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Abstract

Disparity estimation in ill-posed regions, such as occlusions, repetitive patterns

and textureless regions, is a challenging problem in stereo matching. The initial

disparities obtained in these regions tend to be regarded as outliers that must

be detected and addressed. In this paper, two outlier detection methods are

proposed, i.e., the efficient approach and the accurate approach. The efficient

approach detects outliers by exploring the disparity map for the left image only

and reduces runtime and memory costs. First, the match fixed point jumps

(MFPJ) algorithm is proposed as an initial solution to detect outliers. Then,

a high-probability outlier detection algorithm is proposed to accomplish denser

outlier detection with less noise. The accurate approach first classifies outliers as

occlusions or mismatches. Then, 3D label assignment is performed for occlusion

outliers and normal-based plane fitting is conducted for mismatch outliers to

refine the disparities of the outliers and to achieve an accurate stereo matching

result. Evaluations of the Middlebury datasets demonstrate that the proposed

methods effectively improve the stereo matching performance.

Keywords: Outlier detection, Stereo matching, Match fixed point jumps,

Normal-based plane fitting

1. INTRODUCTION

Stereo matching is a fundamental problem in computer vision that has re-

ceived increasing attention in the literature in recent decades. Consider two
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images taken from two horizontal cameras as input. The goal of stereo match-

ing is to identify the disparity d of one point at position (x, y) in the left image

such that the corresponding point appears at position (x − d, y) in the right5

image. Once the disparity d is obtained, the depth z of the pixel can be com-

puted in the 3D scene as follows: z = fB/d, where f is the focal length of the

camera and B is the baseline length (the distance between the centers of the two

cameras). Scharstein and Szeliski [1] describe a taxonomy for stereo matching.

According to the taxonomy, a stereo algorithm consists of four steps: matching10

cost computation, cost aggregation, disparity computation (optimization) and

disparity refinement. One challenging problem in stereo matching is to find the

corresponding points in ill-posed regions, e.g., occlusions, textureless regions,

repetitive patterns and slanted regions. Many attempts have been made to

accurately find the corresponding points. These studies mainly focus on the15

definition of the matching cost function [2, 3, 4] or the subsequent optimization

[5, 6, 7] to enhance the performance of stereo matching. When investigating the

above stereo matching algorithms, outlier detection and disparity refinement

are nonnegligible components that can further improve the accuracy of stereo

matching.20

This paper studies outlier detection and the disparity refinement of outliers

in stereo matching. Two approaches are proposed, i.e., the efficient approach

and the accurate approach. The efficient approach detects outliers by exploring

the disparity map for the left image only, thereby reducing the runtime and

memory costs by approximately one-half. Compared with traditional efficient25

outlier detection methods, the proposed approach yields dense and accurate out-

lier detection results. The accurate approach first classifies outliers as occlusions

or mismatches, and the classification guides the following disparity refinement

step. Two refinement strategies are presented in the accurate approach, i.e.,

3D-label assignment for occlusion outliers and normal-based plane fitting for30

mismatch outliers. As a result, the stereo matching performance is enhanced

by the specific disparity refinement strategies.

The remainder of this paper is organized as follows. Closely related work
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is reviewed in Section 2. The matching cost initialization and disparity op-

timization are described in Section 3. The efficient and accurate approaches35

are described in detail in Section 4. The experimental results and discussion

are presented in Section 5. Finally, conclusions are drawn and further research

directions are discussed in Section 6.

2. RELATED WORK

A large volume of studies on stereo matching have been published; we review40

the closely related literature.

Kong and Tao [8] first utilize the sum of absolute differences (SAD) or the

sum of squared differences (SSD) to compute the matching cost. Zabih and

Woodfill [9] use the census transform, which considers not only the information

of the current pixel itself but also that of its neighbors, to define the matching45

cost. Mei et al. [2] combine the absolute differences (AD) and census transform

to define a robust matching cost, namely, the AD-census matching cost. The

normalized cross-correlation (NCC) [10] is another robust matching cost that is

invariant to linear variation in illumination. Žbontar and LeCun [11] compute

the matching cost by training a convolutional neural network (CNN), and their50

data-driven similarity measurement outperforms most traditional hand-crafted

metrics. Many recent algorithms [12, 13, 14] utilize this data-driven matching

cost and achieve state-of-the-art stereo matching results. In this paper, we also

adopt the matching cost trained by a CNN as the input.

