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a b s t r a c t 

The improvement of color similarity between stereo images can bring better performance to stereo 

matching algorithms. For this purpose, we present a color correction method to alleviate the color dis- 

crepancy between a pair of stereo images, so that the color appearance of one image, i.e., the target 

image, is consistent with the other image, i.e., the source image. Our method starts with decomposing 

both the target image and the source image into two intrinsic layers, i.e., the reflectance layer and the 

shading layer, using intrinsic decomposition. The purpose of intrinsic decomposition is to distinguish and 

then process different color discrepancies caused by different factors (shading and reflectance) separately 

and appropriately. Then, a practical and effective consistent segmentation algorithm, which applied to 

the original stereo images, is proposed to establish the region correspondences. Next, luminance correc- 

tion method and color correction method, based on the local region correspondences, are adopted to 

correct the shading layer and the reflectance layer in the target image, respectively, making them as sim- 

ilar as possible to those of the source image. Eventually, the two corrected layers of the target image 

are combined to yield the final corrected image. The experimental results demonstrate that the proposed 

method, which using intrinsic decomposition to handle color discrepancy caused by different factors, not 

only enhances the visual color similarity between the stereo images but also improves the accuracy of 

their stereo matching. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Stereo matching, the purpose of which is the inference of dis-

parity maps from stereo images, is of great importance in many

areas, such as autopilot, robotics and augmented reality, etc. Most

stereo matching methods depend on computing a matching cost to

measure the similarity between two pixels in two stereo images.

Typically, the matching cost is computed under the assumption

that a pair of stereo images is radiometrically similar, i.e., the cor-

responding pixels in two images have similar colors. However, in

practice, the colors of corresponding pixels may be quite different

due to various inevitable factors, such as camera device changes,

different illumination conditions or failure to meet the diffuse sur-

face conditions. Although some robust matching cost functions,

such as mutual information [1,2] , census transform [3] , and recent

matching cost from deep learning [4] , account for color discrep-

ancy to some extent. Few of them can handle strong radiometric

changes [5] , such as those caused by highly different exposures

of the images. Thus, to reduce the ambiguities in stereo matching,
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olor correction can be used as a preprocessing step to compensate

he color discrepancy between stereo images. 

The existing color correction methods can be classified into two

ategories [6] : parametric methods and non-parametric methods.

he former is better than the latter in terms of extendibility [7] .

enerally, parametric methods explicitly represent the relationship

etween the target image and the source image using the transfor-

ation I s = M ∗ I t , where M represents the mapping of the three

olor channels, and I s and I t represent the source image and the

arget image, respectively. The parametric methods can be further

ivided into global parametric methods and local parametric meth-

ds. Global parametric methods generally provide an uniform map-

ing M between the colors of two images; M may be a diagonal

atrix, an affine matrix or an arbitrary 3 × 3 matrix, which cor-

esponds to the diagonal model, the affine model and the linear

odel, respectively. However, local regions in the scene may have

ifferent color mappings; thus, global methods may fail to address

hese complicated cases. To address non-uniform color mappings,

ocal methods are developed to produce a more elaborate map-

ing by transforming colors in the corresponding regions between

 pair of images, for which establishing accurate regional corre-

pondences is crucial. 

Pixel values encode all the properties of the scene it cap-

ures. Brainard and Wandell [8] proposed that the distinct scene

https://doi.org/10.1016/j.cag.2019.05.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.05.008&domain=pdf
mailto:jqfeng@cad.zju.edu.cn
https://doi.org/10.1016/j.cag.2019.05.008


Q. Ran, W. Zhao and J. Feng / Computers & Graphics 82 (2019) 22–31 23 

p  

a  

t  

u  

a  

t  

j

 

b  

j  

f  

a  

p  

u  

t  

i  

b  

l  

i  

t  

m  

c  

i  

i  

m  

N  

r  

d

 

i  

s  

c  

t  

a  

t  

m  

f  

m  

i  

t  

s  

o  

i  

t  

o  

c  

s  

fi

 

 

 

 

 

 

 

 

2

 

h  

i  

d  

o  

a  

r  

c  

f  

t  

f  

H  

m  

c  

o  

t  

o  

s  

s  

a

 

i  

m  

M  

b  

t  

p  

o  

i

 

c  

[  

i  

t  

c  

a  

t  

t  

e  

p  

f  

t  

t  

t  

t  

t  

s  

f  

f  

f  

n  

p

 

p  

p  

r  

t  

t  

g  

i  

s  

s  

p  

p  

m  

n  

w  

m  

o

roperties can be represented as a set of separate “intrinsic im-

ges”, which are decomposed from the original image. Currently,

he common intrinsic decomposition methods focus on one partic-

lar case: the decomposition of an image into a reflectance layer

nd a shading layer, i.e., the surface reflectance and the spec-

ral power distribution of the ambient light [9] . These two layers

ointly reproduce the original RGB image. 

