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a b s t r a c t

Accurate Free-Form Deformation is an analytical solution of deformation sampling, where a polygonal

object is deformed as a set of trimmed Bézier surfaces. However, the operation is far from being

interactive due to its high computational cost. In this paper, we proposed a real-time B-spline Free-

Form Deformation of polygonal objects via GPU acceleration. Various time-consuming evaluations are

designed and performed by means of highly parallel processing on GPGPU, such as evaluations of points

of B-spline volume, calculations of control points of Bézier surfaces, tessellations of trimmed Bézier

surfaces, evaluations of normals of tessellated triangles, etc. The adoption of vertex buffer object for

rendering the tessellated trimmed Bézier surfaces greatly saves data I/O throughput. Experimental

results show that the proposed GPU algorithm gains more than 200 times acceleration than its CPU

counterpart.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Free-Form Deformation (abbreviated as FFD) is widely applied
in geometric modeling and computer animation. As an intuitive
and versatile shape-editing tool, it has been integrated into
mainstream commercial 3D computer animation software, such
as Maya, Softimage XSI, 3DS Max, etc. As an improvement of FFD
of polygonal objects, Accurate FFD deforms planar polygons as
trimmed Bézier surface patches [1,2], whereas traditional FFD
deforms points as points. Thus it can generate an accurate and
natural deformation result, which is free of sampling problems in
the deformed polygonal object. Furthermore, the representation
of trimmed Bézier surface patches is consistent with the indus-
trial standard STEP [3]. Thus the Accurate FFD can be easily
integrated into current animation and geometric modeling
systems.

However, the computational cost of Accurate FFD is very high.
It includes a large number of trivariate B-spline volume evalua-
tions and matrix multiplications. The tessellations and rendering
of the trimmed Bézier surfaces are also heavy burdens on both
CPU and GPU (Graphics Processing Unit). Thus the interactive
Accurate FFD is almost prohibited.

In this paper, we propose a GPU-based interactive Accurate
FFD algorithm via CUDA (Compute Unified Device Architecture).
All of the computation-intensive and rendering tasks are designed
and implemented on the GPU using the parallel computing API,

CUDA. Finally we can achieve interactive Accurate FFD of poly-
gonal objects. The main contributions of the paper are:

� GPU computations of control points of Bézier surfaces via more
numerically stable sampling and reconstruction.
� Full GPU tessellations of trimmed Bézier surfaces.
� Efficient rendering of tessellated trimmed Bézier surfaces via a

vertex buffer object.

The structure of this paper is as follows: Section 2 provides an
overview of previous FFD methods. In Section 3, we discuss the
details of our GPU-accelerated Accurate FFD algorithm. Section 4
presents our implementation results and comparisons between
our algorithm and other algorithms. Finally, we conclude our
work and discuss the future research directions in Section 5.

2. Related works

Interactive shape modification or editing is one of the primary
operations in geometric modeling and computer animation. Space
deformation is an efficient solution to this task. Barr [4] first
proposed a global and local deformation method, which can
stretch, bend, twist, or taper a shape. The deformations can be
expressed as analytical functions of space position, such as
translation, rotation, scaling, or their combinations. However, it
is not intuitive for end users due to the indirect connection
between control parameters and the deformation result. In
1986, Sederberg and Parry [5] proposed the classical space
deformation approach, namely Free-Form Deformation (FFD). In
FFD, the object is first embedded into an intermediate space, e.g. a
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trivariate Bézier volume [5]. Then users deform the intermediate
space by editing the control points of the Bézier volume. Finally
the deformation of the intermediate space is transformed to the
embedded object. Due to its intuitiveness and efficiency on shape
modification and editing, FFD is widely investigated and extended
from various aspects, such as definitions of intermediate space,
interactive means of deformation manipulations, etc. In 2008,
Gain and Bechmann gave a detailed survey on space deformation
methods [6].

Among FFD and its extensions, the deformation is conducted
on sampling points of the object. Thus the deformation result will
be influenced by the sampling rate or frequency, especially for the
polygonal object, which is the prevalent geometric representation
in computer animation. To address the problem, uniform up-
sampling of the object is a straightforward solution. As a result,
many tiny triangles may be generated, which will be a heavy
burden for the subsequent interactive deformation and rendering.
Other solutions are adaptive sampling approaches [7–9], which
take the triangle size, curvature, etc., of the deformed object into
account. As we know, there are always singular cases which
cannot be covered by the above adaptive approaches.

FFD can generate both polynomial approximation and analy-
tical expression of the object. Some CAD/CAM systems need the
latter. If the object and the deformation are represented in terms
of polynomials, so is the result. But the degree of the resulting
polynomial is too high to be admitted by some CAD systems.
Sánchez [10] proposed an algorithm in order to reduce the degree
of the result by Hermite approximation.

Feng et al. [1,2,11] proposed Accurate FFD to solve the
sampling problem from the point of view of functional
composition between a planar polygon and a trivariate Bernstein
polynomial. Unlike the point-wise deformation approaches, they
deformed polygons as trimmed Bézier surfaces. The deformation
result is accurate and free of sampling problems at the price of
heavy computational costs. Thus interactive Accurate FFD opera-
tion is almost prohibited. However, the interactive manipulation
is the primary requirement for shape deformation in computer
animation and geometric modeling. Thus how to address the
problem of expensive computational cost in Accurate FFD is
important.

