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Abstract In this paper, based on
the new definition of high frequency
geometric detail for point-sampled
surfaces, a new approach for detail
manipulation and a detail-preserving
editing framework are proposed.
Geometric detail scaling and en-
hancement can always produce
fantastic effects by directly ma-
nipulating the geometric details of
the underlying geometry. Detail-
preserving editing is capable of
preserving geometric details during
the shape deformation of point-
sampled model. For efficient editing,
the point set of the model is first
clustered by a mean shift scheme,
according to its anisotropic geo-
metric features and each cluster is

abstracted as a simplification sample
point (SSP). Our editing operation
is implemented by manipulating
the SSP first and then diffusing the
deformation to all sample points on
the underlying geometry. As a post-
processing step, a new up-sampling
and relaxation procedure is proposed
to refine the deformed model. The
effectiveness of the proposed method
is demonstrated by several examples.

Keywords Point-sampled surfaces ·
Shape editing · Geometric de-
tail · Simplification sample point ·
Deformation field · Mean shift

1 Introduction

Benefitting from the rapid developments of the 3D dig-
ital photographic and scanning devices, large-scale point-
sampled surfaces are now becoming popular in computer
graphics. Developing new algorithms for efficiently edit-
ing and deforming the shape of point-sampled surfaces is
on demand in digital geometry processing.

For various shape editing operations, such as local edit-
ing, free-form deformation, shape interpolation, morphing
etc, one requirement is to preserve the meso-geometric de-
tails of the model, including bumps, folds and wrinkles,
etc. To cope with this requirement, some intrinsic surface
representation schemes are proposed in computer graph-
ics, which include multi-resolution modeling [10, 12, 33]
and differential domain methods [1, 2, 11, 13, 14, 18, 24,
25, 30–32].

In differential domain methods, the surface details are
encoded as local differences or derivatives. The differen-
tial representation benefits shape editing and deforming in
a natural way, the deformed geometry is reconstructed by
solving a linear system which minimizes the shape distor-
tion. It supports both the local shape manipulation within
a region of interest and large range free-form deformation
of the given model.

However, most of the above detail-preserving editing
schemes are applicable to polygonal meshes or triangular
meshesonly, relyingheavilyongloballyconsistentconnect-
ivity information between sampled vertices. In contrast, in
this paper, our novel detail-preserving editing framework is
purely point-based (point positions and associated normals)
without reconstructing the triangular meshes during editing
procedure, which makes it particularly convenient for the
large models obtained by scanning devices.
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Based on the high frequency geometric detail defin-
ition for point-sampled surfaces, a new tool for detail
manipulation and a detail-preserving editing framework
are investigated. We propose a novel approach of direct
geometric detail scaling and enhancement which provide
users with a new means of shape modeling.

For detail-preserving editing, our editing framework
consists of the following steps. The input geometry is
first clustered by mean shift scheme according to its
anisotropic geometric features and each cluster is ab-
stracted as a simplification sample point (SSP). Then
the simplification points are edited, but the underlying
high frequency geometric details are left unchanged. Our
editing operations intrinsically define deformation fields
around the simplification points, which are diffused to
other sample points on the geometry through the invari-
ant local coordinates at the final step. As a postprocess-
ing step, a new up-sampling and relaxation procedure is
proposed to refine the deformed model. Figure 1 gives
a high-level overview of the framework for high frequency
geometric details preservation.

This paper includes the following contributions:

– Based on the transfer functions defined in the fre-
quency domain, a new definition of high frequency
geometric detail for point-sampled surfaces is intro-
duced.

– Owing to our new definition of geometric details, we
propose a novel shape editing tool with detail scaling
and detail enhancement.

– An efficient framework for detail-preserving editing of
point-sampled surfaces is set up, which can achieve
naturally appealing results in reasonable computing
time.

The paper is organized as follows: The related works
about shape editing and deformation for point-based sur-

Fig. 1a–f. Flowchart of our high frequency geometric detail-preserving editing. a Original model, b mean shift clustering for original
model, c simplification sample points abstraction, d preprocessing for editing simplification points, e the editing results for simplification
points, f the final editing results for the point-sampled model

faces are briefly reviewed in Sect. 2. In Sect. 3, using the
transfer functions, the linear, quadric and cubic synthetical
geometric details for point-sampled models are defined.
Two manipulation methods for high frequency geometric
details – detail scaling and detail enhancement are investi-
gated in Sect. 4. In Sect. 5, we describe how to determine
neighboring points on the geometry and abstract the whole
geometry as a collection of simplification sample points
(SSP). Section 6 presents our surface editing approach in
detail. Experimental results for detail-preserving editing
are shown in Sect. 7, conclusions and limits are given in
the last section.