Most intrinsic decomposition algorithms are based on the Lam-

ertian model hypothesis. Under this model, the surface of an ob-

ect is regarded as an ideal diffusion surface that appears the same

rom all directions. Thus, applying ideal intrinsic decomposition to

 pair of stereo images with color discrepancy, the corresponding

oints in the resulting reflectance layers should have the same val-

es. This indicates that the color discrepancy is mainly caused by

he luminance changes in the shading layers. Thus, the benefit of

ntrinsic decomposition is that the initial color discrepancy could

e eliminated by correcting luminance difference in the shading

ayers ideally. However, due to the intrinsic decomposition is an

ll-posed problem, so far, it is hard to get the same reflectance be-

ween the stereo images by most of the state-of-art decomposition

ethods. On the other hand, a small amount of color discrepancy,

aused by the object material, orientation, distance, etc., still ex-

sts in the decomposed reflectance layer. Hence, to make corrected

mage as similar as possible with the target one, the correction

ethod should be performed on two intrinsic layers respectively.

ote that both layers are approximately uncorrelated, so the cor-

ected layers can faithfully reproduce an RGB image without intro-

ucing blending artifacts. 

This paper proposes an intrinsic color correction method, which

s applied to a pair of stereo images to improve the accuracy of

tereo matching. Our method begins with applying intrinsic de-

omposition to both the target image and the source image. Then,

o address non-uniform color mapping between two stereo im-

ges, a consistent segmentation algorithm is proposed to establish

he region correspondences, which is based on the Mean-Shift seg-

entation and some highly reliable Scale-Invariant Feature Trans-

orm (SIFT) feature correspondences. Based on the consistent seg-

entation results, a local correction algorithm, which correct two

ntrinsic layers of the source image separately and region-wisely, is

hen proposed. The local differences of luminance contrast in the

hading layer are corrected by applying an affine mapping matrix

f luminance statistics for each region. And the color discrepancy

n the reflectance layer is compensated by transferring the statis-

ical properties of the colors from the source to the target. More-

ver, to eliminate color discontinuities across regions, a weighted

orrection framework is utilized to generate a smooth corrected re-

ult. The two corrected intrinsic layers are then combined into the

nal corrected result. 

The main contributions of this paper are listed below: 

• A local color correction method is proposed to alleviate the

color discrepancy between two stereo images and then improve

the accuracy of their stereo matching. By utilizing the intrinsic

decomposition, different color discrepancies caused by different

factors (shading and reflectance) can be processed separately

and appropriately. 
• A practical consistent segmentation method that produce more

accurate region correspondences between two stereo images is

proposed, which can be also used in other region correspon-

dence establishment between stereo images. 

. Related work 

Robust stereo matching. Some robust stereo matching methods

ave considered color discrepancy. The AD-census [10] algorithm

s one of the best-ranked stereo matching algorithms on the Mid-
lebury Evaluation Website [11] . Its matching cost is a combination

f the absolute difference and the census transform, thus, it is rel-

tively insensitive to radiometric differences. Heo et al. [12] took

adiometric variations into account and proposed a new measure,

alled the Adaptive Normalized Cross-Correlation (ANCC). In their

ollowing work [13] , they proposed an iterative framework that al-

ernates between stereo matching and color correction, which in-

ers both accurate depth maps and color-consistent stereo images.

irschmuller [1] described the Semi-Global Matching (SGM) stereo

ethod, which uses Mutual Information based matching cost for

ompensating radiometric differences of input images. Other meth-

ds improved the robustness by introducing geometric informa-

ion into the support windows [14,15] . Recently, with the process

f deep learning, many methods [16,17] learned the disparity re-

ult directly without explicit matching cost. However, so far, only

tereo image pairs which have similar color performance are used

s training datasets. 

Color correction. Color correction techniques can be classified

nto model-free non-parametric approaches and model-based para-

etric approaches according to the survey presented by Xu and

uligan [7] . Most model-free methods [18–22] build a look-up ta-

le to record the mapping of the entire range of the color value;

he look-up table is usually computed via the corresponding pixel

airs in the overlapping area of two images. However, these meth-

ds may not be robust because the image data are prone to be

nfluenced by noise or outliers. 

Model-based parametric methods can be categorized into two

lasses: global approaches and local approaches. Reinhard et al.

23] proposed a global method, which performs color transfers us-

ng statistical information. In the un-correlated l αβ color space,

he original colors of the image are corrected by applying a global

olor transformation, which is derived by matching the means

nd the standard deviations of the global color distributions of

he image to another. Xiao and Ma [24] proposed an approach

hat directly addresses color correction in correlated color spaces,

.g., the RGB color space. The method treats the color of each

ixel as a three-dimensional stochastic variable. The color trans-

ormation is computed from a statistical perspective by fitting

he random variable distributions of the target image to those of

he source image. During the fitting process, the correlation be-

ween the three components is measured by the covariance ma-

rix. These global methods are generally based on the assump-

ion that the color mapping between different regions can be de-

cribed by the same transformation, thus they are not suitable

or complex scenes where the color mappings are distinct in dif-

erent regions. Moreover, models based on weighted affine trans-

ormations [25] , splines [26] , Gaussian mixture models [27] , and

onlinear manifold learning approaches [28] have also been pro-

osed. 

