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A B S T R A C T

This paper presents a multi-scale method for surface reconstruction from oriented point
sets. The method is based on building and fitting an adaptive signed distance field.
The adaptive signed distance field is built on an adaptive octree grid whose local grid
interval is determined by the principal curvatures estimated on the input point set. In
this way, scale-varying geometric details can be faithfully represented by the adaptive
signed distance field. Next, a set of multi-scale B-spline basis functions are adopted to
define the implicit function that globally and optimally fits the adaptive signed distance
field. Because these basis functions are selected carefully, the fitting problem is reduced
to a well-conditioned sparse linear system. As a result, a C1-continuous field function is
generated. The fitted field function is a good approximation of the signed distance field,
and thus, its nonzero level sets can also approximate the offsets of the underlying surface
well. Experimental results show that the proposed method can faithfully reconstruct
crack-free adaptive triangular meshes from oriented point sets. Meanwhile, it is efficient
in both running time and memory.

c© 2017 Elsevier B. V. All rights reserved.

1. Introduction1

Reconstructing surfaces from oriented point sets is a prob-2

lem of great concern in fields such as reverse engineering, cul-3

tural heritage protection, and virtual reality. Because of the de-4

velopment of 3D scanning techniques and multi-view stereovi-5

sion systems, dense oriented point sets have become one of the6

prevalent surface representations in computer graphics [1]. For7

the convenience of rendering and editing, point data are usually8

converted to 2D manifold surface forms, e.g., triangular mesh-9

es, via surface reconstruction algorithms.10

The challenges in surface reconstruction mainly include the11

following two aspects: how to deal with imperfect data and how12

to reconstruct geometric details. In real-world applications, the13

acquired data are often characterized by noises, non-uniform14

sampling and missing data. Several approaches have been de-15

veloped to address these data imperfections, e.g., local fitting16

for de-noising [2, 3, 4] and global fitting for hole filling [5, 6].17

However, most of these methods have either direct or indirect18

filtering operations, which, without appropriate parameter con-19

trols, may lead to the over-smoothing of small details. To recon-20

struct these scale-varying geometric details, many approaches 21

adapt the reconstruction resolution to the input data in some 22

way. However, many of these decisions are based on the den- 23

sity of the sample points. An increased sample density is often 24

generated by data redundancy rather than by shape complexity 25

[7]. Accordingly, the adaptivity based on point density cannot 26

always guarantee the reconstruction of scale-varying geometric 27

details. 28

Surface reconstruction methods based on signed distance 29

fields are common. Early methods often used uniform spatial 30

grids for distance sampling and computed signed distance val- 31

ues via local optimization [8, 9]. Thus, these methods may not 32

be robust or efficient for fine-detail reconstruction. Such meth- 33

ods can be improved by implementing adaptive spatial grid- 34

s and global optimization [10, 11]. However, these methods 35

often limit optimization to the discrete signed distance values 36

on some spatial grids. Although a few methods adopt implicit 37

functions for global fitting of the signed distance fields [5, 12], 38

they usually produce an indicator function whose zero level set 39

approximates the underlying surface while nonzero level sets 40

http://www.sciencedirect.com
http://https://www.journals.elsevier.com/locate/cag


2 Given-name Surname etal / Computers & Graphics (2017)

may not necessarily approximate the offsets.1

In this paper, we propose a multi-scale approach for sur-2

face reconstruction from an oriented point set. The method3

first builds an adaptive signed distance field and then fits the4

field globally using an implicit function. The adaptive signed5

distance field is built on an adaptive octree grid whose local6

resolution (or local grid interval) is determined by the princi-7

pal curvatures estimated on the input point set. Therefore, the8

adaptive signed distance field can represent scale-varying ge-9

ometric details by matching its resolution to shape complexi-10

ty. The implicit function used for fitting is defined by a set of11

multi-scale B-spline basis functions. Because of the careful s-12

election of these basis functions, the fitting problem is reduced13

to a well-conditioned sparse linear system. The fitting result is14

a C1-continuous field function, which is a good approximation15

to the signed distance field; thus, its nonzero level sets also ap-16

proximate the offsets of the underlying surface well. At the end17

of the proposed method, an octree-based isosurface extraction18

algorithm is employed to generate a crack-free adaptive trian-19

gular mesh. The contributions of our work can be summarized20

as follows:21

• A multi-scale method is proposed for surface reconstruc-22

tion from oriented point sets; it is based on building and fit-23

ting a curvature-adaptive signed distance field. The recon-24

structed surface is an adaptive crack-free triangular mesh.25