After careful analysis of Accurate FFD algorithm, there are
three main steps which contain large amount of computations.
They are computations of control points of trimmed Bézier
surfaces, tessellation of trimmed Bézier surfaces and rendering
of trimmed Bézier surfaces. The first step is totally implemented
on CPU, which cannot afford real-time computation for our case.
The tessellations of trimmed Bézier surfaces include a lot of Bézier
surface evaluations, which are also executed on CPU. Further-
more, all of the tessellated triangles are rendered by a vertex-at-
once approach. All of the above operations will result in very low
performance for Accurate FFD. In fact, the functions related to
NURBS in OpenGL were removed through its deprecation
mechanism since OpenGL 3.1 [12]. Thanks to more flexible
parallel computing power provided by the contemporary GPGPU,
the above computations can be ported into GPU, which will make
interactive Accurate FFD possible.

Because of the heavy computational cost of FFD and rapid
development of GPU, some GPU-based FFD acceleration methods
have already been proposed in recent years. Chua [13] designed a
new GPU architecture to accelerate the EFFD (Extended Free-
Form Deformation) algorithm [14]. However, neither AMD nor
NVIDIA has released any hardware for this particular purpose.
Instead, the GPU vendors chose another way to develop their
products: general purpose computing. The computing capability
of GPU is more and more powerful allowing FFD to be
implemented on GPU. Schein [15] presented a method for

hardware-based FFD evaluation by which complex models can
be deformed interactively. The method is implemented in Cg [16],
thus the author adopted a lot of subtle skills to overcome the
limitations of the graphics pipeline. Hahmann et al. [17] pre-
sented an approach to find an explicit closed-form solution for
volume-preserving FFD by taking advantage of the multi-linear
property of the volume constraint. It is the first time for them to
present a GPU implementation of volume-preserving FFD. In the
domain of biomedicine, Modat [18,19] proposed a fast FFD
method using GPU for the non-rigid registration of MRI. None of
the approaches mentioned above can be applied to Accurate FFD.

3. GPU acceleration of Accurate FFD via CUDA

3.1. Overview of the proposed algorithm

The proposed algorithm is GPU acceleration of Accurate FFD.
Before the overview of the proposed algorithm, we will introduce
the Accurate FFD [11] briefly with the aid of Fig. 1. First, the input
is a polygonal object as shown in Fig. 1(a). Second, the initial B-
spline volume is defined according to the bounding box of the
object, user specified degrees and number of control points of B-
spline. As a result, the control lattices (Fig. 1(b)) and the knot
boxes (Fig. 1(c)) are generated. The object is embedded into the B-
spline volume linearly. Third, each face of the object is subdivided
or clipped against a knot box so that each subdivided face lies in a
knot box as shown in Fig. 1(d). Fourth, the coplanar subdivided
faces in a knot box are marked and will be deformed as trimmed
patches of a Bézier surface. The coplanar faces are displayed in the
same color in Fig. 1(e). Next, the subdivided object is deformed by
the initial B-spline volume. The object remains unchanged since
the initial B-spline volume is linear, as shown in Fig. 1(f). Finally,
when users modify the control points of the B-spline, i.e.,
conducting FFD, the polygonal object is deformed as curved object
in terms of trimmed Bézier surface patches (Fig. 1(g)).

The proposed algorithm contains the same steps as the Accurate
FFD [11], its flowchart is shown in Fig. 2, where GPU accelerating
steps are indicated. Originally, all of the steps are executed on CPU
except for the last step, i.e. rendering of tessellated trimmed Bézier
surfaces on GPU, which will transfer a large amount of mesh data
and Bézier surface data from CPU to GPU via the PCI bus.

In the proposed algorithm, the first two steps of inputting the
polygonal object and initializing B-spline volume steps can only
be accomplished on CPU since GPU does not provide any inter-
active interfaces. The successive three steps, i.e., polygonal object
subdivision, marking coplanar polygons, and determination of
trimmed surfaces’ degrees, are relatively complex and somewhat
time-consuming. However, they are computed only once after the
polygonal object is loaded and the B-spline volume is determined.
Moreover, it is more convenient and efficient to implement
them on CPU than on GPU because they contain many memory
allocations and de-allocations.

The last three steps are extremely time-consuming. They are
the actual bottlenecks of interactive Accurate FFD. Computing
control points of the trimmed Bézier surfaces mainly involves a
large number of B-spline volume evaluations, matrix and vector
multiplications. Tessellating the trimmed Bézier surfaces also
contains a large number of Bézier surface evaluations. Fortu-
nately, all of the computations in these two steps can be
abstracted as matrix and vector multiplications. Furthermore,
these computations can be fully parallel processed. Since the
tessellation is performed on GPU, the geometric data transfer in
rendering the tessellated trimmed surfaces is avoided. With the
help of vertex buffer objects, the Accurate FFD result can be
efficiently rendered on GPU.
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In this paper, we will inherit all the notations in the paper [11].
Here we briefly introduce some notations and formulae. Let
Rðu,v,wÞ be a B-spline volume of degree ku � kv � kw

Rðu,v,wÞ ¼
Xnu�1

i ¼ 0

Xnv�1

j ¼ 0

Xnw�1

k ¼ 0

RijkNi,ku
ðuÞNj,kv

ðvÞNk,kw
ðwÞ ð1Þ

Its knot vectors are fuig
nu þku

i ¼ 0 , fvjg
nv þkv

j ¼ 0 and fwkg
nwþkw

k ¼ 0 , respectively.
First, the input polygonal object is subdivided against the B-spline knot
vectors so that each of the generated sub-polygons lies in a knot box.
Second, the coplanar sub-polygons are marked and the degree of final
Bézier surface is determined for each knot box and each coplanar sub-
polygons. Third, a 2D rectangular bounding box is computed for each
coplanar sub-polygon. For each knot box ½ui,uiþ1Þ � ½vj,vjþ1Þ �

½wk,wkþ1ÞðiA ½0,nuþku�1�,jA ½0,nvþkv�1�,kA ½0,nwþkw�1�Þ of the
B-spline volume Rðu,v,wÞ, there may be several planar rectangular
bounding boxes in it. Each of the rectangles will be deformed as a Bézier
surface Pðs,tÞ of degree ns � nt , whose control points are noted as
fPijg

ns nt

i ¼ 0 j ¼ 0. Finally, the accurate deformation result, i.e., the trimmed
Bézier surface, is defined by Pðs,tÞ and the boundaries of the coplanar
subdivided triangles in the knot box.