To address complex scenes, several local methods have been

roposed. In the survey of Xu and Mulligan [7] , the method pro-

osed by Tai et al. [29] is highly recommended for local color cor-

ection for complex scenes. The method segments both source and

arget images into several regions using a probabilistic segmenta-

ion algorithm based on the Gaussian mixture model (GMM). Re-

ion correspondences are obtained by mapping the correspond-

ng Gaussian components. However, the GMM model restricts the

ensitiveness of segmentation because small regions may not be

egmented properly if they do not contain a sufficient number of

ixels to form a distinct Gaussian component. Oliveira et al. im-

roved Tai’s method using the mean-shift algorithm; the improved

ethod is less time-consuming and does not require a predefined

umber of regions [30] . Ly et al. [31] used the marker-controlled

atershed transformation method to segment the two images; the

ethod can improve the accuracy of region correspondences near

bject boundaries. 
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Fig. 1. A flowchart of the proposed intrinsic color correction method. 
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Color correction for stereo matching. Several color correction

methods have been proposed to correct colors of stereo images in

stereo matching. A region-based correction method is proposed in

[32] . Ran et al. [33] propose a local color correction method for al-

leviating color discrepancy between two stereo images. The region

correspondences are generated by projecting the segmentation of

the target image onto the source image via homography matrices.

Due to occlusion and perspective distortion, the correspondences

may be imprecise. 

Intrinsic image decomposition. Intrinsic image decomposition is

an intensively investigated problem in computer graphics and vi-

sion. The retinex theory for decomposing an image into two intrin-

sic layers, of which the large and small intensity gradients are as-

sumed to correspond to reflectance and shading respectively, was

proposed by Land and McCann [34] . Grosse et al. [35] implemented

the theory and provided a ground-truth dataset for intrinsic im-

age decomposition. The retinex theory works well in many cases

but may fail in the presence of strong shadows or smoothly vary-

ing planar textures because of the unexpected frequencies of the

changes in such areas. Many other algorithms have been proposed

under different assumptions. Shen and Yeo assumed that neigh-

boring pixels with similar chromaticities have the same reflectance

values [36] . Barron and Malik [37] assumed that the reflectance is

piecewise-constant and that certain shading values are more likely

to appear than others. Garces et al. [38] assumed that neighbor-

ing pixels have similar shading. Bell et al. [39] incorporated all of

the above ideas in a global manner; their method can be regarded

as one of the state-of-the-art methods. Recently, Beigpour et al.

[40] proposed an intrinsic decomposition method, which is driven

by multi-view light-field appearance editing. With conducting pre-

processing operations (including white balancing and specularity

removal) and regarding light field as a generalization of stereo-

scopic images, reflectance layers between views are extracted as

similar as possible, which is very impressive. 

3. The proposed method 

Fig. 1 shows the overview of the proposed intrinsic color cor-

rection method. We take a pair of stereo images with color dis-

crepancies as input, one as the target image I tgt (to be corrected),

and the other as the source image I src (unchanged). 

The proposed approach consists of four stages. First, the two

stereo images are decomposed into their intrinsic layers under

the Lambertian Model hypothesis, i.e., I tgt is decomposed into
he reflectance layer R tgt and the shading layer S tgt , and I src is

ecomposed into R src and S src . Second, a consistent segmenta-

ion algorithm is adopted to establish the consistent region cor-

espondences between the two stereo images. Third, a region-

ased correction method, which is based on the consistent region

orrespondences, is applied to the intrinsic layers of the two im-

ges with different correction strategies. The corrected reflectance

ayer and the corrected shading layer are then combined into the

nal corrected result I ′ tgt . 

.1. Intrinsic decomposition 

In this stage, a color image I is decomposed into two intrinsic

mage layers using the method proposed by Bell et al. [39] . Bell’s

ethod incorporates many important priors that have appeared in

he literature and can perform intrinsic image decomposition well

nd effectively for real-world photographs. It attempts to find the

ptimal three-channel reflectance layer R ∗ and the single-channel

hading layer S ∗ that is the most likely under probability distribu-

ion p : 

 

∗, S ∗ = arg max 
R,S 

p(R, S| I) (1)

The decomposition result satisfies I c 
i 

= R c 
i 
· S i , where I c 

i 
is the

hannel c ∈ { r , g , b } of pixel i , as well as for R c 
i 
. Note that S i has

nly one channel. The probability distribution p is defined accord-

ng to a set of priors related to R and S , which are based on some

ssumptions about the nature of the scene and the physics of the

maging process. Considering several important priors in a global

ense, Bell’s decomposition method is modeled as an energy mini-

ization in a fully connected conditional random fields (CRF) [41] .