• Scale-varying geometric details can be reconstructed by26

building the adaptive signed distance field on an adaptive27

octree grid whose local grid interval is determined by the28

principal curvatures estimated on the input point set.29

2. Related Work30

There is extensive work related to surface reconstruction31

from point data. Our discussion in this section covers only some32

closely related methods. The readers can refer to [13, 14] for a33

survey on the state of the art or to [15, 16] for comprehensive34

evaluations on recent representative algorithms.35

Combinatorial Algorithms. The methods in this class typical-36

ly produce an interpolating surface in the form of a triangulation37

that uses all or a subset of the input points as vertices. Classical38

computational geometry techniques such as Delaunay triangu-39

lation [17], Voronoi diagrams [18] and Alpha Shapes [19] are40

often adopted for this purpose. One well-known algorithm is41

the Cocone [20, 21, 22], which computes a piecewise linear ap-42

proximation to a point sampled surface via a restricted Delau-43

nay triangulation. Recently, a novel method based on dictionary44

learning was proposed in [23]. A good survey focusing on this45

class of methods can be found in [24, 25]. Most of these meth-46

ods are combinatorial in nature and optimize only the topolog-47

ical connections of the points without changing their positional48

properties. Thus, jagged surfaces are likely to be produced in49

the presence of noise, and erroneous triangulations often occur50

in regions with unevenly sampled data.51

Implicit Methods. To address data imperfections, implicit sur-52

face reconstruction methods generate an approximate surface53

near the input point set. The general framework is first creating 54

an implicit function and then extracting its zero level set. 55

One class of popular local implicit methods is that of Mov- 56

ing Least-Squares (MLS) [2, 3, 4, 26], which performs locally 57

weighted least-squares fitting of a point set. MLS methods are 58

also widely used for data de-noising because of their efficien- 59

t local solution. The proposed method also benefits from an 60

adaptive MLS [27, 28] for pointwise curvature estimation. The 61

implicit function defined by MLS methods are usually local and 62

dependent on the input data, restricting their capacity for hole 63

filling. To overcome this problem, Ohtake et al. [29] defined 64

a global and data-independent implicit function via an octree- 65

based multilevel blending of the local representations, name- 66

ly, the Multi-level Partition of Unity (MPU) implicit function. 67

However, the blending is heuristic without introducing a global 68

optimization. 69

To reconstruct a closed surface, it is preferable to use a global 70

implicit method. Many such methods prescribe a function space 71

for the implicit functions, and the possible types of basis func- 72

tions are radial basis functions [5, 30], wavelets [31], trigono- 73

metric polynomials [6], and B-Splines [32, 33]. The Poisson 74

method [34, 35], which formulates the surface reconstruction 75

problem as a Poisson equation, is one of the most widely used 76

methods by the current research community because of its ro- 77

bustness to data imperfections. However, the Poisson method 78

has the possibility to smooth geometric details [11]. One pos- 79

sible reason is that its reconstruction resolution is adaptive to 80

point density rather than shape complexity, and the maximum 81

resolution (i.e., maximum octree depth) is a subjective parame- 82

ter that must be specified by users. Thus, too-small depths may 83

cause a loss of geometric detail, whereas too-large depths may 84

lead to an excessive computational burden and data redundancy. 85

Signed Distance Field. Surface reconstruction methods based 86

on signed distance fields can be regarded as a special class of 87

implicit methods, whose implicit functions are usually discrete 88

signed distance fields. Hoppe et al. [8] built a signed distance 89

field on a uniform spatial grid with signed distance values com- 90

puted by local plane projection. The Volumetric Range Image- 91

Processing (VRIP) method [9], which is extensively used in 92

the Digital Michelangelo project [36], also uses uniform spatial 93

grids, but the signed distance values are calculated by averag- 94

ing the “ray-casting distances” from multiple overlapping scan- 95

s. Mullen et al. [10] transformed an unsigned distance field 96

to a signed field. They used an adaptive spatial grid, but the 97

global optimization solution relies on a Delaunay triangulation 98

for domain discretization. Calakli and Taubin [11] construct- 99

ed a smoothed signed distance field on an adaptive octree grid. 100

Their method needs no explicit signed distance sampling, and 101

the signed distance values are directly derived using global opti- 102

mization. These methods generally produces discrete represen- 103

tations of signed distance fields. Recently, Sharma et al. [37] 104

created a C1-continuous signed distance function for surface re- 105

construction from a set of unorganized planar cross-sections. 106

Pan et al. [12] transformed a signed distance field into a phase 107

field (values are in [−1, 1]) on a uniform grid. They used im- 108

plicit hierarchical B-splines to fit both the phase field and point 109

data, reducing many basis functions. 110
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Fig. 1. Algorithm overview.