3.2. Computing control points of Bézier surfaces in parallel via GPU

To compute the control points of Bézier surface Pðs,tÞ, we need
to evaluate ðnsþ1Þðntþ1Þ sampling points fPðsi,tjÞg

ns nt

i ¼ 0 j ¼ 0 via B-
spline volume Rðu,v,wÞ evaluations, and then interpolate them via

Fig. 2. Flow chart of B-spline FFD via GPU acceleration.

Fig. 1. Details of Accurate FFD.
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constant matrices for the given degree ðnsþ1Þðntþ1Þ of Pðs,tÞ.
Rather than choosing the uniform sampling points fi=ns,j=ntg
ns nt

i ¼ 0 j ¼ 0 in the domain ½0,1� � ½0,1� of Pðs,tÞ as in the paper [11],
we adopt the Chebyshev points as follows:

si ¼

1�cos
2niþ1

2nðnsþ1Þ
p

� �
2

tj ¼

1�cos
2njþ1

2nðntþ1Þ
p

� �
2

8>>>>>>><
>>>>>>>:

iA ½0,ns�, jA ½0,nt� ð2Þ

The condition number of Chebyshev interpolation matrix
grows as an exponential function with base 2, which is smaller
than the uniform sampling approach (2.3 or so) according to our
experiments. Thus the Chebyshev point interpolation is more
stable than the uniform sampling approach.

According to the analysis above, there are two-step evalua-
tions to obtain the control points of Pðs,tÞ, i.e., evaluating the
sampling points fPðsi,tjÞg

ns j ¼ 0
i ¼ 0 nt

from the B-spline volume
Rðu,v,wÞ and computing the control points of Pðs,tÞ via directional
polynomial interpolations of fPðsi,tjÞg

ns nt

i ¼ 0 j ¼ 0. There are two
methods to evaluate a B-spline volume point, i.e., the de Boor
and Cox algorithm and the matrix multiplication approach [20].
The first approach is numerically stable but contains much more
computations than the second. Thus we adopt the matrix multi-
plication approach. The evaluation of the controls points of Pðs,tÞ
can also be accomplished via the matrix multiplication approach.
For the given degree k, the reconstruction matrix B�1

k is constant
and can be pre-computed. In our paper, the degrees of B-spline
volume are set as 1rku,kv,kwr3, which can generally meet the
requirements of practical applications. Then the maximum degree
of Pðs,tÞ is less than 6�9 [11]. Thus only 9 reconstruction
matrices fB�1

k g
9
k ¼ 1 are pre-computed. The directional polynomial

interpolations for control points of Pðs,tÞ can simply be formu-
lated as the following two matrix multiplications:

~P ¼ B�1
ns

P ð3Þ

Pcp ¼
~PðB�1

nt
Þ
T

ð4Þ

where

P¼

Pðs0,t0Þ Pðs0,t1Þ � � � Pðs0,tnt Þ

Pðs1,t0Þ Pðs1,t1Þ � � � Pðs1,tnt Þ

^ ^ & ^

Pðsns ,t0Þ Pðsns ,t1Þ � � � Pðsns ,tnt Þ

0
BBBB@

1
CCCCA ð5Þ

~P ¼

~P0,0
~P0,1 � � � ~P0,nt

~P1,0
~P1,1 � � � ~P1,nt

^ ^ & ^
~Pns ,0

~Pns ,1 � � � ~Pns ,nt

0
BBBB@

1
CCCCA ð6Þ

Pcp ¼

P0,0 P0,1 � � � P0,nt

P1,0 P1,1 � � � P1,nt

^ ^ & ^

Pns ,0 Pns ,1 � � � Pns ,nt

0
BBBB@

1
CCCCA ð7Þ

Because the maximum degree of Pðs,tÞ is 6�9, the maximum
number of sampling points fPðsi,tjÞg

ns nt

i ¼ 0 j ¼ 0 is 7�10. These
sampling points can be computed in parallel and share B-spline
volume segment information. Similarly, the maximum number of
elements in the matrices on the left side of (3) and (4) are also
7�10. The elements f ~Pi,jg

ns nt

i ¼ 0 j ¼ 0 and fPi,jg
ns nt

i ¼ 0 j ¼ 0 can also be
evaluated in parallel.

In summary, for each Bézier surface in a knot box of B-spline
volume, the directional polynomial interpolations for control

points both consist of at most 70 parallel tasks. So the size of
the thread block must be larger than 70. We choose the best size
of thread blocks by using CUDA occupancy calculator [21], which
is a tool published by NVIDIA to accomplish this task. In our case,
the best size of the thread block is 352. However, there are some
Bézier surfaces whose degrees are lower than 6�9 and they will
occupy much less threads. Thus it will be a waste of resources if
we put such a Bézier surface into a thread block.