he energy function consists of two types of terms. The unary term

 i for each pixel is used to make the shading smooth and avoid

xtreme values. The binary term ψ ij for each pair of pixels is used

o make the reflectance piecewise constant for all pairs of similar

ixels. The energy to minimize is defined as follows: 

(x ) = ω r E r (x ) ︸ ︷︷ ︸ 
binary ψ i j 

+ ω s E s (x ) + ω t E t (x ) ︸ ︷︷ ︸ 
unary ψ i 

(2)

here x indicates a pixel. E r ( x ) is the binary reflectance term,

hich is based on the prior that if neighboring pixels have simi-

ar chromaticities or intensities, they should also have similar re-

ectance; E s ( x ) is a unary shading term, which is based on the

rior that the shading channel tends to vary smoothly across a
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Fig. 2. An intrinsic decomposition example of two stereo images (the Art dataset). 

The layers of reflectance and shading have different degrees of color discrepancies. 
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mooth surface; E t ( x ) is unary term for each pixel, which makes

he optimizer not select extreme values of shading for too many

ixels; ω r , ω s and ω t are the weighting coefficients. The overall

nergy is minimized by iterative optimization that alternates be-

ween reflectance and shading. The reflectance term is optimized

sing the mean-field approximation to the CRF distribution [41] ,

nd the shading term is optimized using an iteratively re-weighted

east squares method. After a certain number (empirically, 25) of

terations, both the target image and the source image are decom-

osed into two intrinsic layers. Other details can be found in [39] . 

To guarantee the consistency of the color value range in the two

tereo images, the reflectance and shading layers are normalized.

n example of the intrinsic decomposition is shown in Fig. 2 . As

hown in this figure, the reflectance image and the shading image

ave different degrees of color discrepancy; therefore, they should

e corrected separately. 

.2. Consistent segmentation of stereo images 

It is necessary to determine the regions correspondences at first

ince colors are transferred between corresponding local regions in

ur method. In this section, a consistent segmentation method is

roposed to establish region correspondences between two stereo

mages. 

A consistent segmentation between two images is defined as:

f two pixels belong to a region in the segmented source image,

heir corresponding pixels also belong to the corresponding region

n the segmented target image [42] . Therefore, we aim to assign

he same labels to the same objects segmented from a pair of

tereo images. However, due to color discrepancies, a straightfor-

ard color-based labeling is often inaccurate. Instead of color, we

se reliable feature matches as constraints to establish accurate

egion correspondences. Moreover, we define the Accurate Corre-

pondences (AC) requirements to be fulfilled by the consistent seg-

entation as well as possible. The definition is as follows: 

1. Every region belongs to a single object. 

2. Every region contains a certain number of features. 

The flowchart shown in Fig. 3 gives a brief description of our

ethod. Details of each step are described below. First, the SIFT

eatures [43] are extracted and matched between two stereo im-

ges. The invariance of the SIFT features to illumination variations

nsures that a sufficient number of feature matches can be ob-

ained even if there is a significant color discrepancy between the

wo input images. In addition, the epipolar geometry constraints

44] are adopted to remove outliers in the initial SIFT matches,

hich is defined as follows: 

( X 

src ) T F X 

tgt = 0 (3) 
here F is the fundamental matrix, and X 

src and X 

tgt are the po-

itions of the matched SIFT features in I src and I tgt , respectively.

IFT matches that do not satisfy Eq. (3) within a given threshold

f precision are considered as outliers and are rejected. The ran-

om sample consensus (RANSAC) [45] algorithm is applied to esti-

ate F . For robustness and accuracy, we use the Sampson distance

nstead of the algebraic distance in the estimation of the funda-

ental matrix. Finally, a set of reliable SIFT features matches are

etained. 

Second, the source image and target image are initially seg-

ented into small regions via the Mean-Shift segmentation algo-

ithm [46] . Due to the limitation of the Mean-Shift segmentation

lgorithm, no parameter can produce segmentation results that si-

ultaneously satisfy both of the AC requirements above. 

For example, some regions may have no feature points if the

egmentation makes every region belong to a single object, as

hown in the red rectangle marked in Fig. 4 (a); on the other hand,

f every segmented region contains a certain number of features,

ome regions may not be segmented properly, as shown in yellow

ectangle marked in Fig. 4 (b). Considering this situation, we set the

arameters of the Mean-Shift segmentation algorithm as σs = 25 ,

r = 9 , M = 500 for the source image to satisfy requirement 1, as

hown in Fig. 4 (a) and as σs = 7 , σr = 4 , M = 300 for the target

mage to satisfy requirement 2, as shown in Fig. 4 (b); the segmen-

ations of both images will eventually satisfy both of the AC re-

uirements through the following correspondence-based merging

rocess. 

Third, a correspondence-based merging process is proposed to

enerate consistent region correspondences after the initial seg-

entations. Fig. 5 is an illustration of this process. The input is

he reliable SIFT matches and the initial segmentation results. The

etails of this process are described as follows: 

Step 1. The initial region correspondences are established ac-

ording to this principle: If the number of SIFT matches between

wo regions of the two images is greater than a threshold t , these

wo regions are marked as a correspondence. 