Problem of Geometric Detail Scales. Recently, the scale prob-1

lem in surface reconstruction has attracted the attentions of re-2

searchers. Fuhrmann et al. [38] noted that overlapping depth3

maps should be fused at compatible scales. In their subsequen-4

t work [7], the floating scale implicit function was introduced5

for reconstructing a surface with different scales of geometric6

details. Mücke et al. [39] generated a 3D confidence map by7

splatting a Gaussian function for each input sample into a uni-8

form spatial grid, where the Gaussian standard deviation is set9

to half of the scale of the sample; the final surface is extracted10

from the grid via a global graph-cut algorithm. In these meth-11

ods, the scale information of the geometric details is usually a12

part of input data, which is obtained from the data acquisition13

process.14

3. Algorithm Overview15

Figure 1 shows the overview of the proposed algorithm. The16

algorithm consists of four major steps. First, we estimate prin-17

cipal curvatures of each input point via an adaptive MLS algo-18

rithm. Second, we generate an adaptive signed distance field19

using an adaptive octree grid whose local resolution is deter-20

mined by the estimated curvatures. Third, the field is globally21

fitted by an implicit function, which is defined by a set of multi-22

scale B-spline basis functions. Fourth, an octree-based isosur-23

face extraction algorithm is employed to generate a crack-free24

adaptive triangular mesh. Note that the proposed algorithm re-25

quires the input of oriented points, i.e., points associated with26

oriented normals. For point data without normal information,27

we adopt the Principal Component Analysis (PCA) approach28

and the Minimum Spanning Tree algorithm proposed in [8] for29

normal estimation and orientation.30

3.1. Pointwise Principal Curvatures Estimation31

Because there is no parametric or implicit representation of32

the input point set so far, it is necessary to perform local or33

global fitting before curvature estimation. Here, the MLS fitting34

approach [2] is adopted for the input points. Then, the principle35

curvatures at each point are evaluated analytically based on the36

locally fitted MLS surface [40]. There are two principal curva-37

tures estimated for each point, but only the one with the maxi-38

mum absolute value is recorded for that point. Meanwhile, the39

fitted MLS surface at each point is also recorded for subsequent 40

signed distance evaluations. 41

Generally, the MLS algorithm requires users to specify a ra-
dius h for its smooth kernel function. A fixed radius may lead to
poorly-fitted results if the input point set is unevenly sampled.
To overcome this problem, we determine the radius adaptively
based on local point density [27]. The local point density ρi at
a point pi can be estimated by determining a sphere with min-
imum radius ri centred at pi that contains the k-nearest neigh-
bours to pi. By approximating the intersection of this sphere
and the underlying surface as a disc, ρi can be defined as

ρi =
k
πr2

i

. (1)

Then, the adaptive radius hi for point pi is defined as

hi =
h
ρi
, (2)

where h is a base value of the radius. In our experiments, we use 42

quadratic polynomial fitting and set k = 20 and h = k/rmedian, 43

where rmedian is the median of radius ri among all input samples. 44

It seems that the point density-based adaptivity may cause the 45

loss of detail in surface reconstruction as discussed in the relat- 46

ed work. In reality, this case will not occur because introducing 47

the adaptivity here solves the problem of non-uniform sampling 48

instead of the problem of reconstructing scale-varying geomet- 49

ric details. Moreover, the MLS fitting is applied only for curva- 50

ture estimation, not for data de-noising. Therefore, the original 51

point data remain unchanged. 52

3.2. Adaptive Signed Distance Field Generation 53

The adaptive signed distance field is generated via two steps. 54

First, an adaptive octree grid is constructed whose local grid 55

interval is determined by the curvatures estimated on the input 56

point set. Second, the signed distance value at each corner of 57

the octree grid is estimated using an MLS surface projection. 58

3.2.1. Curvature-based Adaptive Octree Construction 59

Generally, an adaptive octree is initialized as a bounding box 60

(usually a cube) that contains all points and is then recursively 61

subdivided to encompass the point set more and more tightly. 62
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(a) Visualization of the reconstruction results of the Lucy model. The colour-coding visualizations show the reconstruction errors.
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Fig. 2. Reconstruction of the Lucy model with different values of the scale parameter s.

Different adaptive strategies have their respective termination1

conditions for octree node subdivision. For example, the point2

density-based adaptive strategy terminates to subdivide an oc-3

tree node only if the number of points in the node is smaller4

than a pre-specified threshold.5

Our curvature-based adaptive strategy is inspired by the6

Nyquist-Shannon sampling theorem. The theorem states that7

the maximum sampling interval that can recover all compo-8

nents of a signal is half of the period interval of the highest9

frequency component. Assuming that the geometric details are10

the signal components of the surface, we conjecture that the11

maximum spatial sampling interval that can reconstruct all de-12

tails of a surface is approximately half of the minimal curvature13

radius estimated on the surface. Since we perform signed dis-14

tance sampling on an octree grid, the spatial sampling interval15

is just the grid interval. Because the octree can partition the in-16

put point set into a set of local parts, we can adapt the local grid17

interval to the local minimal curvature radius estimated on the18

input point set. In this way, an adaptive octree grid can be con-19

structed according to the following adaptive strategy: An octree20

node is terminated to be subdivided only if its width (i.e., local21

grid interval) is not larger than half of the minimal curvature22

radius of all points inside it. 23

Because the adaptive strategy is the major contribution of the 24

proposed method, it is more convincing to verify its correctness 25

via experiments on real-world data. To this end, we conduc- 26

t an experiment using the Lucy model (30M points). A scale 27

parameter s is introduced to adjust the adaptive strategy. Sup- 28

posing rmin is the minimal curvature radius of all points inside 29

an octree node, the adjusted adaptive strategy terminates to sub- 30

divide the octree node only if its width is not larger than srmin. 31

We build adaptive signed distance fields for the Lucy model us- 32

ing different values of s, and then reconstruct the surfaces using 33

the fitting methodology and the isosurface extraction algorithm 34

described in Sections 3.3 and 3.4, respectively. Figure 2 shows 35

the reconstruction results and the statistics of performance and 36

RMS error. As seen in these images and diagrams, the accuracy 37

of the reconstructed surface gradually increases while decreas- 38

ing the value of s, and the RMS error begins to converge when 39

s = 0.5. The experiment indicates that setting the local grid in- 40

terval to half of the local minimal curvature radius is sufficient 41

to produce results with acceptable precision, and the computa- 42

tional costs in terms of time and space are also moderate. Thus, 43

in the subsequent experiments, half of the local minimal curva- 44
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ture radius, i.e, s = 0.5, is always adopted as the criterion for1