In general, the initial matching cost is sensitive and noisy. Thus, the costs55

are usually aggregated in a support region. Yoon and Kweon [15] aggregate

the matching costs via an adaptive weight. The weight is based on color and

spatial differences between a neighboring pixel and the center pixel in a fixed

window. Zhang et al. [16] propose cross-based cost aggregation in an adaptive

support region with a constant weight. He et al. [17] propose a guided image60

filtering algorithm that is a constant-time and edge-aware filter that can produce

accurate stereo matching results. These methods implicitly make the frontal-
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parallel surface assumption that all the points belonging to the support region

share the same disparity. However, this assumption is sometimes violated in

practice. Bleyer et al. [18] use Patch-Match stereo matching with a slanted65

support window to overcome this problem. Lu et al. [19] propose a Patch-

Match filter algorithm to accelerate the original Patch-Match algorithm. The

approach adopts the super-pixel as the unit of computational cost and achieves

a time complexity of approximately O(1). Taniai et al. [12] infer per-pixel 3D

plane labels on a pairwise Markov random field by using local expansion moves70

and achieve an accurate stereo matching result.

After the cost aggregation step, the initial disparity map can be computed

using a winner-take-all (WTA) strategy or some other disparity optimization

strategy. The initial disparity map contains many outliers, and extensive re-

search has been conducted on outlier detection in stereo matching. Outliers75

in stereo matching are mainly caused by occlusions or mismatches. Five out-

lier (mainly occlusion) detection methods are summarized in a previous survey

[20]: bi-modality (BMD) [21, 22], match goodness jumps (MGJ) [23], ordering

(ORD) [24, 25] constraint, occlusion constraint (OCC) [26], and left-right check-

ing (LRC) [27, 28, 29]. BMD, MGJ, ORD and OCC do not require computation80

of the disparity map for the right image, rendering these methods memory-and-

time efficient, especially for large stereo images. However, the outlier detection

results of this type of method are usually sparse and noisy and are not suitable

for highly accurate stereo matching. In this paper, a high- probability outlier

detection algorithm, in which the detection results are denser, less noisy and85

more accurate, is proposed to overcome this problem. LRC utilizes additional

information of the disparity map from the right image. LRC can detect outliers

densely, and the outliers can also be classified as occlusions and mismatches.

However, the classification is not always accurate because LRC detects outliers

only at the pixel level. Some outliers (especially occlusion outliers) tend to ap-90

pear regionally. The proposed accurate outlier detection first classifies outliers

reasonably and accurately and then processes occlusion outliers and mismatch

outliers with different disparity refinement algorithms and achieves accurate
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stereo matching.

Outlier detection is akin to confidence measure detection in stereo vision.95

One point in the image tends to be an outlier when the confidence value of

that point is low. Hu and Mordohai [30] evaluate several confidence measures

in stereo vision. Some of the approaches in [30] compute the confidence value

of a single point by comparing the minimum cost and the second minimum cost

[31, 32, 33], whereas some approaches explore the shape of the cost curve [33].100

Other approaches compute the confidence value by treating the value assigned

to each potential disparity as a probability for the disparity [34, 35]. Yoon et al.

[36] use the distinctiveness of points as a confidence measure. Hu and Mordohai

[30] also propose a measure called left-right difference (LRD) that considers

both the two smallest minima of the costs and the consistency of the minimum105

costs across two images to obtain a robust confidence measure.

All these methods detect outliers based on ‘abnormal phenomena’. These

phenomena are distinguished by the matching cost (e.g., MGJ) or the disparity

(e.g., BMD, ORD and the visibility constraint), while LRC identifies outliers by

detecting disparities in the left image that are in conflict with the disparities of110

the corresponding points in the right image. In this paper, the aim is to design

a method to detect outliers more efficiently and accurately and to facilitate the

subsequent disparity refinement step is designed to produce a more accurate

stereo matching result.

3. MATCHING COST COMPUTATION AND DISPARITY OPTI-115

MIZATION

Fig. 1 illustrates the whole algorithm of the proposed method. The details

of each part of the proposed method will be described in the following sections.

3.1. Matching cost computation

Let IL and IR be the left image and the right image, respectively. The

purpose of the proposed method is to estimate the disparities of the left image
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Figure 1: The flowchart of the proposed method

robustly. First, we initialize the matching cost. The position of a point in the

image is denoted by a lowercase letter, such as p or q. A point p(px, py) in the

left image matches the point q(px−d, py) in the right image with disparity d, and

the point-wise matching cost is denoted by C(p, d). We adopt the convolutional

neural network (CNN) approach in [11] to compute the matching cost:

C(p, d) = CCNN (RL(x, y), RR(x− d, y)) (1)

where CCNN (·, ·) is the predicted similarity measure obtained by the trained120

CNN. The cost is computed between the 11∗11 image patch RL centered at

pixel p of IL and the image patch RR centered at the corresponding pixel of IR.