Step 2. In the target image, we merge each region that has no

orrespondence into one of its nearby regions that have correspon-

ences. The merging algorithm is described as follows: for each

arget region P 
tgt 
i 

that has no correspondence, we search for the

egion P 
tgt 
j 

in its 2-ring neighborhood, which has the correspond-

ng region and minimizes the following distance term D : 

 = α
∣∣C i − C j 

∣∣ + β
∣∣B i − B j 

∣∣ (4) 

here C i and C j are the average colors of the region P 
tgt 
i 

and the

egion P 
tgt 
j 

, respectively; B i and B j are the barycenter of the region

 

tgt 
i 

and the region P 
tgt 
j 

, respectively; α and β are weights. Then,

e merge the region P 
tgt 
i 

into the region P 
tgt 
j 

. In our experiments,

e set α to 0.7 and β to 0.3. As shown in Fig. 5 , region a is merged

nto region b . 

Step 3. In the source image, we merge the regions that have the

ame corresponding region in the target image. As shown in Fig. 5 ,

egion c and region d are merged as a single region. 

Step 4. In the source image, we merge each region that has no

orrespondence into one of its nearby regions that have correspon-

ences, similar to the method in Step 2. 

Step 5. In the target image, we merge the regions that have

he same corresponding region in the source image, similar to the

ethod in Step 3. 

Through the above merging process, new segmentation results

 ̄P src 
i 

} , { ̄P tgt 
j 

} are obtained, and a bijective mapping between them

s constructed. The result of the consistent segmentation is shown

n the last step in Fig. 3 . We can observe that the corresponding

egions basically represent the same objects in two stereo images. 
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Image SegmentationReliable SIFT Matches Extraction Correspondence-based Merging
Isrc Itgt Isrc Itgt Isrc Itgt

Fig. 3. The three steps of the proposed consistent segmentation method. 

Fig. 4. The Mean-Shift segmentation with different parameters of the same image. (a) is the segmentation result satisfy requirement 1 ( σs = 25 , σr = 9 , M = 500 ); (b) is the 

segmentation result satisfy requirement 2 ( σs = 7 , σr = 4 , M = 300 ). Features within the rectangles are shown in color cyan. (For interpretation of the references to color in 

this figure, the reader is referred to the web version of this article.) 
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Fig. 5. An illustration of the correspondence-based merging process. 
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3.3. Local correction of intrinsic layers 

We now have the normalized reflectance and shading layers

of the two stereo images and the region correspondences be-

tween them. In this section, the two layers of the target image are

corrected separately according to the corresponding layers of the

source image. Based on the region correspondences, we perform

different local correction methods for the intrinsic layers region by

region. 
.3.1. Local correction functions 

Considering that the reflectance layer has a different number of

hannels and different physical properties from the shading layer,

e adopt two different correction methods to process the two lay-

rs, which are introduced as follows: 

Shading layer correction. Our method to correct the shading

ayer is inspired by the global method proposed by Reinhard et al.

23] . First, for each pair of corresponding regions, { P k 
src , P k 

tgt }, we

ompute their distribution statistics μk and σ k , i.e., the mean and

tandard deviation. Then, for each region P k 
tgt in the target shading

ayer, we apply the following correction function: 

 k 
tgt ′ (i, j) = μk 

src + 

σk 
src 

σk 
tgt 

( S k 
tgt (i, j) − μk 

tgt ) (5)

here S k 
tgt ( i , j ) and S k 

tgt ′ ( i , j ) denote the initial shading value and

orrected shading value of pixel ( i , j ) in region P k 
tgt , respectively. 

Reflectance layer correction. Reinhard’s method can produce re-

iable results, but it must be performed in the l αβ color space,

hose three channels are uncorrelated. However, the three chan-

els of the reflectance layers are not uncorrelated. Furthermore,

he dimension “l ” in l αβ which used in [23] represents lightness

hile the reflectance layer represents the surface reflectance of the

bjects without the effect of lightness. In consideration of these

actors, we adopt a correlated color transfer method, which can

chieve color transfer directly in a correlated color space. The basic

dea of this method is that color correction is performed by trans-

erring the statistical properties of the colors. And we introduce

he covariance matrices, which are related to the three channels,

o the transferring. 
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Fig. 6. 3D visualization of the reflectance distribution of the Art dataset. 
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Fig. 7. Global mean value and local mean values of the 50 regions of the target shading layer of the Art dataset. 
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Table 1 

Running time of each step for several tested examples. 