building the adaptive signed distance field.2

3.2.2. Signed Distance Computation3

We use MLS surface projections to compute the signed dis-
tance values. For each corner point q j on the adaptive octree
grid, we find its nearest point pi among the input points. The
signed distance value d j at q j is calculated by projecting q j to
the MLS surface at pi, which was previously fitted for curvature
estimation. The projection direction is parallel to the normal ni

of pi. Supposing the projection footprint is p′i with normal n′i
on the MLS surface, d j can be defined as

d j = (q j − p′i) · n
′
i , (3)

where n′i is normalized. In general, the line segment connecting
q j and pi is nearly perpendicular to the MLS surface at pi. How-
ever, for some boundary cases, the orthogonality will not hold.
Thus, we introduce a confidence w j for d j, which is defined as

w j =

∣∣∣∣∣∣ q j − pi

‖q j − pi‖
· n′i

∣∣∣∣∣∣ , (4)

which is simply the absolute value of the cosine of the angle4

between q j − pi and n′i .5

3.3. Global Fitting6

In this section, an implicit function defined by a set of multi-7

scale B-spline basis functions is introduced to globally and op-8

timally fit the adaptive signed distance field, the input points9

and the related normals.10

3.3.1. Formulation11

The global fitting of the adaptive signed distance field can be
formulated as a functional minimization. It seeks to find the
implicit function f (x) that minimizes the following energy:

ED( f ) =
1
m

m∑
j=1

w j

(
f (q j) − d j

)2
, (5)

where q j is an octree corner point with signed distance value d j12

and confidence w j, and m is the total number of octree corners.13

However, a straightforward minimization of ED may lead to
an over-fitting problem such that the resulting implicit function
f (x) has high-frequency oscillations. To overcome this prob-
lem, we introduce the following regularization term:

ER( f ) =
1
|V |

∫
V
‖H f (x)‖2dx, (6)

where H f (x) is the Hessian matrix of f (x), i.e., the 3×3 matrix14

of second partial derivatives of f (x), and the norm of the matrix15

is the Frobenius norm. The integral is calculated over the vol-16

ume V , which encompasses the surface to be reconstructed, and17

|V | =
∫

V dx is the measure of this volume. In our implemen-18

tation, V is set to the octree volume that contains the adaptive19

signed distance field.20
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Fig. 3. The layout of a 2D node and the knot vectors of four B-spline basis
functions centred at its corners. The width of the node is normalized to 1.

In addition, to improve the fitting precision for the original
input data, we add two extra energy terms

EP( f ) =
1
n

n∑
i=1

f 2(pi) and EN( f ) =
1
n

n∑
i=1

‖∇ f (pi) − ni‖
2,

(7)
where EP and EN are used for fitting the input points and their 21

normals, respectively; pi is an input point with normal ni; and 22

n is the total number of input points. 23

In this way, the total energy functional E( f ) used for global
fitting becomes a weighted summation of the energy and regu-
larization terms

E( f ) = ED( f ) + λRER( f ) + λPEP( f ) + λN EN( f ), (8)

where λR, λP, and λN are the parameters that adjust the weights 24

of ER, EP, EN , respectively, relative to ED. In our experiments, 25

we set λR, λP, λN to 0.01, 1.0, 1.0, respectively. 26

3.3.2. Function Space 27

Because the signed distance field is built on an adaptive oc- 28

tree grid, we naturally think that the same spatial structure can 29

be used for defining the function space of f (x). In reality, our 30

definition is somewhat similar to that provided by the Pois- 31

son method [34, 35], but differences do exist. In the Poisson 32

method, one octree node corresponds to one basis function, 33

whereas in the proposed method, one octree corner corresponds 34

to one or multiple basis functions. 35

The definition of the function space is described as follows.
For every octree corner c that belongs to an octree node at depth
d, a basis function Bc is defined, which is centred at c and whose
support is stretched by the width of a depth-d octree node:

Bc(x) ≡ B
(

x − c.q
wd

)
, (9)
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Fig. 4. Multi-scale reconstruction process of the Gargoyle model using a multigrid approach. The left shows the octree nodes at different depths, whose
corners corresponds to the B-splines and the signed distance samples used at the corresponding depths. The right shows the reconstructed surfaces.

where c.q is the position of c and wd is the width of a depth-d1

octree node; B : R3 → R is a uniform triquadratic B-spline ba-2

sis, which is supported on the domain [−1.5, 1.5]3. Note that an3

octree corner may be shared by octree nodes at different depth-4

s; thus, it may correspond to multiple basis functions defined at5

different depths. We declare that corners belonging to depth-d6

nodes are called depth-d corners. Corners at different depths7

may coincide in position.8

Figure 3 is an illustration of the layout of a 2D node and9

the knot vectors of four B-spline basis functions centred at its10

corners. The purpose of such a layout is to ensure that there11

is at least one signed distance sample, i.e., corner point, lo-12

cated in the centre of each B-spline knot box (except for the13

boundary ones). Empirically, the layout is apt to generate a14

well-conditioned linear system for the solution of the B-spline15

fitting.16

3.3.3. Solution to the Energy Functional17

Having defined the function space, f (x) is expressed as a lin-
ear sum of the basis functions {Bc}, where f (x) =

∑
vcBc(x).