3.2. Slanted patch matching

The initial matching cost is not generally robust. For accurate stereo match-

ing, we aggregate the matching costs in slanted support windows [18]. For each

point p(px, py), the goal is to identify a fitting plane such that the disparity of

p can be computed as follows:

dp = ap · px + bp · py + cp (2)

where ap, bp and cp are three parameters of the plane. The tuple (ap, bp, cp) is

called a 3D label. We then utilize the local expansion moves proposed in [12] to125

optimize each pixel’s 3D label in both the left and right images and obtain the

disparity maps DL and DR, respectively.
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4. OUTLIER DETECTION AND DISPARITY REFINEMENT AP-

PROACHES

Two approaches are proposed in this section to address the trade-off between130

the computing time and accuracy. The efficient approach, which does not need

to compute the disparity map for the right image, is tuned for runtime and mem-

ory consumption and reduces the time and memory expenses by approximately

one-half. The accurate approach improves the initial LRC outlier detection map

by distinguishing occlusion and mismatch outliers more reasonably. Then, two135

different disparity refinement approaches, i.e., 3D label assignment for occlusion

outliers and normal-based plane fitting for mismatch outliers, are proposed for

better stereo matching performance.

4.1. The efficient approach

In this section, we introduce an efficient outlier detection approach. First,140

match fixed point jumps (MFPJ), which utilizes the cost volume information of

the left image to detect initial outliers, is proposed. Then, a high-probability

outlier detection algorithm is presented to obtain a denser and less noisy outlier

detection result.

4.1.1. Match fixed point jumps145

In this step, the outliers are detected by using the proposed MFPJ. In MFPJ,

the confidence of a point p is defined as follows:

CMFPJ(p) = min
pn∈N

{C(pn, dn)} − C1(p, d) (3)

where C1(p, d) is the minimum matching cost between point p and its corre-

sponding pixel p′, pn is a neighboring point of p in a window N centered at p,

and C(pn, dn) is the matching cost between pn and p′. The confidence defined

in Equation 3 indicates that if the point’s minimum cost C1(p, d) is relatively

high, then a high probability exists that the point does not have a good match-150

ing point, indicating that the point is likely to be an outlier (the confidence

is low). Note that this method differs from LRD in [30], which considers the

7



consistency of the minimum costs across the two images. We utilize only the left

cost volume information and do not search the whole disparity range (which is

usually greater than 100 in current stereo pairs). Thus, the method is efficient.155

Many confidence measures, such as MGJ [20], consider the relative magni-

tude of a point’s minimum costs, for example by comparing the relative magni-

tude of the current point’s minimum cost and the neighboring points’ minimum

costs. However, the proposed method differs from MGJ to some extent. Fig.

2 illustrates the difference between MFPJ and MGJ. MGJ compares the cur-160

rent point’s minimum cost and the neighboring points’ minimum costs, whereas

MFPJ compares the current point’s minimum cost and the costs of matching

the neighboring points to a fixed point.

(a) (b)

Figure 2: An illustration of MGJ and MFPJ. p and p′ denote corresponding points, as well

as pn and p′n. (a) MGJ defines the confidence using the minimum costs among the point

pair (p, p′) and its neighboring pairs (for example, (pn, p′n)); (b) MFPJ defines the confidence

using the minimal costs among the point pair (p, p′) and the costs of the pairs composed of

the neighboring point (pn for instance) and the fixed point p′, i.e., (pn, p′).

However, if significant photometric variation exists between the matched

features, MGJ tends to detect a false signal [20]. Fig. 3 shows an example.165

In the circled region, strong photometric variation exists near the edges of the

books on the bookshelf. The detection result of MGJ is noisy, while that of the

proposed MFPJ method is reasonable.