Intrinsic Consistent Color 

decomposition segmentation correction 

Art 402.743 s 119.114 s 26.72 s 

Baby1 235.947 s 136.611 s 7.085 s 

Bowling1 296.817 s 146.84 s 3.868 s 

Reindeer 347.011 s 165.068 s 12.777 s 
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1  
Fig. 6 shows the distribution of the original target reflectance,

he source reflectance, and the corrected target reflectance. It can

e seen the reflectance distribution of the corrected target image is

imilar to that of the source image. The detailed correction process

s presented as follows: 

For the reflectance layers of two stereo images, we first calcu-

ate the mean reflectance and the covariance matrices of the three

omponents. For a corresponding region pair { P k 
tgt , P k 

src }, a local

orrection function is defined as: 

 k 
tgt ′ (i, j) = Q k 

src · Q k 
tgt · R k 

tgt (i, j) (6)

here R k 
tgt and R k 

tgt ′ denote the initial reflectance and the cor-

ected reflectance in the homogeneous form of the pixel point ( i ,

 ) in region P k 
tgt . Q k 

tgt and Q k 
src represent two transformations,

espectively, where Q k 
tgt = T S k 

tgt · RT k 
tgt · SL k 

tgt and Q k 
src = SL k 

src ·
T k 

src · T S k 
src . And TS , RT and SL denote the translation, rotation

nd scaling matrices, respectively. These transformations can be

erived using the mean reflectance and the covariance matrices.

etailed derivation can be found in [47] . 

In global approaches, the parameters of the above two func-

ions are constant for the whole image. However, different regions

ay have different statistical properties, so the correction function

arameters should be distinct for different regions. For example,

ig. 7 shows the local mean value in each segmented region and

he global mean value of the shading layer. The local mean values

re not equal to the global mean value, and they vary among the

egmented regions, which is why local methods perform better. 

.3.2. Weighted correction frame 

Although the corrected intrinsic layers of target image have a

imilar appearance to those of the source image in the correspond-

ng regions, the region boundaries may be discontinuous. To elim-

nate these discontinuities caused by local transformations, the lo-

al correction functions are blended to produce a smooth correc-

ion. The blending is weighted by the influence masks (IM) [42] .

he IM weights for pixel ( i , j ), denoted as IM k ( i , j ) is defined as: 

xp 

(
−‖ C tgt 

k 
(i, j) − μtgt 

k 
‖ 

2 

2 α2 

)
× e xp 

(
−dist((i, j) , P tgt 

k 
) 2 

2 β2 

)
(7) 
here ‖ C tgt 

k 
(i, j) − μtgt 

k 
‖ is the value distance between the shad-

ng/reflectance value of pixel ( i , j ) of the target image and

he mean shading/reflectance value μtgt 

k 
of region P 

tgt 

k 
, and

ist((i, j) , P tgt 

k 
) is the Euclidean distance between pixel ( i , j )

nd the center of region P 
tgt 

k 
. Examples of some IM are

hown in Fig. 8 . The color correction functions weighted by

he IM are defined as follows: ( 
∑ 

N 
k =1 

R 
tgt 

k 

′ × IM 

k ) / ( 
∑ 

N 
k =1 

IM 

k ) ,

( 
∑ 

N 
k =1 

S 
tgt 

k 

′ × I M 

k ) / ( 
∑ 

N 
k =1 

I M 

k ) . 

.4. Intrinsic combination 

After the local corrections for the intrinsic layers, we obtain the

orrected reflectance layer R tgt ′ and shading layer S tgt ′ for the tar-

et image, respectively. The final corrected target image is then ob-

ained by intrinsic combination, which is defined as: I tgt ′ = R tgt ′ ·
 

tgt ′ . 

. Results, evaluation and discussion 

The Middlebury stereo datasets [11] are adopted to test the pro-

osed algorithm. The datasets in 2005 and 2006 provide stereo

airs captured under different lighting conditions or with different

xposure settings. The proposed color correction method is tested

n several stereo pairs with color discrepancy. All the experiments

re conducted on a desktop with an Intel Core i7 4.00GHz CPU and

ith 16GB of memory. 

The running times for four stereo pairs with resolution

390 × 1110 are listed in Table 1 . Most of the time is consumed by
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Fig. 8. Visualization of the influence masks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

c  

s  

t  

g  

O  

t

R  

w  

t  

d

 

p  

t  

m  

t  

c  

A  

m  

h  

s  

i  

g  

b  

T  

i  

r

4

 

a  

t  

a  

o  

t  

m  

t  

w

intrinsic decomposition. However, considering the distinctive fac-

tors to cause the color discrepancy of the reflectance layer and

the shading layer, better improvement would be produced by han-

dling two layers separately, which is also proven by the following

experimental results. We compare our method with several previ-

ous methods, including the global approach (GL) [23] , Expectation–

Maximization based local approach (EM) [29] , and Region-Wise lo-

cal color correction (RW) [33] . The abbreviations “IN” and “n-IN”

refer to two versions of our proposed method. “IN” is the full im-

plementation of the method, and “n-IN” does not include intrin-

sic decomposition and combination, and is directly applied to the

original image. In this way, we try to discuss the role of intrinsic

decomposition in the proposed method. 