Then, the energy functional E( f ) is converted into a quadratic
function of the basis function coefficients {vc}. Minimizing the
quadratic function yields the following linear system:

Lv = b with
 L = LD + λRLR + λPLP + λN LN

b = bD + λNbN
, (10)

where v is the vector consisting of the coefficients {vc}; LD, LR,18

LP and LN are the constraint matrices derived from the mini-19

mization of ED, ER, EP and EN respectively, and bD, bN are the20

corresponding constraint vectors. Note that no constraint vector21

is generated for ER and EP because they introduce only homo-22

geneous constraints. The derivation of LD, LR, LP, LN , bD, bN23

are given in Appendix A.24

Directly solving the above linear system consumes both time25

and space. Due to the multi-scale structure of the basis func-26

tions, the linear system can be solved using a multigrid ap-27

proach. A multigrid approach solve a linear system progressive-28

ly from coarse scale to fine scale, using the solutions at coarser29

scales to update the residuals at finer scales.30

Clustering the basis functions according to their scales,
which are related to depths of the octree, and for each depth

d = 0, . . . , dmax, a linear system is defined as follows:

Ldvd = bd with

 Ld = Ld
D + 2dλRLd

R + λPLd
P + λN Ld

N

bd = bd
D + λNbd

N

,

(11)
where vd is the vector consisting of the coefficients of the basis 31

functions at depth d; Ld
D, Ld

R, Ld
P, Ld

N , bd
D, bd

N are the similar ma- 32

trices in Equation 10. These matrices can be derived using the 33

same formulas described in Appendix A, where the only mod- 34

ification is that the function space is reduced to the set of basis 35

functions at depth d. Note that λR is scaled by 2d to maintain 36

the scale-independence of the energy minimization at different 37

depths. The reason for this is that Ed
R is a volume integral (cu- 38

bic in metric), whereas Ed
D, Ed

P and Ed
N are the sums of squared 39

distances (quadratic in metric). 40

Because the basis functions at coarse scales are smooth, it 41

is unnecessary to constrain them at high-resolution samples. 42

Fortunately, the signed distance values are sampled at the oc- 43

tree corners, which have an inherent multi-resolution structure. 44

Thus, Ld
D and bd

D can be derived by considering only the signed 45

distance samples (i.e., octree corners) at depth d, as shown 46

in Figure 4. The input points do not have an inherent multi- 47

resolution structure; therefore, we apply a hierarchical cluster- 48

ing operation. The clustering approach is similar to that em- 49

ployed in [35], which clusters the points inside each octree node 50

at each depth into an averaged position. Specifically, for every 51

octree node o at depth d, the points in the node are averaged to a 52

point pd
o with normal nd

o. The clustered points {pd
o} and normals 53

{nd
o} are used to derive Ld

P, Ld
N and bd

N . In this way, Ld can be 54

derived using both depth-d basis functions and depth-d samples 55

(including signed distances, clustered points and normals). 56

Algorithm 1 Multigrid Solver
for d ∈ {0, . . . , dmax} do Iterate from coarse to fine

for d′ ∈ {0, . . . , d − 1} do Update residuals by
bd = bd − Ldd′vd′ solution from coarse levels

Solve Ldvd = bd Solve in current level

The pseudocode of the multigrid solver for solving v is given 57

in Algorithm 1. Here, Ldd′ is a constraint matrix that has a sim- 58

ilar derivation to Ld; the only difference is that Ldd′ is derived 59

using the basis functions at depth d′ but the samples at depth d, 60

whereas Ld is derived using both of them at depth d. For each 61

basis function, there are at most 53 − 1 = 124 other basis func- 62

tions at the same depth that overlap it. Thus, according to the 63
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Original Fitted

Fig. 5. Octree-based isosurface extraction from the original adaptive signed
distance field and the fitted field of the Mannequin model.