The reason that MFPJ achieves a better result is because in regions with

significant photometric variation, points with different colors may have different170

magnitudes of minimum costs, which may mislead outlier detection. Thus, MGJ

tends to pick up wrong signals. When the MFPJ method determines whether

one point is an outlier, the corresponding point in the right image is fixed, and
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(a) (b) (c)

Figure 3: Comparison of the outlier detection results of MGJ and MFPJ. (a) Raw image;

(b) the outlier detection result of MGJ, where the bright points denote outliers, and (c) the

outlier detection result of MFPJ, which has substentially less noise than the MGJ result

only the costs of the neighboring points matched with this point are adopted

for comparison. Thus, wrong signals are not picked up in this case.175

Let M denote the outlier map detected by MFPJ. For each point, when

the confidence is lower than a threshold, the point is regarded as an outlier, as

follows:

M(p) = 1 {CMFPJ(p) < η} (4)

where 1 {·} is the indicator function, and η is a threshold. The choice of all

the parameters will be discussed in Section 5.4. In the following sections, we

improve this outlier map and achieve more accurate outlier detection results.

4.1.2. High-probability outlier detection

In Section 4.1.1, we demonstrate that the MFPJ strategy has advantages180

over MGJ. However, the detection result is still relatively noisy and sparse,

especially for some large-sized images, as shown in Fig. 4(b). Actually, this is

a universal problem with outlier detection methods that explore the disparity

map for the left image only. In this section, a high-probability outlier detection

method is proposed to address this problem.185

Since the detection result of MFPJ is still noisy and sparse, the defect should

be remedied. Ordering constraint (ORD) [20] can be adopted to detect the

ordering of points in both the left and the right images. The basic idea of this
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algorithm is that the order of the points in a scanline in the left image should be

consistent with that of the corresponding points in the right image. Any point190

that violates this rule is regarded as an outlier. The ORD detects a point’s

order from the disparity map DL computed in Section 3.2. The detection result

is shown in Fig. 4(c). For some occlusion pixels (circled), the disparities still

obey the ordering constraint and the ORD cannot detect them. However, the

outlier map of the ORD has less noise than that of MFPJ; thus, this map can195

be adopted as a guidance map to improve the result of MFPJ.

(a) (b)

(c) (d)

Figure 4: Outlier detection results. (a) Raw image of Adirondack; (b) the outlier map detected

by MFPJ is still noisy and sparse; (c) in the outlier map detected by the ORD, some occlusion

outliers shown in the circled regions are missed; and (d) the high-probability outlier detection

result. The outlier map is denser than the MFPJ and ORD maps

Let O denote the outlier map detected by ORD. For each outlier p(px, py) in

M, we compute the numbers of outliers in the local window centered at p in M
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and in O, respectively, and define the probability of the point p being an outlier

as:

P (px, py) =
α ·NM (px, py) + (1− α) ·NO(px, py)

N
(5)

where NM (px, py) and NO(px, py) are the numbers of outliers in M and O

centered at (px, py), N is the size of the local window, and α is a constant value.

We define point p as a high-probability outlier when P (px, py) is greater than a

threshold µ. The parameters will be analized in Section 5.4200

To achieve a dense outlier detection result, we fill the black points that

are surrounded by high-probability outliers since these points also tend to be

outliers. For each black point, we search the high-probability outliers along the

horizontal and vertical directions in a window centered on the black point. We

mark the black point as an outlier if and only if four high-probability outliers205

are found in the window. Fig. 4(d) illustrates the final outlier detection results

by using the proposed efficient approach.

4.2. The accurate approach

In this section, an accurate approach is proposed to detect outliers and refine

the outliers’ disparities more accurately than with the efficient approach. In this210

approach, first, the outlier map detected by the LRC is adopted as the input.

Then, the outliers are classified as occlusions or mismatches. Finally, a 3D label-

based disparity refinement is proposed to achieve accurate stereo matching.

4.2.1. Improved outlier classification

The LRC checks the disparity consistency of corresponding points and is

formulated as follows [29]:

∣∣DL(p)−DR(p−DL(p))
∣∣ ≤ 1 (6)

A point that violates Equation 6 is regarded as an outlier. The detected outliers215

are further classified as occlusions and mismatches. If one point violates Equa-

tion 6 for the current disparity but the point has any other candidate disparities

11



that are satisfied with Equation 6, then the point is a mismatch; otherwise, the

point is an occlusion [11].