2 Related works

In recent years, point-sampled geometry has received in-
creased attention in digital geometry processing. Consid-
erable research has been devoted to the efficient modeling,
shape editing and deformation of point-sampled geom-
etry [3, 7–9, 15–17, 21–23, 29, 34].

By transferring several 2D image editing techniques to
irregular 3D point setting, Zwicker et al. [34] presented
a system called Pointshop 3D for interactive shape and ap-
pearance editing of point-sampled surfaces. The system
is supported by a powerful point cloud parameterization
and a dynamic re-sampling scheme. In [22], Pauly et al.
proposed another point-based free-form shape modeling
framework by using the hybrid geometry representation of
point set surfaces. Pauly et al. [23] designed a powerful
and versatile hierarchical representation for point-based
modeling based on the multi-resolution techniques.

For discrete point clouds or meshless model, many
physically-based simulation techniques including rigid
body simulation, deformable modeling, thin shell, and
fluid simulation were presented recently.
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Muller et al. [17] presented a method for modeling
and animating elastic, plastic, and melting volumetric ob-
jects based on the moving least squares (MLS) approx-
imation of the gradient of the displacement vector field.
In [16], Muller et al. proposed a meshless deformation
approach, which replaces energies and forces by geomet-
ric constraints and distances of current positions to goal
positions based on a generalized shape matching scheme.
Combined the meshless method with a highly dynamic
surface and volume sampling method, Pauly et al. [21]
presented an animation framework for elastic and plastic
materials that affords complex fracture patterns. Guo and
Qin [8] proposed a physically based dynamic local sculpt-
ing paradigm for point set surfaces via volumetric implicit
functions. Later, they [9] presented a real-time meshless
simulation and animation framework for volumetric ob-
jects. Wicke et al. [27] simulated and animated discrete
thin shells under some related physical principals, such
as the Kirchhoff theory of thin plates and the Kirchhoff–
Love theory of thin shells. Based on global conformal
parameterization and meshless dynamics, Guo et al. [7]
presented a physically based simulation approach to sim-
ulate thin-shell elastic deformation and fracture effect for
point-sampled geometry.

However, all of the above physically based methods fo-
cus on the dynamic object behavior for physically realistic
results, little attention was paid to the editing of surface
details of the underlying geometry.

3 High frequency geometric detail

In spectral analysis [19, 26], high frequency signals con-
tribute to the geometric detail, while low frequency sig-
nals account for the overall geometric shape. The high
frequency information of the underlying model plays an
essential role in its visual appearance.

As a powerful tool for spectral analysis [24, 26], dis-
crete Laplacian transformation is widely used in shape
representation, model compression, and digital water-
marking, etc. The discrete Laplacian operator can be
weighted averages over the neighborhoods:

∆pi = pi −
∑

j∈Ni

ωij pj = K pi

where Ni denotes the adaptive neighborhoods of regu-
lar point pi , for example, the mean shift neighborhood
(see Sect. 5.1), the operator K = I − W, the weights ωij
are positive numbers that add up to one, they can be cho-
sen in many different ways taking into consideration the
spatial distribution of neighborhood points. One particu-
larly simple choice is to set ωij equal to the inverse of the
valence of sample point pi , that is 1

di
. Another choice for

the weight functions can be some power of the distance of

neighbors ωij = ‖pi−pj‖µ
∑

j ‖pi−pj‖µ , for example, µ = −1 always
produces good results for our experiments.

Similar to the Fourier transformation on 2D image pro-
cessing, the discrete Laplacian operator on irregular 3D
discrete geometry builds an intrinsic bridge between the
space domain and the frequency domain. As an extension
of the Fourier analysis, we also define some special trans-
fer functions for the Laplacian operator, focusing on some
important geometric details of point-sampled surfaces.