formulas given in Appendix A, Ld is a sparse symmetric matrix1

with at most 125 nonzero entries in each column (row). Figure2

4 shows the multi-scale reconstruction process of the Gargoyle3

model using the multigrid approach.4

3.4. Octree-based Isosurface Extraction5

The global fitting produces a C1-continuous field function6

f (x); therefore, isosurface extraction algorithms such as March-7

ing Cubes can be used straightforwardly. To improve efficien-8

cy, we adopt the octree-based isosurface extraction algorithm9

proposed in [41]. The algorithm can extract crack-free trian-10

gle meshes on any octree grid whose corners are assigned s-11

calars. We have already constructed such an octree grid for12

building the adaptive signed distance filed, and it is very suit-13

able for isosurface extraction because its resolution is adaptive14

to the curvatures of the underlying surface, which is conducive15

to the preservation of details in the extracted meshes. To extract16

smooth meshes, the leaf nodes which intersect the isosurface17

and whose depths are smaller than 5 are forced to be subdivid-18

ed to depth 5 before isosurface extraction. The intersection is19

checked using the scalars recorded on the node corners.20

Figure 5 shows the surfaces extracted from the original adap-21

tive signed distance field and the fitted field (whose scalars are22

updated by f (x)) of the Mannequin model. As seen in these im-23

ages, the extracted meshes have adaptive vertex densities that24

match the curvatures, and the surface extracted from the fitted25

field is smoother than the one extracted from the original field.26

4. Results and Discussions27

The proposed algorithm is implemented in C++ using Open-28

MP for multi-threaded parallelization. All experiments were29

run on a desktop with a quad-core Intel Core i7 processor and30

16GB of RAM. The API provided by the FLANN library [42]31

is used for k-nearest point searching in curvature estimation and32

signed distance computation. The conjugate gradient solver33

provided by the Eigen library [43] is used to solve the linear34

system at each multigrid level. Except for the construction of35

the octree, most of the operations involved in the proposed al-36

gorithm can be parallelized.37

The proposed algorithm is evaluated from the aspects of ac-38

curacy, running time, memory consumption, etc. Several relat-39

ed state-of-the-art methods are also implemented for compari-40

son, including the wavelet reconstruction of Manson et al. [31],41

the smooth signed distance (SSD) reconstruction of Calakli et 42

al. [11], the screened Poisson (SP) reconstruction of Kazhdan 43

et al. [35], and the Implicit Hierarchical B-splines (IHB) recon- 44

struction of Pan et al [12]. They are all implemented in C++ 45

as executable programs, except for the IHB method, which is 46

implemented in MATLAB. In addition, the proposed approach 47

without the step of global fitting is also compared. This un- 48

fitted version can be regarded as a method purely based on an 49

adaptive distance field. 50

The proposed method can automatically determine the maxi- 51

mum depth dmax of the basis functions according to the minimal 52

curvature radius of all input points. The other four algorithms 53

treat dmax as a parameter to be specified. For fairness of com- 54

parison, the parameters dmax of these algorithms are set to be 55

the same as that of the proposed method, except for the IHB 56

reconstruction, which can support depth 6 at most because of 57

the limitation of memory. Other parameters of these methods 58

are set to the default values provided by their implementation 59

instructions. 60

4.1. Accuracy 61

Real Scanning Data. To evaluate the accuracy of the differ- 62

ent algorithms on real-world data, we gathered several well- 63

known scanned datasets, which are the Asian Dragon model 64

(3.6M points), the Lion model (0.6M points), the Neptune mod- 65

el (2.0M points) and the Ramesses model (0.8M points). All of 66

the scanned models contain scale-varying geometric details. 67

Figure 6 shows the reconstruction results for these model- 68

s. The cross-section visualizations show the deviation between 69

the reconstructed surfaces and the input point data. Overall, all 70

six methods can reconstruct the models faithfully. After care- 71

fully observing the reconstructed surfaces and the cross-section 72

visualizations, we found that the wavelet reconstruction of the 73

Lion model has apparent derivative discontinuities, and the I- 74

HB reconstruction of the Asian Dragon and Neptune model 75

smoothly filtered the geometric details. For the Lion model, 76

weak noises are introduced into the surfaces reconstructed via 77

the SP method, the SSD method and the unfitted method, which 78

can be observed by zooming into the head of the Lion model. 79

The proposed method can produce a relatively faithful surface 80

reconstruction for all four models. 81

Figure 7 shows quantitative comparisons across all dataset- 82

s, in the form of RMS errors, measured by the distances from 83

the input points to the reconstructed surfaces. As the figure 84

indicates, the RMS error of the proposed method are always 85

the smallest among five methods for the Dragon, Neptune and 86

Ramesses model. For the Lion model, the proposed method can 87

produce comparable results with those of the SSD method, the 88

SP method and the unfitted method. 89

Synthetic Point Data. To check the ability to address noise, 90

non-uniform sampling and missing data, we evaluate the pro- 91

posed method on two sets of synthetic point data, which are 92

generated from two ground-truth models: the Armadillo model 93

and the Horse model. Different approaches are adopted to gen- 94

erate point data for these two models. For the Armadillo model, 95

we first randomly sample 4 × 105 points on the model and then 96

cut these points into four parts as shown in Figure 9; the final 97
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Wavelet SSD SP IHB Ours Ours (unfitted)

Fig. 6. Reconstruction of the real scanned data. Top to bottom with the automatically determined maximum depth dmax: Asian Dragon (11), Lion (10),
Neptune (11), and Ramesses (10), except for dmax = 6 in the IHB method for all models. The 2D visualizations under the reconstructed models show
cross-sections of the reconstructed surfaces and the input point data.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

Asian Dragon Lion Neptune Ramesses

wavelet SSD SP IHB ours ours (unfitted)

Fig. 7. RMS errors of the reconstruction of the real scanning data. The er-
rors are measured by the distances from the input data to the reconstructed
surfaces and normalized by the bounding box diagonal of the input models.