However, the classification of mismatch and occlusion outliers via LRC is not220

always accurate. Fig. 5(b) illustrates an outlier map detected by LRC. In some

occlusion regions, the outliers are classified as mismatches, which will have a

negative impact on the subsequent disparity refinement. Through observation,

we find that occlusion points tend to appear together rather than in isolation,

as shown in Fig. 5(d). Thus, for each mismatch outlier p, we will reclassify it as225

an occlusion outlier if the ratio of the number of occlusion points in a window

centered at p is greater than a threshold κ, which will be discussed and deter-

mined in the Section5.4. The improved outlier map obtained via the improved

classification is illustrated in Fig. 5(c), which shows better classification than

that of LRC.230

4.2.2. 3D label assignment for occlusion outliers

In this subsection, each occlusion point is assigned a reliable 3D label to

enhance the stereo matching performance. For each occlusion point p, its clos-

est reliable points (not outliers) are searched along the horizontal and vertical

directions. One of these reliable points is selected to assign p a reliable 3D label.235

However, the search should be in the neighborhood of p since points that are

far away tend to lie in different planes. Thus, if a discontinuous boundary is

met, then the search should stop. The discontinuous boundaries can be deter-

mined via both texture edges and disparity edges. First, a texture edge map

and a disparity edge map are detected by the Canny operator and Sobel opera-240

tor respectively, as illustrated in Fig. 6(b) and Fig. 6(c). Clearly, the detected

texture edges are redundant for discontinuous boundaries. We alleviate this

problem with the help of detected disparity edges. For each texture edge point,

we search the corresponding neighboring points in the disparity edge map. If

the ratio of the number of neighboring disparity edge points is higher than a245

threshold ρ, which will be also discussed and determined in Section 5.4, then

the texture edge point will be regarded as a real discontinuous boundary point.
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(a) (b)

(c) (d)

Figure 5: Outlier map comparison between the LRC and the improved LRC. (a) Raw image

of Pipes; (b) the outlier map classified by the LRC, where the green and red points denote

occlusion and mismatch outliers, respectively; (c) the outlier map classified by the improved

LRC; and (d) the ground truth of the non-occlusion mask, where the gray points denote

occlusion points. The improved LRC classifies occlusion outliers more properly. (Best viewed

in color)

Fig. 6(d) illustrates the result of discontinuous boundaries.

Considering the detected discontinuous boundaries, the search for reliable

3D labels along the horizontal and vertical directions stops when a reliable 3D250

label is identified or a discontinuous boundary is met. Then, the disparity of

point p is obtained by assigning p a reliable 3D label. Here, the point with

the lowest disparity value is adopted as the point p’s filled-in disparity since

occlusion points tend to occur in the background.
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(a) (b)

(c) (d)

Figure 6: An example of discontinuous boundary detection. (a) Raw image of Plants; (b) the

texture edge map detected by the Canny operator; (c) the disparity edge map detected by

the Sobel operator; and (d) the discontinuous boundaries

14



4.2.3. Normal-based plane fitting for mismatch outliers255

The disparities of mismatch points also need to be refined. Here, a normal-

based plane fitting algorithm, which is based on the observation that mismatch

points often appear at the slanted planes, is proposed. In some disparity maps,

we find that the error pixels are usually at the slanted planes. Thus, refining

mismatch outliers with neighboring reliable points using a plane fitting strategy

is reasonable. Since we not only have the disparities of the reliable points but

also their 3D labels, the information of these 3D labels should be utilized in

the plane fitting strategy. For each mismatch point p, we search its closest

reliable points along the horizontal and vertical directions, as in Section 4.2.2.

Then, k(k 6 4) reliable points and their corresponding 3D labels are obtained.

The three components of the reliable point’s normal can be computed by nz =

1/
√
a2
q + b2q + 1, nx = −aq ·nz, ny = −bq ·nz, where q denotes the reliable point

and (aq, bq, cq) is its 3D label. Then, p’s normal is defined as the average of

the reliable points’ normals. A least-squares plane fitting strategy based on p’s

normal is then implemented for the new 3D label of mismatch point p:

min

n∑
i=1

[ap · qxi
+ bp · qyi − dqi + cp]

2

a2
p + b2p + 1

(7)

s.t. np =

k∑
i=1

nqi

k
(8)

where (qx, qy) is the position of the point q, dq is the disparity of q, (ap, bp, cp)

is p’s 3D label, and np is p’s refined normal. Note that the disparity of p is not

refined if we do not find any reliable point around it (k = 0). The disparity of p

is computed when assigning p a new 3D label. The proposed method considers

the information of neighboring reliable points’ 3D labels. In the slanted regions,260

plane fitting with only disparity information may not be sufficient to obtain an

accurate result. With the information of the neighboring 3D labels, the plane

fitting strategy is more robust for the refinement of disparities. The experi-

mental results demonstrate that the proposed approach can achieve accurate

disparity refinement.265
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4.2.4. Weighted median filter

Finally, the weighted median filter from [37] is adopted to refine the disparity

map. Let DN denote the disparity map obtained after normal-based plane

fitting. The final disparity map is refined as follows:

DM (p) = med
q∈Ω

{
ω(p, q)DN (q)

}
(9)

where ω(p, q) is a weight factor that depends on the Euclidian distance between

p and q in RGB color space, and Ω is the neighborhood region of p. DM (p) is

the final disparity map with our accurate approach.