Our solution is feeding the Bézier surfaces into a thread block
as many as possible. However, the above assignments of the
thread blocks are too complicated for a thread to obtain its index
of the operands via only block index and thread index. Here we
construct a task lookup table to address this problem. The lookup
table is a 2D array: its width is 352, which equals the size of the
thread block, its height is the amount of the thread block. Its
structure is shown in Fig. 3: boxPointIdx and surfaceIdx are both
integers. The first one contains the knot box index and the
sampling point index of one sampling point. These two variables
are stored in one integer by bitwise operations. The second one
contains the surface index of one sampling point. Thus a CUDA
thread can simply obtain its task, which is one sampling point, via

its blockIdx and threadIdx: lookupTable[blockIdx][theadIdx].
To summarize, the whole progress of the GPU parallel evalua-

tions of Bézier surfaces control points can be described as follows:

1. Construct a task lookup tablen.
2. Transfer all the information necessary to device (GPU) mem-

ory, such as the knot boxes, the task lookup table, and so onn.
3. Call a CUDA kernel to start the evaluation. Each block contains

352 threads.
4. Transfer B�1

ns
, B�1

nt
and three matrices of B-spline volume

evaluation from global memory to shared memory in parallel.
5. For each thread, obtain its task with parameters blockIdx and

threadIdx from the task lookup table.
6. Each thread evaluates a B-spline volume sampling point

Pðsi,tjÞð0r irns,0r jrntÞ and writes it to the shared memory.
7. Each thread computes a temporary control point ~Pi,jð0r ir

ns,0r jrntÞ and writes it to the shared memory.
8. Each thread computes a control point Pi,jð0r irns,0r jrntÞ

of Bézier surface Pðs,tÞ.

Where, asterisk (n) means that the data in this step can be
computed and loaded to the GPU just once. All the other steps are
executed on-the-fly.

3.3. GPU tessellations of trimmed Bézier surfaces

In CPU implementations, the trimmed Bézier surfaces are
tessellated by calling GLU library functions directly. The tessel-
lated triangles are then transferred to GPU for rendering. In
general, each trimmed Bézier surface will be tessellated into over
400 triangles for high quality deformation. As a result, the data

Fig. 3. Structure of the task lookup table.
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transfer and tessellated triangles rendering are very time
consuming. In the proposed GPU implementation, the trimmed
Bézier surfaces are efficiently tessellated in parallel on GPU. Then
the tessellated triangles are rendered directly. Thus the data
transfers from main memory to graphics memory are avoided.

Recently, some GPU based Bézier tessellation algorithms are
proposed. Schwarz et al. [22] first estimate tessellation factors,
and then tessellate the surfaces adaptively. Finally, the resulting
triangles are rendered using OpenGL vertex buffer object. This
tessellation framework is based on CUDA. Concheiro et al. [23]
first perform some different error tests to guide the tessellation
procedure. Then they generate the tessellation patterns. Finally
the tessellation triangles are generated via geometry shaders.

The above algorithms generate high-quality tessellation result
of Bézier surfaces. Since they are adaptive approaches, it is not a
trivial work to extend them to our trimmed Bézier surfaces
patches case. Besides, the trimming lines of the Bézier surface
patches are defined explicitly, i.e., the parametric domains of the
Bézier surface patches are polygons. Here we proposed a simple
and intuitive tessellation approach: first uniformly tessellating
the parametric domain(polygon), then compute the image of the
tessellated domain on the trimmed Bézier surface patch.

In our algorithm, the input object is a triangular mesh or a
polygonal mesh. It is reasonable to assume that each face in the
polygonal object is convex. Otherwise, the face can be converted into
convex ones by adding auxiliary lines. In the Accurate FFD algorithm
[11], each polygonal face is subdivided or clipped against a rectan-
gular box. The resulting polygonal faces are also convex. According to
the Accurate FFD algorithm [11], each convex polygonal face will be
deformed as a trimmed Bézier surface patch, where the boundary
curve of the polygonal face is the trimming lines. To display the Bézier
surface patch, it should be tessellated and fetched into the rendering
pipeline. Thanks to its trimming lines defined explicitly, we first
tessellate the parametric domain (i.e. a polygonal face) of the trimmed
Bézier surface patch, then compute the image of the tessellated
domain on the corresponding Bézier surface. Our tessellation pattern
in the parametric domain of the trimmed Bézier surface patch is
shown as Fig. 4. For each convex n-sided polygon, it is triangulated as
(n�2) triangles. For each triangle, its image on the surface is also a
Triangular Trimmed Bézier Patch, which is abbreviated as TTBP,
and it is uniformly subdivided into m2 sub-triangles, where m is the
number of equal subdivision along triangle edges. Then for each
tessellated point in the tessellated domain, we compute its corre-
sponding point and normal on the Bézier surface Pðs,tÞ. The point
and normal evaluations will be accomplished via Bézier matrix
multiplications, rather than the de Casteljau algorithm, for the same
reason as the GPU evaluation of B-spline volume—the de Casteljau
algorithm contains more computations than the matrix multiplication
approach.

There are two advantages of adopting the above simple tessellation
approach. First, due to the same tessellation resolution, each adjacent
edge of any two sub-triangles has the same number of sampling points.
Thus the tessellated trimmed Bézier surfaces are watertight, which will
be free of cracks among different trimmed Bézier surface patches.
Second, for each trimmed Bézier surface, the number of sampling points
can be computed accurately. For example, for an n-side trimmed patch
with tessellation resolution m, the tessellated trimmed surface has
ðn�2Þm2 triangles and ðn�2Þðmþ1Þðmþ2Þ=2 tessellated points. Con-
sequently, the size of GPU task lookup table is small because it is easy to
assign the thread tasks.