point set is produced by randomly selecting 1, 1/2, 1/4 and 1/81

of the points from each of the four parts. For the Horse model,2

we first randomly sample 2 × 105 points on the model and then3

remove some of points surrounding the waist and on the leg of4

the horse. Finally, we add Gaussian random noise to both point5

sets with a standard deviation σ = 0.002.6

Figure 8 shows the reconstruction results of the synthetic7

point datasets. It also shows the reconstruction errors relative to8

the ground-truth models using the colour-coded visualization- 9

s. Observing these results, we find that the wavelet method is 10

somewhat sensitive to non-uniform sampling such that discon- 11

tinuous surface sheets are generated in the 1/4 and 1/8 sampled 12

regions of the Armadillo model. Furthermore, the reconstruc- 13

tion of the Horse model by the wavelet method is also unac- 14

ceptable because of the unsmoothness in the part of the missing 15

data. The other methods are insensitive to non-uniform sam- 16

pling and can generate smooth surface transitions to fill in the 17

incomplete regions. For the Armadillo model, the IHB method 18

produces a relatively larger reconstruction error in regions with 19

large curvatures, such as regions near the fingers and ears. For 20

the Horse model, the surface reconstructed by the SP method 21

has a very slight shrink in the waist part, where there is no point 22

data. The unfitted method introduces apparent noises for both 23

models. 24

Figure 9 plots the RMS errors and the maximum errors of the 25

reconstruction results of the synthetic point data. The errors are 26

measured bidirectionally between the ground truth model and 27
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Wavelet SSD SP IHB

Synthetic point data

0

0.002

1 1/2

1/4 1/8

Ours

Ground truth model Synthetic point data Ground truth model

Ours (unfitted)

Fig. 8. Reconstruction of the synthetic point data generated from the Armadillo model (dmax = 9) and the Horse model (dmax = 9), except for dmax = 6 in
the IHB method. The colour-coding visualizations indicate the reconstruction errors, which are measured by the distances from the reconstructed meshes
to the ground truth models.
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0.0015
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wavelet SSD SP IHB ours ours (unfitted)

Fig. 9. Maximum errors and RMS errors of the reconstruction of the syn-
thetic point data. The errors are measured bidirectionally between the
reconstructed surfaces and the ground truth models.

the reconstructed surface using the Metro tool [44]. As in the1

case of real scanning data, the accuracy of the proposed method2

is comparable to or better than the other five methods.3

4.2. Computational Efficiency 4

Table 1 shows the running time, memory usage and num- 5

ber of output vertices of all of the algorithms in the previous 6

experiments. The unfitted version of the proposed method is 7

the fastest one because it does not need to compute an implic- 8

it function. The wavelet method is the second fastest and re- 9

quires the least memory because it uses compactly supported 10

orthogonal basis functions, making the algorithm compute the 11

implicit function coefficients directly through integration with- 12

out an explicit solution for a linear system. In contrast, the oth- 13

er four algorithms require the solution for a global linear sys- 14

tem because of the use of non-orthogonal basis functions. Both 15

the proposed method and the SP method benefit from a similar 16

multigrid framework, which can speed up the solution of the 17

global linear system. However, the SSD method and the IHB 18

method solve the global linear system directly; thus, their costs 19
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Table 1. Runtime performance for the reconstruction of the real scanning data and the synthetic point data.
Time in seconds Memory in MB Output Vertices ×106

Model Wavelet SSD SP IHB ours/unfitted Wavelet SSD SP IHB ours/unfitted Wavelet SSD SP IHB ours/unfitted
Asian Dragon 23 279 102 329 55/15 54 2112 1054 2540 731/257 2.22 1.23 1.25 1.73 0.91/0.91

Lion 29 286 123 168 38/12 60 2202 1160 1520 431/144 2.82 1.56 1.57 1.16 0.56/0.57
Neptune 20 160 77 289 28/8 38 1871 937 1873 386/103 3.21 0.94 0.94 0.69 0.40/0.40

Ramesses 15 278 128 210 35/11 56 2080 1046 2071 484/152 4.41 1.25 1.25 1.06 0.69/0.69
Armadillo 6 45 24 55 13/4 27 811 393 973 295/93 1.41 0.31 0.31 0.32 0.25/0.26

Horse 4 20 8 28 5/2 11 693 281 491 194/67 0.8 0.13 0.13 0.13 0.08/0.08

Wavelet SSD SP OursIHB Ours (unfitted)

Fig. 10. Visualizations of the mesh wireframe of the reconstructed surfaces of the Neptune model. The proposed method generates an adaptive mesh that
has a relatively smaller number of vertices.

Table 2. Number of octree nodes constructed in the experiments.
×106 Asian Dragon Lion Neptune Ramesses Armadillo Horse

SSD/SP 7.64 8.90 5.78 7.74 1.67 1.97
ours 1.89 0.98 0.88 1.35 0.25 0.14

in terms of running time and memory are both larger than those1

of the proposed method and the SP method.2

Except for the wavelet method and the unfitted method, the3

proposed method has a shorter running time and a smaller mem-4

ory usage than the other three methods. The reason for this is5

that the proposed method constructs a sparser adaptive octree.6

Table 2 shows the number of the octree nodes constructed by7

the SSD method (the same as the SP method) and the proposed8

method. It is apparent that the proposed method constructs oc-9

trees with less nodes and therefore, fewer basis functions are10

required and fewer coefficients must be solved. The sparsity11

is attributable to the curvature-based adaptivity for construct-12

ing the octree. The adaptivity allows the proposed method to13

use fewer basis functions in regions with small curvature and14

more basis functions in regions with large curvature. Moreover,15

the octree-based isosurface extraction allows the generation of16

adaptive meshes, which have fewer vertices than those obtained17

by the other methods (see Table 1 and Figure 6). Although the18

number of vertices is reduced, the accuracy of our reconstructed19

meshes is comparable to those generated by the other methods,20

as demonstrated in Section 4.1.21

4.3. Nonzero Level Sets22

To check the ability of the nonzero level sets of the fitted23

field function f (x) to approximate offset surfaces, we generated24

a set of nonzero level sets using the fitted field function of the25

Dragon model, as shown in Figure 11. As seen in these images,26

these nonzero level sets well approximate the real offsets with27

the corresponding signed distance values. This also indicates28

Fig. 12. A failure example of reconstructing the Blade model. Holes ap-
pears in the very thin and nearly planar parts of the model.