4.1. Subjective evaluation 

First, we subjectively assess the color correction results. Human

perception can serve as a straightforward evaluation. Fig. 9 shows

the corrected results of the Reindeer dataset using the five correc-

tion methods. All the methods can improve the color consistency

of the target image with the source image to some extent. There-

into, n-IN and IN show relatively greater improvements. Observ-

ing the last row in Fig. 9 , our results are very consistent with the

ground truth, where color changes and edges are noticeable in the

results of other methods. 

4.2. Color similarity 

The color similarity (CS) criterion, which is defined as the l αβ
color distance between the colors of the corrected (or original) im-

age and the ground truth image, is adopted to quantitatively eval-

uate the experimental results. The distance function is defined as

follows: 

S org = 

∑ ‖ c gt (i, j) − c org (i, j) ‖ 

CS crt = 

∑ ‖ c gt (i, j) − c crt (i, j) ‖ 

where c gt ( i , j ) denotes the color of pixel ( i , j ) in the ground truth

image, c org ( i , j ) denotes its color in the original target image and
 crt ( i , j ) denotes its color in the corrected target image. CS org mea-

ures the CS between the original target image and the ground

ruth image, and CS crt measures the CS between the corrected tar-

et image and the ground truth image. The CS metric proposed by

liveira et al. [30] is adopted to evaluate the improvement ratio of

he correction method, which is defined as: 

CS = 

CS org − CS crt 

CS org 
(8)

here RCS represents the color correction improvement ratio of

he improvement in CS crt relative to CS org . A larger RCS radio in-

icates a better color correction ability. 

Table 2 shows the CS ratios of the five methods, which are ap-

lied to eight datasets. The local correction methods have a bet-

er performance than the global algorithm [23] because the global

ethod changes the overall mean and variance of the color dis-

ribution, which may lead to biased results, especially when the

olor discrepancy between the stereo images is particularly large.

mong the five color correction methods, the proposed correction

ethods with (IN) and without (n-IN) the intrinsic decomposition

ave the highest RCS radios because of the accurate region corre-

pondences. “IN” performed better than “n-IN”, which means that

ntrinsic decomposition improves the corrected results. The EM al-

orithm also performs well for most of the images. RW performs

etter than EM for images containing abundant color variations.

he RW method does not account for the region correspondences

n the occluded areas, so the corrections in those areas are inaccu-

ate. 

.3. Improvement on sereo matching 

The proposed intrinsic color correction scheme can serve as

 pre-processing step for stereo matching algorithms to improve

he disparity accuracy, which is the main purpose. Two strategies

re used to evaluate the improvement of the proposed algorithm

n stereo match. First, with a baseline stereo matching algorithm,

he proposed method is compared with different color correction

ethods (i.e., GL, EM, RW). Second, the proposed color correc-

ion method is tested with different stereo matching algorithms, of

hich the matching costs take account for the color discrepancy. 
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Target
image

Source
image

Color correction method
GL EM RW n-IN IN

Fig. 9. The corrected results of the Reindeer dataset. The seven images from left to right in each row are the original target image, the ground truth image, and the corrected 

results obtained by GL [23] , EM [29] , RW [33] , n-IN (our method without intrinsic decomposition) and IN (our method). The last two rows are generated by covering the 

corrected images with the ground truth in the top-left corner and the bottom-right corner. (Other results can be found in the supplemental files). 

Table 2 

The RCS ratios for eight datasets by the five methods (Other results can be found in the supplemental 

files). The unit is percentage. 

Aloe Art Baby1 Books Bowling1 Cloth1 Dolls Reindeer 

GL 79.7561 85.2062 84.3083 77.4789 79.4131 85.1659 81.4288 83.6869 

EM 90.6878 90.4002 93.4579 78.9137 84.7834 92.4639 87.4502 85.8269 

RW 91.4118 85.2062 92.3952 78.9137 80.6024 92.3775 81.4288 82.6257 

n-IN 94.3648 91.9891 93.1057 78.2551 93.0264 94.5844 89.2728 91.6097 

IN 95.3008 93.4809 93.6775 79.2133 93.0965 94.6832 89.9839 91.7756 

Before
Color correction

Ground
truth

without
Color discrepancy

Stereo matching after correction
GL EM RW IN

Fig. 10. The comparisons of the stereo matching results with different color correction methods applied to the Art and Reindeer datasets. 
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.3.1. Different color correction methods 

The baseline stereo matching algorithm we used is the graph-

ut algorithm proposed by Kolmogorov and Zabih [48] , which em-

loys the commonly used absolute difference as the matching cost

48] . The assumption is that the corresponding pixels have the

ame color, which tend to be influenced by color discrepancies. We

ompute the disparity maps from the original stereo images and

he corrected stereo images to compare the proposed method with

ther color correction methods. The disparity maps for the Art and

eindeer datasets are shown in Fig. 10 . Due to the color discrep-

ncy, the disparity map computed without color correction con-

ains a large amount of noise and errors compared with the ground

ruth disparity. After color correction, the disparity maps are more

ccurate and close to the ground truth of disparity maps. To eval-

ate the disparity maps quantitatively, pixels that differ from the

[  
round truth disparity map by more than two pixels are treated

s bad pixels. We then calculate the bad pixel rates, denoted as

P , in stereo matching when different correction methods are used

o correct the target images. Table 3 shows the bad pixels rates

or the tested examples. The “Tgt” row shows the results obtained

rom uncorrected stereo images; the “Tgt-n” row shows the results

btained from stereo images that originally have no color discrep-

ncy. The “IN” method often has the lowest bad pixel rate among

he tested methods. 