In our implementation, one thread block which contains 128 threads
will tessellate one sub-polygon. If its tessellated points are less than 128,
some of the threads will be idle. Otherwise some threads will evaluate
more than one tessellated point. For each tessellated point, its normal
will also be evaluated accordingly for high quality rendering of the
trimmed Bézier surfaces. Since each thread block will process one sub-
polygon, the corresponding evaluation matrices for points and normals
can be loaded to shared memory. The shared matrices can greatly
improve the tessellation performance. The procedure of GPU tessellation
of trimmed Bézier surfaces is:

1. Construct a task lookup table.
2. Transfer the task lookup table necessary to device (GPU)

memory.
3. Call a CUDA kernel to start the calculation. The thread block

amount equals to the amount of sub-polygons, each block
contains 128 threads.

4. For each thread block, compute the Bézier point and normal
evaluation matrices and transfer them to shared memory.

5. Each thread obtains its evaluation task according to its block-
Idx and threadIdx in the task lookup table.

6. Each thread evaluates a tessellated point and its normal.

3.4. Optimizations of the algorithm

The algorithm above can be optimized further. The evaluation
of the control points of the Bézier surfaces can be simplified by
matrix manipulation. The task arrangement of the trimmed Bézier
surfaces’ tessellation can be redesigned for better performance.
The details of optimization are described as follows.

First, from formula (3) and (4), we obtain

Pcp ¼ B�1
ns

PðB�1
nt
Þ
T

ð8Þ

where

Bns ¼

ns

0

� �
ð1�s0Þ

ns
ns

1

� �
s0ð1�s0Þ

ns�1
� � �

ns

ns

 !
sns

0

ns

0

� �
ð1�s1Þ

ns
ns

1

� �
s0ð1�s1Þ

ns�1
� � �

ns

ns

 !
sns

1

^ ^ & ^

ns

0

� �
ð1�sns Þ

ns
ns

1

� �
s0ð1�sns Þ

ns�1
� � �

ns

ns

 !
sns

ns

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
ð9Þ

Bnt ¼

nt

0

� �
ð1�t0Þ

nt
nt

1

� �
t0ð1�t0Þ

nt�1
� � �

nt

nt

 !
tnt

0

nt

0

� �
ð1�t1Þ

nt
nt

1

� �
t0ð1�t1Þ

nt�1
� � �

nt

nt

 !
tnt

1

^ ^ & ^

nt

0

� �
ð1�tnt Þ

nt
nt

1

� �
t0ð1�tnt Þ

nt�1
� � �

nt

nt

 !
tnt

nt

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
ð10Þ

Fig. 4. Tessellation pattern of parametric domains of trimmed Bézier surface

patches.
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So, Bns can be factored as follows:

Bns ¼ Sns Dns ð11Þ

where

Sns ¼

ð1�s0Þ
ns s0ð1�s0Þ

ns�1
� � � sns

0

ð1�s1Þ
ns s1ð1�s1Þ

ns�1
� � � sns

1

^ ^ & ^

ð1�sns Þ
ns sns ð1�sns Þ

ns�1
� � � sns

ns

0
BBBB@

1
CCCCA ð12Þ

Dns is a diagonal matrix:

ns

0

� �
0 � � � 0

0
ns

1

� �
� � � 0

^ ^ & ^

0 0 � � �
ns

ns

 !

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð13Þ

Similarly, Bnt can be factored as follows:

Bnt ¼ Tnt Dnt ð14Þ

By substituting (11) and (14) into (8), we obtain

Pcp ¼ B�1
ns

PðB�1
nt
Þ
T

¼ ðSns Dns Þ
�1P½ðTnt Dnt Þ

�1
�T

¼D�1
ns

S�1
ns

PðD�1
nt

T�1
nt
Þ
T

¼D�1
ns

S�1
ns

PðTT
nt
Þ
�1
ðDT

nt
Þ
�1

ð15Þ

Second, the tessellated points of the trimmed Bézier surfaces
can be evaluated using the following formula:

Pðsl,tlÞ ¼ SlDns PcpDT
nt

TT
l , 1r lrq ð16Þ

Where ðsl,tlÞ is the parameter of the tessellated point,
q¼ ðmþ1Þðmþ2Þ=2 is the number of tessellated points, m is the
tessellation resolution.

Sl ¼ ½ ð1�slÞ
ns slð1�slÞ

ns�1
� � � sns

l �, 1r lrq ð17Þ

Tl ¼ ½ ð1�tlÞ
nt tlð1�tlÞ

nt�1
� � � tnt

l �, 1r lrq ð18Þ

By substituting (15) into (16), we obtain

Pðsl,tlÞ ¼ SlDns D
�1
ns

S�1
ns

PðTT
nt
Þ
�1
ðDT

nt
Þ
�1DT

nt
TT

l

¼ SlS
�1
ns

PðTT
nt
Þ
�1TT

l , 1r lrq ð19Þ

Thus the formula B�1
ns

PðBT
nt
Þ
�1 of computing the Bézier surfaces

control points described in Section 3.2 can be rewritten as
S�1

ns
PðTT

nt
Þ
�1. Just like fB�1

k g
9
k ¼ 1, the matrices fS�1

k g
9
k ¼ 1 and

fT�1
k g

9
k ¼ 1 can be pre-computed. The dimensions of B�1

ns
and S�1

ns

are the same; the dimensions of ðB�1
nt
Þ
T and ðT�1

nt
Þ
T are the same

too. In brief, the dimensions of all three matrices are unchanged.
Thus, the optimized algorithm is almost the same with the
algorithm in Section 3.2 except that S�1

ns
replaces B�1

ns
and ðTT

nt
Þ
�1

replaces ðBT
nt
Þ
�1.