that f (x) is a good approximation of the signed distance field; 29

this property can be useful in applications such as collision de- 30

tection, volume rendering and sculpting [45]. 31

4.4. Limitations 32

Because of global fitting, our approach can handle a certain 33

degree of noise, non-uniform sampling and missing data. How- 34

ever, if the input data contain severe noise, outliers or misalign- 35

ment, the reconstruction quality may decrease noticeably. The 36

robustness of our approach is mainly bottlenecked by the es- 37

timation of curvatures, which is a differential operation on the 38

underlying surface. Differential operators often become unsta- 39

ble in the presence of severe data imperfections. 40

The curvature-based adaptivity is not suitable for reconstruct- 41

ing extremely thin shapes, e.g., a thin plate. Because the points 42

at each side of the plate, except those on the boundary, are n- 43

early on a plane with very small curvatures, the subdivisions 44

of certain octree nodes may terminate too early such that both 45



Given-name Surname etal / Computers & Graphics (2017) 11

0.05 0.02 0.0 -0.005 -0.01
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Fig. 11. Generation of nonzero/zero level sets for the Dragon model. These level sets correspond to the signed distance values in the below, which are
normalized by the diagonal of the bounding box of the model. The colors are mapped by the deviations of the level sets relative to the real offset surfaces.

sides of the points remain in the same node. For these nodes,1

the signed distances computed at the corners are always posi-2

tive, and therefore no face will be extracted. Figure 12 shows a3

failure example of reconstructing the Blade model, where holes4

appears in the very thin and nearly planar parts of the model.5

Reconstruction of extremely thin shapes remains a challenging6

problem. In terms of our approach, the most effective solution7

is to recursively subdivide all nonempty octree nodes until a8

sufficient depth is reached.9

5. Conclusion and Future Work10

We propose a multi-scale approach for surface reconstruction11

from oriented point sets. The basic idea is to build an adaptive12

signed distance filed on an octree grid and to then fit it using13

an implicit function. We introduce a curvature-based strategy14

for the adaptive octree construction. Therefore, scale-varying15

geometric details can be reconstructed. A set of multi-scale16

B-spline basis functions are adopted to define the implicit func-17

tion; thus, a C1-continuous field function is obtained by solving18

a well-conditioned sparse linear system. The signed distance19

field is well approximated by the field function; thus, its nonze-20

ro level sets can also well approximate the offset of the under-21

lying surface. The produced mesh surfaces are crack-free and22

adaptive to the shape complexities of the underlying surfaces.23

There are some possible directions to improve our approach24

in the future. First, the multi-thread implementation can be fur-25

ther accelerated using GPU computation [46, 47, 48]. Second,26

an out-of-core version of our approach can be adapted to ad-27

dress very large data sets. Additionally, we believe that our ap-28

proach can be useful in many other applications, such as mesh29

simplification, level of details mesh compression and transmis-30

sion, and constructive solid geometric modelling, where the a-31

bility of multi-scale surface representation or signed distance32

evaluation is crucial.33
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Appendix A. 88

By computing the derivatives of ED( f ), ER( f ), EP( f ), EN( f )
relative to each basis function coefficient vc and equating them
to zero, we respectively obtain the constraint matrices LD, LR,
LP, LN and the constraint vectors bD, bN as follows

LD =
1
m

KD
T KD with (KD) jc = Bc(q j)

LP =
1
n

KP
T KP with (KP)ic = Bc(pi)

LN =
1
n

(
KNx

T KNx + KNy
T KNy + KNz

T KNz

)
with

(KNx)ic = (Bc)x(pi) (KNy)ic = (Bc)y(pi) (KNz)ic = (Bc)z(pi)

bD =
1
m

KD
T d

bN =
1
n

(
KNx

T nx + KNy
T ny + KNz

T nz

)
(LR)cc′ =

1
|V |

∫
V

(
(Bc)xx(Bc′ )xx + (Bc)yy(Bc′ )yy + (Bc)zz(Bc′ )zz+

2(Bc)xy(Bc′ )xy + 2(Bc)xz(Bc′ )xy + 2(Bc)yz(Bc′ )xy

)
(A.1)

where d is the vector consisting of the signed distance values 89

{d j}, and nx, ny, nz are the vectors consisting of the x, y, z 90

components respectively of the normals {ni}; (Bc)x, (Bc)y, (Bc)z 91

are the partial derivatives of Bc relative to x, y, z, respective- 92

ly; (Bc)xx and other similar terms are the second order partial 93

derivatives of Bc. By analysing the above formulas, we find 94

that LD, LR, LP, LN are all symmetric matrices. 95

http://www.cs.ubc.ca/research/flann/
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http://dx.doi.org/10.1145/1457515.1409079
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