5. EXPERIMENTAL RESULTS270

In this section, the proposed method is evaluated from various perspec-

tives, including the performance of the accurate approach in Section 5.2, the

performance of the efficient approach in Section 5.2, the performance of the

confidence measure in Section 5.3, and the parameter analysis in Section 5.4.

The MC-CNN-acrt matching cost computation [11] is executed on a personal275

desktop computer equipped with an Nvidia Titan X graphics card. The other

components of our stereo algorithm are executed on a personal computer with

an Intel(R) Core(TM) i5-4590 CPU with 3.30 GHz and 16 GB of RAM. The

Middlebury stereo dataset version 2014 [38] is adopted to evaluate our method

since it is a more challenging dataset than the older version of the Middlebury280

dataset.

5.1. Performance of the accurate approach

Some disparity maps obtained using our accurate approach on the Middle-

bury stereo dataset are shown in Fig. 7, which can help us to qualitatively

evaluate the proposed method. The proposed method can generate accurate285

disparity maps with sharp edges. Then, the proposed accurate approach is

compared with other state-of-the-art methods on the Middlebury stereo bench-

mark. Here, half-size images are adopted in our test since the memory of GPU
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limits the MC-CNN-acrt matching cost computation. The criteria bad 1.0 (%),

bad 2.0 (%), and bad 4.0 (%) for non-occluded (nonocc) regions and the whole290

image area (all) are adopted for the evaluations. The statistical results are

given in Table 1. As shown, more reasonable outlier classification and disparity

refinement results in more accurate disparity estimation. The proposed method

achieves a state-of-the-art result for both nonocc and all regions. As of May

2nd, 2018, the proposed accurate approach ranks 3rd in the criterion bad 4.0295

(%) (nonocc) and 2nd in all the other criteria.

Figure 7: Disparity maps of examples in the Middlebury dataset generated by the proposed

accurate approach. From left to right: left images, disparity maps and ground truth

The stereo matching accuracy between the LRC [29] approach and the pro-

posed accurate approach is then compared. The difference is that the former

uses LRC to detect outliers while the proposed accurate approach utilizes the

improved LRC. The criterion bad 2.0% is used to evaluate their performances.300

As shown in Fig. 8, the proposed accurate approach achieves a relatively supe-

rior result to that of the LRC approach since the improved LRC in the accurate

approach considers the regional information more appropriately.
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Average Error

bad 1.0 bad 2.0 bad 4.0 Runtime(s)

nonocc all nonocc all nonocc all

Ours-accurate 13.6 19.8 6.30 12.0 3.83 8.58 867

Ours-efficient 14.1 21.1 7.04 13.8 4.73 10.8 411

NOSS 12.9 19.5 5.82 11.9 3.67 8.73 1545

LocalExp [12] 13.7 19.9 6.52 12.1 4.07 8.69 846

SGM-Forest 14.8 21.9 7.01 13.7 3.73 9.55 64.6

3DMST [13] 15.1 21.5 7.08 12.9 4.43 9.22 167

APAP-Stereo 20.9 27.3 7.53 14.3 4.50 10.8 117

FEN-D2DRR [39] 16.7 23.8 7.89 14.1 3.98 8.53 73.3

PMSC [40] 16.4 23.0 8.20 14.2 5.15 10.0 579

LW-CNN [41] 16.6 25.7 8.31 17.8 4.89 14.1 224

MeshStereoExt [42] 18.4 26.2 9.32 16.8 5.53 12.0 133

MCCNN-Layout 18.0 27.0 9.34 18.6 5.21 14.3 300

OVOD 17.6 24.2 9.65 15.8 5.67 10.8 59.9

NTDE [43] 18.1 25.8 9.94 16.9 6.13 11.8 128

MC-CNN-acrt [11] 18.4 27.7 10.1 19.7 6.34 15.7 106

Table 1: Comparison of the proposed method and the state-of-the-art stereo methods against

the Middlebury benchmark 3.0

We also evaluate the effect of normal-based plane fitting in Section 4.2.3.