Similarly, the tangent vector in s direction is

Puðsl,tlÞ ¼
@Sl

@s
S�1

ns
PðTT

nt
Þ
�1TT

l , 1r lrq ð20Þ

The tangent vector in t direction is

Pvðsl,tlÞ ¼ SlS
�1
ns

PðTT
nt
Þ
�1 @TT

l

@t
, 1r lrq ð21Þ

The normal of the tessellated point is

Nðsl,tlÞ ¼ Puðsl,tlÞ � Pvðsl,tlÞ, 1r lrq ð22Þ

If we adopted the algorithm in Section 3.3 to tessellate the
trimmed Bézier surfaces, the evaluation formula is

Rðsl,tlÞorigin ¼ SlDns B
�1
ns

PðB�1
nt
Þ
TDT

nt
TT

l , 1r lrq ð23Þ

It contains six matrix multiplications, while the optimized
formula (19) contains only four matrix multiplications. The
matrices for computing the tessellated points and normals from
Bézier surface definition can be omitted. The costs of transferring
them to shared memory for each thread block are also saved,
which is the 4th step in the tessellation algorithm. What’s more,
there is a drawback in the algorithm described in Section 3.3: one
thread block which contains 128 threads handles one Bézier
surface. If the number of the tessellated points is much less than
128, most of the threads will be wasted. While according to the
optimized formula (19), we can rearrange the tasks in the
following way: each thread handles one tessellated point no
matter which surface it belongs to. The new arrangement will
make full use of threads in each block. Fig. 5 shows the efficiency
difference between these two algorithms. Each color block shows the
relative position of the working threads in the CUDA thread block.
TTBP means Triangular Trimmed Bézier Patch mentioned in Section
3.3. Fig. 6 shows the input and output of this Bézier surface
tessellation kernel. Our implementation results show that the opti-
mized algorithm is faster one fold than the unoptimized one in
Section 3.3. Thus the optimized algorithm becomes more efficient.

In formula (19), we represent the matrices S�1
ns

and ðTT
nt
Þ
�1 in

terms of the Bernstein basis except for the combinatorial num-
bers. This helps to improve the numerical stability of the algo-
rithm. If the power basis is adopted in the optimized algorithm
(19), the condition numbers of fS�1

k g
9
k ¼ 1 would be very large. As a

result, the numerical error in the tessellated point will be so large
that the tessellated triangles will not be watertight. According to
our test, the condition number of fS�1

k g
9
k ¼ 1 in terms of the

Fig. 5. The efficiency comparison between the original algorithm and the

optimized one. (a) Original algorithm. (b) Optimized algorithm.

Fig. 6. The inputs and outputs of the Bézier surface tessellation kernel.
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Bernstein basis is much smaller than that of the power basis. The
comparison of condition numbers between power basis and
Bernstein basis is shown in Table 1. In this way, the numerical
error problem can be overcome and watertight tessellation result
can be obtained.

3.5. Rendering the generated triangles using vertex buffer object

After the tessellation step above, all the tessellated vertices,
normals and their topological connectivity are stored in the
graphics memory in terms of CUDA result. It is an efficient
solution to map the OpenGL buffer objects into the address space
of our CUDA result, and then render the tessellated trimmed
Bézier surfaces in terms of vertex buffer object [24]. The render-
ing approach provides very efficient performance because the
geometry data is stored in the graphics memory and does not

need to be transferred from main memory to graphics memory
via PCI bus.

4. Implementation results and discussion

4.1. Comparison with the CPU algorithm

We implemented the proposed algorithm on a PC with Intel
Core i5 760@2.8 GHz, 4 GB Memory and NVIDIA GeForce GTX
465 GPU. The operating system is openSUSE 12.1. The CPU part of
our algorithm is implemented by Cþþ and the GPU part is
implemented by CUDA C. We also integrated the direct manip-
ulation of FFD algorithm [25] into our system. Some examples are
shown in Figs. 7–11, among which Fig. 9 is an example of direct
manipulation of FFD. In Fig. 10, the difference between FFD result
and our result is inconspicuous because the size of each face of
the original model is small, the aliasing problem in the deforma-
tion is not so serious. However, the differences will be manifested
if we zoom the model and observe the geometric details. As an
example, the detailed CPU and GPU run time comparisons of the
model ‘‘chair’’ in Fig. 9 are given in Tables 2 and 3.

Although the proposed GPU acceleration algorithm requires
slightly overhead in the preprocessing step, the user interaction is
much faster than the CPU algorithm. To compute the matrix
S�1

ns
PðTT

nt
Þ
�1, the GPU algorithm is more than 50 times faster than

the CPU algorithm. In the trimmed surfaces tessellations and
rendering steps, the GPU algorithm is about 200 times faster than
the CPU algorithm. Even for a simple model of 1536 triangles in
Fig. 7, it is almost impossible to achieve interactive deformation

Table 1

Comparison of condition numbers of matrices S�1
ns

and ðTT
nt
Þ
�1.

Matrix

size

Condition number

Power basis Bernstein basis

2�2 3.61 1.41

3�3 19.65 4.92

4�4 110.25 14.56

5�5 626.71 50.84

6�6 3588.06 180.94

7�7 20,633.22 661.73

8�8 118,998.85 2451.94

9�9 687,713.37 9181.65

Fig. 7. A square seat and its deformation results. (a) Original model, (b) FFD result and (c) Our result.

Fig. 8. A side table and its deformation results. (a) Original model, (b) FFD result and (c) Our result.
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with CPU. But the GPU algorithm can deform the coke model in
Fig. 11 at above 20 fps, which contains 14,153 triangles.