By analyzing the frequency spectrum of the discrete
Laplacian matrix K = I − W, we get the eigenvalues

λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λn

and corresponding eigenvectors

E = {e1, e2, e3, . . . , en}
which compose a set of orthogonal basis functions. They
represent natural vibration modes of the surface. The cor-
responding eigenvalues are regarded as the associated
natural frequencies. Low frequency information (for ex-
ample, the first eigenvectors), represents the overall geo-
metric shape, while high frequencies ones (for example,
the last eigenvectors) accounts for mesoscopic geometric
details.

Discrete geometric signal can be decomposed under
the basis functions E:

p = c1e1 + c2e2 + c3e3 + . . .+ cnen

and the Laplacian operator can be applied to the following:

K p = c1λ1e1 + c2λ2e2 + c3λ3e3 +· · ·+ cnλnen.

So, under the transfer function defined in the frequency
domain, the model geometry can be represented as the fol-
lowing:

f(K)p = c1 f(λ1)e1 + c2 f(λ2)e2 + c3 f(λ3)e3

+· · ·+ cn f(λn)en.

We can then define geometric details for point-sampled
surfaces with some special transfer functions f(K), which
exaggerate important geometric details by enhancing high
frequency components.

The first simple transfer function is linear function
f(K) = 1

λ
K , which leads to simple linear Laplacian geo-

metric details,

ξ( pi) = 1

λ
∆pi

i.e.

1

λ

(
pi −

∑

j∈Ni

ωij pj

)
.
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The linear transfer function contributing to linear geomet-
ric details can amplify high frequency components while
restrain the low frequency components.

The second transfer function is quadric, for example

f(K) =
(

1

λ
+ 1

µ

)
K − 1

λµ
K2, λ, µ > 0

which leads to synthetical quadric geometric details,

η( pi) =
(

1

λ
+ 1

µ

)
∆pi − 1

λµ
∆2 pi

i.e.,
(

1

λ
+ 1

µ

)(
pi −

∑

j∈Ni

ωij pj

)

− 1

λµ

(
pi −2

∑

j∈Ni

ωij pj +
∑

j∈Ni

∑

k∈Nj

ωijωjk pk

)
.

And the third is cubic, for example

f(K) =
(

1

λ2 + 1

λµ
+ 1

µ2

)
K2 − 1

λµ

(
1

λ
+ 1

µ

)
K3,

λ, µ > 0

which leads to synthetical cubic geometric details,

ζ( pi) =
(

1

λ2 + 1

λµ
+ 1

µ2

)
∆2 pi − 1

λµ

(
1

λ
+ 1

µ

)
∆3 pi

i.e.,
(

1

λ2 + 1

λµ
+ 1

µ2

)(
pi −2

∑

j∈Ni

ωij pj +
∑

j∈Ni

∑

k∈Nj

ωijωjk pk

)

− 1

λµ

(
1

λ
+ 1

µ

)(
pi −3

∑

j∈Ni

ωij pj +3
∑

j∈Ni

∑

k∈Nj

ωijωjk pk

−
∑

j∈Ni

∑

k∈Nj

∑

l∈Nk

ωijωjkωkl pl

)

where λ means the pass-band frequency, and µ denotes the
highest frequency. The high frequency details in the region
of [λ, µ] can be enhanced (Fig. 2), yielding some fancy
effects.

The color maps for high frequency geometric details
are shown in Fig. 3, where different color indicates dif-
ferent oriented magnitude ori_mag of geometric details,
i.e., it takes ori_mag = ‖v‖ if the high frequency detail
vector v satisfy v ·n > 0, otherwise ori_mag = −‖v‖. In
order to reflect the high frequency details clearly, we first
smooth the given model to obtain the low frequency base
surface, then show the color maps of geometric details
on the base surface. Our experimental results indicate that

Fig. 2a–c. Different transfer functions for high frequency pass,
where λ means the pass-band frequency, and µ denotes the high-
est frequency. a Linear transfer function f(k) = 1

λ
k, b quadric

transfer function f(k) = ( 1
λ

+ 1
µ
)k − 1

λµ
k2, c cubic transfer function

f(k) = ( 1
λ2 + 1

λµ
+ 1

µ2 )k2 − 1
λµ

( 1
λ

+ 1
µ
)k3

Fig. 3a–l. High frequency geometric details for Stanford bunny
model. a Original model, b color map for curvature of bunny
model, c the base surface of model, d–f color map for linear Lapla-
cian geometric details, corresponding to λ = 0.1, λ = 0.3, λ = 0.8,
respectively, g–i color map for quadric synthetical geometric de-
tails, corresponding to λ = 0.1, µ = 1.8, λ = 0.3, µ = 1.8 and
λ = 0.8, µ = 1.6, respectively, j–l color map for cubic synthetic-
al geometric details, corresponding to λ = 0.1, µ = 1.8, λ = 0.3,
µ = 1.8 and λ = 0.8, µ = 1.6, respectively
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quadric and cubic synthetical geometric details can reflect
the subtle detail variations more faithfully than linear geo-
metric details. On the other hand, the wide frequency band
[λ, µ] can cover the variations of more geometric details.
So, for highly detailed geometric models, editing by pre-
serving quadric and cubic synthetical geometric details is
a good choice.