We compare the performances of plane fitting with and without the normal305

constraint. The statistical results are shown in Fig. 9. Here, the criterion bad

2.0% is adopted. Clearly, plane fitting with the normal constraint performs

better for most sequences than trivial plane fitting since the proposed method

utilizes more information. A more reasonable 3D label can be obtained for

mismatch outliers when using the normal constraint.310
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Figure 8: Comparison of the LRC approach and the proposed accurate approach using the

criterion bad 2.0%. For each pair of bars, the baseline is “Ours”

Figure 9: Comparison of plane fitting without the normal constraint (PN) and plane fitting

with the normal constraint (PW). The criterion bad 2.0% is adopted, and for each pair of

bars, the baseline is “PW”

5.2. Performance of the efficient approach

We first compare the runtimes of the proposed efficient approach and the

outlier detection approach that computes the disparity maps for both the left

and the right images, e.g., LRC. No refinement is conducted in this experiment

since we consider only the runtimes for obtaining the outlier maps. Table 2315

compares the runtimes of the proposed efficient approach and LRC and shows

that the proposed efficient approach consumes approximately half of the runtime

of LRC since the efficient approach does not need to compute the disparity map

for the right image.
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Andiron ArtL Jadepl Motor MotorE Piano PianoL Pipes

LRC 1032.58 344.22 1024.09 1036.02 950.79 829.83 955.22 984.52

Ours 466.78 169.63 493.49 506.67 498.43 504.52 538.34 388.49

Playrm Playt PlaytP Recyc Shelvs Teddy Vintge Average

LRC 854.91 730.95 849.15 953.54 994.28 361.90 1192.00 876.93

Ours 394.63 373.78 455.35 491.03 476.83 177.6 474.69 410.88

Table 2: Runtime (s) comparison of the LRC and the proposed efficient approach on the

Middlebury stereo dataset version 2014

To test how the efficient outlier detection approach influences the accuracy of320

stereo matching, we refine the disparities of the outliers uniformly using the 3D

label assignment algorithm in Section 4.2.2 since the proposed efficient approach

does not classify outliers as occlusions and mismatches. The statistical results of

the efficient approach are shown in Table 1. The efficient approach performs well

in terms of accuracy after the disparity refinement step, and it is also efficient325

in terms of time and memory.

Note that the size of the Middlebury dataset is relatively large, and some

global optimization algorithms [12], which are time-consuming are used to com-

pute the disparity maps here. Subsequently, the runtime difference between

LRC and the proposed efficient approach is large. In some real-time embedded330

multimedia systems, obtaining the disparity map for the right image is rela-

tively cheap, and the runtime overhead is therefore little [44]. Nevertheless,

the proposed efficient approach balances the computing time and accuracy well,

especially for some time-consuming algorithms.

5.3. Performance of the confidence measure335

In this sub-section, the performance of the proposed efficient approach is

evaluated further and compared with some other efficient outlier detection ap-

proaches in terms of confidence measure. First, some notations are given. Let
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d1(p) = DL(p) denote the predicted disparity at position p, let c1(p) = C1(p, d)

denote the smallest matching cost, and let c2(p) denote the second smallest340

matching cost.

We compare several confidence measures: (1) the naive version of peak

ratio (PKRN) [30], i.e., the ratio between the second smallest matching cost

and the smallest cost, CPKRN = c2/c1; (2) curvature (CUR) [33], CCUR =

−2c(d1) + c(d1 + 1) + c(d1 − 1); (3) maximum likelihood measure (MLM) [34],345

CMLM = e−c1/σ
2
MLM /

∑
d e
−cd/σ2

MLM (4) LRD [30]; and the proposed efficient

approach. We use the area under the curve (AUC) measure in [30] to evaluate

the performance of these confidence measures. The average AUC of the Mid-

dlebury training dataset is shown in Table 3. The proposed method performs

better than the other confidence measures. Some detection results are also illus-350

trated in Fig. 10. Clearly, the outlier detection result of the proposed efficient

approach has less noise than that of the other approaches and achieves dense

detection results.

PKRN CUR MLM LRD Ours

AUC 9.35 11.55 14.85 11.19 7.75

Table 3: The average AUC for the Middlebury dataset for different confidence measures. The

proposed method outperforms other confidence measures in terms of the AUC

To further evaluate the occlusion detection effectiveness of the proposed

efficient approach, two criteria are utilized: the hit rate and the false-positive355

rate of occlusions [20]. The Middlebury dataset with manually labeled occlusions

is adopted here. Table 4 shows the hit rate and false-positive rate of occlusions

for various detection methods. The proposed approach achieves the highest hit

rate and the lowest false-positive rate.

5.4. Parameter analysis360

In this sub-section, the sensitivity of the parameters used in two approaches

are analyzed and carefully discussed. First, all the parameter settings are listed

in Table 5. Then, the sensitivity of the parameters is evaluated.