4.2. Comparison with the tessellation shader algorithm

Tessellation shaders have been added in OpenGL since version 4.0.
Of course, the trimmed Bézier can be tessellated via tessellation
shaders. For the sake of comparison, we implement three trimmed
Bézier surface tessellation algorithms using tessellation shaders. In
the 1st algorithm, we evaluate every sampling point and its normal
by the de Casteljau algorithm in the tessellation evaluation shader. In
the 2nd algorithm, we evaluate every sampling point and its normal

by matrix multiplication in the tessellation evaluation shader. In the
3rd algorithm, we first calculate the middle three matrices of Eq. (19)
by CUDA and store them. In this way, we can calculate the sampling
points and their normals in the tessellation evaluation shader by
fewer matrix multiplications.The detailed runtime statistics are given
in Table 4. It indicates that the proposed CUDA algorithm is much
faster than the three tessellation shader algorithms.

4.3. Comparison with the uniformly up-sampling algorithm

As described in Section 2, we can obtain the same rendering
result of Accurate FFD by uniformly up-sampling the polygonal

Fig. 9. A chair and its deformation results. (a) Original model, (b) FFD result and (c) Our result.

Fig. 10. A fish and its deformation results. (a) Original model, (b) FFD result and (c) Our result.

Fig. 11. A coke tin and its deformation results. (a) Original model, (b) FFD result and (c) Our result.
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object and deforming these up-sampling points directly. In this
up-sampling approach, the deformation result is triangular
meshes, rather than analytical trimmed Bézier patches. Obviously,
the algorithm can also be implemented via CUDA, which is called
UUS algorithm for short. All of the sampling points in the UUS
algorithm are computed via B-spline volume evaluations. How-
ever, the sampling points in our algorithm are computed via

Bézier surface evaluations. It is reasonable to guess that the
proposed algorithm is more efficient than the UUS algorithm
because the Bézier surface is defined via a bivariate function
while the B-spline volume is via a trivariate one. However, there
is an overhead in the proposed algorithm: reconstruction of the
Bézier surfaces. Thus when the number of the sampling points is
small, our algorithm maybe slower than the UUS algorithm. But if
the number of the sampling points becomes larger, the evalua-
tions of the sampling points will dominate the computational
time. Our algorithm will manifest its efficiency. In what follows,
we will analyze the complexities of UUS algorithm and the
proposed algorithm, especially when the number of the sampling
points varies. Assume that the polygonal object will be deformed
as M trimmed Bézier patches. Each patch will be tessellated by P

up-sampling points. The B-spline volume’s degree is ku � kv � kw,
so its order is ru � rv � rw ¼ ðkuþ1Þ � ðkvþ1Þ � ðkwþ1Þ.

So, the time complexity of evaluating one point in the B-spline
volume in terms of MAD operation is

T ¼ ðr2
wþ3rurvrwþr2

vþ3rurvþr2
uþ3ruÞ ð24Þ

Where a MAD operation means an arithmetic multiply and add
operation. In the UUS algorithm, all of calculations are the
evaluations of 3MP points in the B-spline volume, where ‘‘3’’
means one deformed point and two auxiliary points for the
normal estimation. Its complexity in terms of MAD operation is
3MPT.

In the proposed Accurate FFD algorithm, we assume all the Bézier
surfaces are of maximum degree ns � nt ¼ ðkuþkvÞðkuþkvþkwÞ,
which is the worst case [11]. First, for each Bézier surface, ðnsþ1Þ �
ðntþ1Þ points in the B-spline volume should be evaluated to
determine its control points fPi,jg

ns nt

i ¼ 0 j ¼ 0 as mentioned in Section
3.2. In fact, we do not compute the control points fPi,jg

ns nt

i ¼ 0 j ¼ 0

explicitly according to the optimized algorithm in Section 3.4. Second,
several trimmed Bézier patches may share one Bézier surface. Thus
only evaluation of ðnsþ1Þ � ðntþ1Þ B-spline volume points is neces-
sary and the complexity of the worst case is Mðnsþ1Þðntþ1ÞT . Third,
for each trimmed Bézier patch, multiplication of three matrices
should be implemented, which is S�1

ns
PðTT

nt
Þ
�1 as mentioned in

Section 3.4. Its complexity is

M½ðnsþ1Þðntþ1Þ � ðnsþ1Þþðnsþ1Þðntþ1Þ � ðntþ1Þ�

¼M½ðnsþ1Þðntþ1Þðnsþntþ2Þ� ð25Þ

Finally, for each trimmed Bézier patch, the sampling points
and normals on the Bézier surface should be evaluated. It is
accomplished by matrix multiplications as mentioned in Section
3.4: SlS

�1
ns

PðTT
nt
Þ
�1TT

l , where S�1
ns

PðTT
nt
Þ
�1 has been finished in the

second step. The normal vector is the cross-product of two
tangent vectors, which can be evaluated by the same way. Thus

Table 2
Loading time statistics of model ‘‘chair’’ in Fig. 9.

Parameter GPU time (ms) CPU time (ms)

Load model 31

Allocate memory 38

Define initial B-spline volume: degree 3�3�3, control points 9�9�9 o1

Copy knot vectors and control points from main memory to GPU memory o1 –

Subdivide model according to knot vectors 191

Mark coplanar sub-polygons 12

Calculate coplanar sub-polygons’ bounding boxes 4

Generate a GPU task list for calculating S�1
ns

PðTT
nt
Þ
�1 2 –

Load Bézier surfaces’ information to GPU memory 5 –

Load the GPU task list of S�1
ns

PðTT
nt
Þ
�1 calculation to GPU memory 102 –

Generate a GPU task list for tessellating the trimmed Bézier surfaces 16 –

Load the subdivision results to GPU memory 7 –

Total 408 276

Table 3
Runtime statistics of interactive Accurate FFD (ms).