4 High frequency geometric detail manipulation

Here, geometric detail manipulation includes two aspects.
One is high frequency geometric detail scaling, which can
shrink or expand the important surface details for point-
sampled geometry. The other is high frequency geometric
detail enhancement, which can enhance the model ge-
ometric details and is similar to image enhancement in
digital image processing. Geometric detail manipulation
can always produce fantastic effect in the industry of dig-
ital entertainment, while providing us with a new tool of
shape modeling.

4.1 Geometric detail scaling

Geometric detail scaling is the process of scaling the high
frequency details directly for point-sampled surfaces. For
a given point-sampled model, the intrinsic geometric details
can be defined as the linear Laplacian geometric detail,

ξ( pi) = 1

λ
∆pi

or synthetical quadric and cubic geometric detail, such as

η( pi) =
(

1

λ
+ 1

µ

)
∆pi − 1

λµ
∆2 pi,

ζ( pi) =
(

1

λ2 + 1

λµ
+ 1

µ2

)
∆2 pi − 1

λµ

(
1

λ
+ 1

µ

)
∆3 pi .

For the sake of simplicity, we denote them as δi uniformly.
For the sample points located in the region of interest

(ROI), we set the scaled geometric details as δ′
i = sδ(pi),

where s is the scale factor. The resultant surface can then
accommodate these scaled details. More precisely, first the
system determines the ROI of model surrounded by the
user specified anchor points, then applies scaling oper-
ation to the sample points in the ROI domain. New pos-
itions of the sample points in ROI { p′

i}, i ∈ {1, 2, . . . , K}
can be obtained by solving the following quadratic mini-
mization problem:

min
p′

(
α

K∑

i=1

‖δ( p′
i)− δ′

i‖2 +
m∑

i=1

∥∥p′
i − p0

i

∥∥2
)
.

The first term implies the varied geometric details of sam-
ple points, the second one implies the position constraints

Fig. 4. The detail scaling results for bunny model via the ROI of
bunny head. First row: original model and quadric synthetical geo-
metric detail scaling (λ = 0.8, µ = 1.6), the scale factor s is 0.6, 0.8
and 1.2, respectively; Second row: color map for quadric synthetic-
al geometric detail scaling; Third row: original model and cubic
synthetical geometric detail scaling (λ = 0.8, µ = 1.6), the scale
factor s is 0.6, 0.8 and 1.2, respectively. Fourth row: color map for
cubic synthetical geometric detail scaling

for sample points. The parameter α balances between two
kinds of constraints. In our experiments, we set α = 1.0.
The above quadratic energy minimization can be con-
verted into the following linear system Ax = b, that is,

αδ( p′
i) = αδ′

i, i ∈ {1, 2, . . . , K}
p′

i = p0
i , i ∈ {1, 2, . . . , m}

which can be solved by applying the conjugate gradi-
ent method to the associated normal equations (ATA)x
= ATb.

Figure 4 shows the experiment results of scaling the
geometric details of Stanford bunny model. The scale fac-
tor s < 1 means to shrink the geometric details, while s > 1
means to expand the geometric details, and s = 1 corres-
ponds to the original model. The color maps of geometric
details show the detail variations for scaling operation.