.3.2. Different stereo matching algorithms 

Using the proposed color correction method, we test several ro-

ust stereo matching algorithms that can handle a certain degree

f color discrepancy, such as AD-census [10] , ANCC [12] and JDMCC

13] . The results are shown in Fig. 11 . For the method AD-census,
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Table 3 

The stereo matching bad pixel statistics. (Other results can be found in the supplemental files.) 

Aloe Art Baby1 Books Bowling1 Cloth1 Dolls Reindeer 

Tgt 0.8500 0.7462 0.7208 0.8545 0.8152 0.8561 0.8053 0.8245 

Tgt-n 0.0688 0.3496 0.0840 0.2559 0.3061 0.0158 0.0853 0.1823 

GL 0.2412 0.4298 0.3214 0.5141 0.6114 0.1638 0.4228 0.4048 

EM 0.1535 0.4413 0.1676 0.4403 0.5618 0.0372 0.1943 0.2479 

RW 0.0792 0.3641 0.2280 0.4341 0.3531 0.0398 0.4249 0.3845 

IN 0.0676 0.3553 0.0857 0.3688 0.3297 0.0139 0.1159 0.1933 

Ground
truth

AD-census ANCC JDMCC
Before After Before After Before After

Fig. 11. The “AD-census”, “ANCC” and “JDMCC” stereo matching results for the Art and Reindeer datasets. 
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the bad pixel rate generated from the corrected images is lower

than those without color correction. The other two methods al-

ways produce good results for stereo image pairs with color dis-

crepancy; whereas, when the input images are in full resolution,

these two methods will cost a large amount of memory, which

may beyond the capacity of general computers. Thus, our proposed

method is a good choice to compensate for the color discrepancy

in stereo matching. 

4.4. Robustness and boundaries 

To show the robustness and boundaries of our method, we

will discuss the impact of consistent segmentation errors and dis-

occlusion over the final results. 

First, the consistent segmentation error ( CSE ), is defined as the

percentage of pixels that are not satisfied with the definition of

consistent segmentation (in Section 3.2 ). The consistent segmen-

tation ground-truth is obtained from disparity ground-truths pro-

vided by Middlebury Dataset [11] . Qualitatively, the color discrep-

ancy could be compensated obviously. However, to some extents,

there is color discrepancy in areas containing segmentation errors.

And, we calculate the CSE values, the RCS values and the BP values

of several test data, respectively, for quantitative analysis. It shows

that the smaller the segmentation error ( CSE ), the greater the color

similarity improvement, which indicates the relationship between

CSE and RCS is negative. On the other hand, the relationship be-

tween CSE and the percentage of bad pixels ( BP ) is positive. 

Second, to discuss the impact of dis-occlusion factor over the

final results, pixels are divided into occlusion pixels and non-

occlusion pixels, based on the ground-truth of visibility (given by

the Middlebury Dataset). The color corrected target image and the

disparity results show that the proposed approach will benefit the

color similarity and disparity computing of both occlusion pixels

and non-occlusion pixels. For quantitative analysis, the RCS values

and the BP values for occlusion pixels and non-occlusion pixels are

calculated for test data, respectively. We find that after color cor-

rection, the color similarity of all pixels, including occlusion pix-

els and non-occlusion pixels, could be improved, i.e., greater than
0%. And, the percentage of bad pixels of occlusion areas and non-

cclusion areas could be reduced about 47% and 38%, respectively.

eaders can refer to the supplementary file for detailed figures and

tatistics. 

. Conclusions and future work 

In this paper, we presented a local intrinsic color correction

ethod to address the color discrepancy between two stereo im-

ges. Consistent segmentation, intrinsic decomposition, and local

egion-based color correction of the intrinsic layers are the three

ajor steps of our method. A consistent segmentation scheme was

roposed to establish accurate region correspondences. With the

ntrinsic scheme and more accurate region correspondences, our

pproach improves the color similarity as well as the accuracy of

he disparity computed by stereo matching. These improvements

re demonstrated by a detailed discussion and comparison with

ther methods. 

Rather than the efficiency, we discuss the probability of us-

ng intrinsic images to reduce color dissimilarity between a pair

f stereo images. Our method is also useful in other image pro-

essing manipulations or computer vision applications, such as im-

ge stitching and multi-view geometry. All the original images and

ata can be found in the supplemental files. 
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