

(a) (b)

Figure 4: A snail and its deformation

(a) (b)

Figure 5: A spaceship and its deformation

We also implemented our algorithm by using tessellation shaders. Firstly, the control points
of all the triangular Bézier patches are evaluated as before. Secondly, the triangular surfaces
are tessellated via tessellation shaders. The runtime comparison between the proposed CUDA
algorithm and the tessellation shader algorithm is shown in Table 2.

From Table 2 we can see the proposed CUDA algorithm is 1.6∼1.7 times faster than the
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(a) (b)

Figure 6: A tree and its deformation

Table 2: The efficiency comparison between the proposed CUDA algorithm, tessellation shader
algorithm and CPU algorithm (ms)

model CUDA(ms) tessellation shader(ms) shader/CUDA CPU(ms) CPU/CUDA

bird 12.757 33.657 2.638 661 51.81

amphora 15.468 41.568 2.687 831 53.72

snail 32.333 86.324 2.670 1707 52.79

spaceship 64.885 179.261 2.763 3528 54.37

tree 74.458 201.758 2.710 4003 53.76

tessellation shader algorithm and over 50 times faster than the CPU algorithm.

4.3 Comparison to the accurate FFD algorithm in terms of trimmed
Bézier surface patches [2]

Table 3 gives the detailed statistics of the proposed algorithm and the GPU accurate FFD
algorithm [2], where the result is in terms of trimmed tensor product Bézier surface patches.
Essentially, the two accurate FFD results are identical expect for their different geometric
representations. Since two algorithms are not identical, the steps in one algorithm are not
one to one correspondence of the steps in the other algorithm. But from the overall runtime
statistics, we can conclude that the proposed algorithm is 30%∼40% faster than the tensor
product algorithm. If the runtime of control points evaluation and tessellation are considered
only, the proposed algorithm is almost twice as fast as the tensor product algorithm.

The acceleration reason lies that the accurate FFD result is represented in terms of triangu-
lar Bézier surfaces of the same degree. The surfaces are tessellated with the same tessellation
pattern. Compared to the tensor product algorithm [2], the operations in the proposed algo-
rithm is more data-intensive, which is suitable for the SIMD architecture of the contemporary
GPU.

§5 Conclusion

In this paper a more efficient GPU acceleration algorithm of accurate FFD is proposed,
where the deformation result is composed of triangular Bézier surfaces. Through simple for-
mula derivation, the computations involved in the accurate FFD are abstracted to two-stage
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Table 3: The comparison of tensor product algorithm and the proposed algorithm (ms).
tensor product algorithm [2]

model edit copy data calculate tessellated trimmed render

(triangles) B-spline from CPU S
−1
ns+1

R(TT
nt+1)−1 Bézier patches patches total

volume to GPU

bird
< 1 0.009 4.138 9.652 6 19.799

(17119)

amphora
< 1 0.009 4.171 11.067 7 22.247

(19924)

snail
< 1 0.009 10.916 24.920 16 51.845

(46742)

spaceship
< 1 0.009 20.675 49.871 32 102.555

(96314)

tree
< 1 0.009 25.936 58.286 37 121.231

(113663)

the proposed algorithm

model edit copy data evaluate tessellate surfaces render total
(triangles) B-spline from CPU sampling formula formula copy result surfaces acceleration

volume to GPU points Rs (24) (25) to VBO ratio *

bird
< 1 0.009 2.601

3.961
6

12.571
(17119) 0.011 2.840 1.110 36.51%

amphora
< 1 0.009 3.266

4.962
7

15.237
(19924) 0.011 3.558 1.393 31.51%

snail
< 1 0.009 6.680

10.148
16

32.837
(46742) 0.011 7.274 2.863 36.66%

spaceship
< 1 0.009 13.799

20.946
32

66.754
(96314) 0.011 15.025 5.910 34.91%

tree
< 1 0.009 15.601

23.633
37

76.243
(113663) 0.011 16.962 6.660 37.11%

* calculated by (t1 − t2)/t1 in which t1 is the total executing time of tensor product algorithm and
t2 is that of the proposed algorithm.

matrix multiplications. They can be accomplished by optimized GPU BLAS: CUBLAS. The
experimental results show that the proposed algorithm is more efficient than the GPU-based ac-
curate FFD algorithm in terms of trimmed tensor-product Bézier surface patches [2]. The main
reason for obtain the performance improvement is that the proposed parallel algorithm is de-
signed in a data intensive way instead of a instruction intensive way. The GPGPU architecture
is more suitable for this kind of parallel tasks.

The proposed algorithm can be further improved from several aspects. First, adaptive
tessellation can save graphics memory, since it can prevent the generation of too many tiny
triangles or flat patches. However, it is complex to be implemented on GPU. Second, the
algorithm is based on CUDA, so it can be only implemented on NVIDIA GPUs. If it is
implemented by OpenCL [19], the universal property will be much better.
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