4.2 Geometric detail enhancement

Similar to image enhancement in digital image process-
ing, geometric detail enhancement is the process of en-



Y. Miao et al.

hancing the visual important model details. Here, model
detail is defined as the detail difference between the ori-
ginal surface and its smoothed base surface. Specifically,
for the point-sampled surface S, we generate its smoothed
base surface S̃ by balanced curvature flow filtering (see
Xiao et al. [28]), then encode the model detail σi at sam-

Fig. 5. Linear Laplacian geometric detail enhancement results for
the armadillo leg. First row: the linear geometric detail enhance-
ment results (λ = 0.2), the enhancement factor s is 1.0, 2.0 and
3.0, respectively. Second row: color map for linear geometric detail
enhancement

Fig. 6. Quadric synthetical geometric detail enhancement results for
the armadillo leg. First row: the quadric synthetical detail enhance-
ment results (λ = 0.8, µ = 1.6), the enhancement factor s is 1.0, 2.0
and 3.0, respectively. Second row: color map for quadric synthetical
geometric detail enhancement

ple point pi based on the high frequency geometric de-
tails. Let δi and δ̃i be the high frequency geometric detail
of S and S̃ at sample point pi respectively. We define
the model detail σi = δi − δ̃i and enhance the detail as
δ′

i = δ̃i + sσi , in which s is the enhance factor specified by
the user.

Similar to geometric detail scaling, the reconstruction
of the new surface can be converted to a corresponding
quadratic minimization problem and solved by applying
the conjugate gradient scheme to the associated normal
equations.

Figures 5 and 6 show the experiment results for en-
hancing the geometric details for the Stanford armadillo
leg. The enhancement factor s reflects the degree of the
enhancement operation, s > 1 means to enhance the geo-
metric details, and s = 1 means the original model. The
color maps of geometric details show the detail variations
by enhancement operation.

5 Generate simplification point set
by anisotropic geometric property

5.1 Determine mean shift neighbors

Due to the complexity of point-sampled surfaces, the
intrinsic geometric property is always anisotropic, and
the neighboring points which share similar geometric at-
tributes with the sample point cannot be determined by
isotropic scheme, such as the uniform k-nearest neigh-
bors [20, 34].

The mean shift approach [4–6] is a powerful non-
parametric clustering technique for scattered data based
on the analysis of multi-modal feature space. Mean shift
scheme is essentially an iterative procedure which moves
sample point along the direction of the maximum increase
in the density gradient. Specially, for the given sampled-
point geometry, the sample points equipped with normals
and mean curvatures are considered as a scattered data set
in seven-dimensional space. We apply the mean shift to
the 7D point set to determine the anisotropic neighbor as
follows:

1. For each sample point pi on the sampled-point set,
a 7D spatial and feature vector

p̄i = (xi, yi, zi, nxi, nyi, nzi, Hi)

is defined, which contains its position coordinate
(xi, yi, zi), normal (nxi, nyi, nzi) and mean curva-
ture Hi ;

2. Before mean shift iteration, the k-nearest neighboring
points of generalized point pi are found first, namely
NS( pi) = {qi1, qi2, . . . , qik};

3. For each sample point pi , the mean shift local mode
vector M∗( pi) in the joint spatial-range domain can be
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generated by the following iteration procedure:

Mv( pi) :=
∑k

j=1 qij g
(∥∥pr

i −qr
ij

∥∥)

∑k
j=1 g

(∥∥pr
i −qr

ij

∥∥) − M( pi),

M( pi) := M( pi)+ Mv( pi)

where g(·) could be either Gaussian kernel or Epanech-
nikov kernel, pr

i = (ni, Hi) is the range part of pi ,
M( pi) is called the mean shift point, which could be
initialized to coincide with pi , Mv( pi) is the mean
shift vector associated with M( pi);

4. Finally, the sample points with close mean shift local
modes are considered as the mean shift neighboring
points.

We apply the mean shift neighbors to subsequent op-
erations for editing and deformation, and also cluster the
original sample points into small regions hierarchically
based on the mean-shift local modes of sample points.

5.2 Generate simplification sample points

To edit the shape of large-scale point-sampled model ef-
ficiently, reducing the complexity of the data sets while
maintaining their geometric features is one of the key
preprocessing steps. To satisfy this requirement, some
representative sample points, called simplification sample
points (SSP), are derived from the underlying model.

We employ a mean shift operator to classify neighbor-
ing point, a hierarchical clustering scheme to generate the
simplification sample points. It recursively splits the point

Fig. 7a–h. Generating simplification sample points for point-sampled surfaces. a Original tentacle model, b the curvature distribution for
tentacle, c the clustering result by mean shift, d the simplification points generated by mean shift clustering and zoomed in for tentacle,
e original horse model, f the curvature distribution for horse, g the clustering result by mean shift, h the simplification points generated
by mean shift clustering and zoomed in for horse. The size of simplification sample point is determined by the number of sample points
in the corresponding cluster

clouds into a set of clusters by binary space partition based
on the following criteria:

– the size is larger than the user specified maximum
cluster size (typically 50 sample points, depending on
model size) or

– the variation for the mean-shift local modes of sample
points exceeds a given threshold.