21



Figure 10: Comparison of various outlier detection approaches. From left to right: raw

images, confidence maps of MLM, confidence maps of CURVE, confidence maps of PKRN,

confidence maps of LRD, and confidence maps of the proposed method. Bright pixels indicate

low confidence, i.e., a tendency to be an outlier. Our confidence maps (outlier detection maps)

have less noise and achieve dense detection results

PKRN CUR MLM LRD Ours

Hit rate 0.589 0.531 0.331 0.716 0.761

False-positive rate 0.172 0.251 0.280 0.130 0.110

Table 4: The hit rate and false-positive rate of occlusions [20] for the Middlebury dataset for

different confidence measures

5.4.1. Parameter analysis of the efficient approach

In the efficient approach, the parameter η in Equation 4 controls the thresh-365

old of whether one point is an outlier when using MFPJ. Fig. 11(a) illustrates

the sensitivity analysis result for the Middlebury 3.0 dataset. The AUC mea-

sure [30] is adopted to evaluate the outlier detection performance of different

parameter values. The proposed MFPJ method is insensitive to η in a large

η α µ κ ρ

-0.1 0.15 0.8 0.6 0.2

Table 5: The parameter settings of the proposed method
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parameter setting range. Note that in this experiment, the other parameters370

are fixed as in Table 5, except for the parameter η. The following experiments

for the other parameter analyses are conducted similarly.

When detecting high-probability outliers in Equation 5, the parameter α

controls the numbers of outliers detected by MFPJ and the ORD. Fig. 11(b)

shows the AUC using different α on Middlebury 3.0 dataset. When using only375

the ORD method (α equals to 0), the AUC is relatively high since the ORD

has its own limitations as stated in Section 4.1.2. When using only the MFPJ

method (α equals to 1), the AUC is lower than that of the ORD but is still

relatively high. The performance of outlier detection is better when these two

methods are combined, and the high-probability outlier detection performance380

is stable for the parameter α in a large range.

Parameter µ controls the threshold of whether one point is a high-probability

outlier. As shown in Fig. 11(c), the proposed high-probability outlier detection

method is insensitive when µ varies from 0.5 to 0.8.
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Figure 11: Sensitivity analysis of the parameters in the efficient approach on the Middlebury

3.0 dataset

5.4.2. Parameter analysis of the accurate approach385

In the accurate approach, parameter κ controls the ratio between the occlu-

sions and mismatches in the improved LRC in Section 4.2.1. If one mismatch

is surrounded by occlusions, and the ratio of the occlusions is greater than the

threshold κ, then the mismatch is reclassified as an occlusion. To evaluate the
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detection performance of the improved LRC when using different κ, two criteria390

are used: the hit rate and the false-positive rate of occlusions [20]. Fig. 12

illustrates the hit rate and the false-positive rate of occlusions at various κ. The

hit rate of occlusions decreases when κ increases, as shown in Fig. 12(a). The

false-positive rate of occlusions also decreases when κ increases, as illustrated

in Fig. 12(b). Both the hit rate and the false-positive rate are stable regardless395

of the variation of κ.
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Figure 12: The hit rate and false-positive rate of occlusions [20] with various κ

Parameter ρ is the threshold of whether one texture edge point is regarded

as a real discontinuous boundary point in Section 4.2. Fig. 13 shows the error

rate of bad 2.0 (%) in the nonocc regions and in all regions of the Middlebury

dataset. The real discontinuous boundary is an auxiliary means to confine400

the search region of reliable points, and the final stereo matching result is not

sensitive to ρ in the range from 0.05 to 0.3. Note that when ρ is too large

to detect real discontinuous boundaries, the result will be influenced since the

search region is not confined.

6. CONCLUSION405

Outlier detection is an important component of stereo matching. Good out-

lier detection will increase the robustness and accuracy of the stereo matching

algorithm. The disparities in outlier regions can be discarded or filled by some
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Figure 13: The error rate of bad 2.0 (%) in the nonocc regions are in the all regions with

different ρ

reliable disparities depending on different application conditions. The efficient

outlier detection approach detects outliers at a relatively low cost, i.e., approx-410

imately half of the time and memory expenses. The accurate outlier detection

approach classifies outliers reasonably, providing a better guidance for disparity

refinement.

One possible future direction is to investigate how to utilize the outlier de-

tection results to guide other stereo matching steps, such as matching cost415

computation and cost aggregation, to obtain a more robust stereo matching

result.
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