Model (triangles) Seat (1536) Table (2336) Chair (3878) Fish (7066) Coke (14,513)

Computing device CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

Edit control points o1 o1 o1 o1 o1 o1 o1 o1 o1 o1

Copy control points to GPU – o1 – o1 – o1 – 1 – 1

Calculate S�1
ns

PðTT
nt
Þ
�1 66 1 80 1 235 4 457 7 1073 15

Evaluate sampling points and normals – 2 – 4 – 6 – 9 – 24

Render the deformed object 710 1 1271 2 1798 2 2598 4 5850 8

Total 776 4 1351 7 2033 12 3451 21 4193 48

Table 4
Runtime comparisons between CUDA and shader algorithms (ms).

Model

(triangles)

Seat

(1536)

Table

(2336)

Chair

(3878)

Fish

(7066)

Coke

(14,513)

1st algorithm 58 79 196 355 1016

2nd algorithm 38 56 109 185 497

3rd algorithm 16 23 47 79 203

CUDA 4 7 12 21 48
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its complexity is

3MP½ðnsþ1Þðntþ1Þþðntþ1Þ� ¼ 3MPðnsþ2Þðntþ1Þ ð26Þ

For simplicity, we assume that ku ¼ kv ¼ kw ¼ k. The complex-
ity comparison in terms of numbers of MAD operations between
the UUS algorithm and the proposed Accurate FFD algorithm are
given in Table 5 and Fig. 12.

Fig. 12 shows the time complexity comparison of the two
algorithms intuitively.

From the theoretical comparison above, we can conclude that
the Accurate FFD algorithm is faster than the UUS one in the case
of rendering the deformation result. Furthermore, the representa-
tion of the deformation result of the Accurate FFD, i.e., trimmed
Bézier patches, is more compact than those of the UUS algorithm,
i.e., densely sampled triangular meshes. In the UUS algorithm, all
of the sampling points on the deformed object are obtained via

the B-spline volume evaluations. In the proposed Accurate FFD
algorithm, all of the sampling points on the deformed object are
obtained via the Bézier surface evaluations, which is cheaper than
the B-spline volume evaluations. In addition, there are a lot of

matrix operations in the Accurate FFD algorithm. These matrices
can be shared among threads for the sake of high performance.
But the shared data in the UUS algorithm is relatively fewer. This
difference makes the performance gap between these two algo-
rithms larger. The only disadvantage in the Accurate FFD algo-
rithm is the overhead of the preprocessing step, i.e. computing the
Bézier surfaces. For the rendering and interaction purposes, the
preprocessing step can be omitted, which is replaced by a matrix
multiplication S�1

ns
PðTT

nt
Þ
�1. Our implementation results also prove

the above conclusion as shown in Table 6. In general, the Accurate
FFD algorithm is three times faster than the UUS ones.

5. Conclusion

In this paper, we proposed a GPU acceleration of the Accurate
FFD algorithm. By carefully analyzing the algorithm, the control
points of the resulting Bézier surface do not need to be computed
explicitly. Furthermore, the optimized scheme to tessellate the
trimmed Bézier surface is more efficient and numerically stable
than the trivial one. As a result, we can achieve interactive
Accurate FFD on GPU.

There are several aspects to improve the proposed GPU
algorithm further. The density of tessellated points is a constant
for all the trimmed Bézier patches. It is a simple solution,
especially for GPU implementation. Obviously, it is an inefficient
solution. If the sizes of trimmed Bézier patches are different, we
should adopt the tessellation factor according to the largest patch
for the sake of good visual effect. As a side-effect, too much tiny
triangles may be produced, which will be the wastes of comput-
ing and memory resources. In the future, we will design an
adaptive tessellation algorithm to handle this. Another potential
improvement relates to the GPU. We implemented our algorithm
using CUDA, which requires G80 or newer NVIDIA GPUs. It is
platform-dependent. In the future, we will implement the
algorithm with OpenCL or DirectCompute so that it can be
applicable to both AMD and NVIDIA GPUs.

Table 5
Complexities of UUS algorithm and Accurate FFD in terms of number of MAD

operations.

P k¼1 k¼2 k¼3

UUS Accu FFD UUS Accu FFD UUS Accu FFD

10 1620 1212 4320 6720 9000 24,590

20 3240 1692 8640 7980 18,000 26,990

30 4860 2172 12,960 9240 27,000 29,390

40 6480 2652 17,280 10,500 36,000 31,790

50 8100 3132 21,600 11,760 45,000 34,190

60 9720 3612 25,920 13,020 54,000 36,590

70 11,340 4092 30,240 14,280 63,000 38,990

80 12,960 4572 34,560 15,540 72,000 41,390

90 14,580 5052 38,880 16,800 81,000 43,790

100 16,200 5532 43,200 18,060 90,000 46,190

Fig. 12. Time complexity comparison between UUS and Accurate FFD.
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Table 6
Implementation comparison between the Accurate FFD and the UUS algorithms.

Model (triangles) Table (2336) Chair (3878) Fish (7066) Coke (14,513)

Degree of B-spline spline volume 2�2�2 3�3�3 2�2�2 3�3�3 2�2�2 3�3�3 2�2�2 3�3�3

Num of sampling points (P) 21 105 36 105 21 105 36 105 21 105 36 105 21 105 36 105

Accurate FFD (ms) 1 2 2 3 2 3 4 6 3 6 8 13 6 14 18 29

UUS (ms) 8 9 9 14 8 13 14 22 9 24 23 39 18 48 45 78
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