Then, a binary tree can be built, and each leaf node
corresponds to a simplification sample point. We apply
the covariance analysis to each cluster to estimate normal
vector of the node. The centroid point and estimated nor-
mal of each cluster are chosen as the two elements of the
Surfel representation for the simplification sample points
(see Fig. 7).

The mean shift clustering is performed in both the
spatial domain and the range domain of sampled points,
which helps to generate the simplification sample points
for reflecting the intrinsic geometric feature (Fig. 7). For
example, the simplification points are dense when repre-
senting the subtle detail (usually the high curvature zones),
and sparse when representing the planar regions.

6 Geometric detail-preserving editing
for point-sampled surfaces

The detail-preserving editing for the given model means
to modify the overall geometric shape whilst keeping the
meso-geometric details unchanged. It can be formulated
as a quadratic energy optimization problem. By minimiz-
ing the energy, we can preserve intrinsic geometry details
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between original and deformed geometry in a least squares
sense.

However, to fully represent the highly detailed surfaces
of a physical 3D model, millions of discrete sample points
may be involved. For editing the point-sampled geom-
etry, it is very difficult to manipulate these large numbers
of sample points directly by using the current computing
resource. For example, the size of the normal equation
system for determining the deformed positions of n sam-
ple points is n ×n for each coordinate component x, y
and z, which is usually a time-consuming procedure for
large-scale high detailed point-sampled models. On con-
trast, the size of the linear system for editing simplification
points becomes K × K for each component. It is always
a high-level efficient operation due to relatively few sim-
plification points (K � n). So, we perform the editing
operation on two level representations – a coarse level
(simplification points) and a detail level (original model).
To speed up the deformation, the original model is first
down-sampled and reduced to a simplification point set,
the optimized editing operation is then performed on these
simplification points. Finally, the deformation result is dif-
fused to rest sample points of the underlying model.

Some editing operations, e.g., stretching or twisting,
may cause distortions in the distribution of sample points,
leading insufficient local sampling in some local area. To
refine the edit results, it is necessary to up-sample the de-
formed model.

6.1 Editing the simplification point set
for geometric detail preservation

Note that the simplification point set of a model is only
a partition of the original point-sampled data set at low
frequency level.

Given all simplification sample points SSP = {sspi =
(xi, yi, zi), i = 1, 2, . . . , K} of the point-sampled model,
the intrinsic geometry can be described by linear Lapla-
cian geometric details,

ξ( pi) = 1

λ
∆pi

or synthetical geometric details,

η( pi) =
(

1

λ
+ 1

µ

)
∆pi − 1

λµ
∆2 pi

ζ( pi) =
(

1

λ2 + 1

λµ
+ 1

µ2

)
∆2 pi − 1

λµ

(
1

λ
+ 1

µ

)
∆3 pi .

For convenience, we denote them all as δi .
To launch detail-preserving editing over simplifica-

tion points, user need only specify the deformed absolute
positions ssp0

i , i ∈ {1, 2, . . . , m} for a few simplification
points called handles, i.e.,

ssp′
i → ssp0

i , i ∈ {1, 2, . . . , m}

and the system will solve the deformed position {ssp′
i}, i ∈

{m + 1, m + 2, . . . , K} of the remaining points in the
region of interest (ROI) and then fit SSP′ = {ssp′

i, i =
1, 2, . . . , K} with given geometric details of original sim-
plification points SSP.

The deformed positions of the simplification points
{ssp′

i}, i ∈ {1, 2, . . . , K} can be obtained by solving the
following quadratic minimization problem:

min
ssp′

(
α

K∑

i=1

‖δ(ssp′
i)− δ′

i‖2 +
m∑

i=1

∥∥ssp′
i − ssp0

i

∥∥2
)

where δ′
i means the transformed high frequency geometric

details in the deformed coordinate frame.
The first term implies preserving high frequency geo-

metric details of deformed simplification points, and the
second term implies the position constraints. The param-
eter α makes balance between the detail-preserving re-
quirement and the position constraints for simplification
points. In our experiments, we take α = 1.0.

The minimization procedure can be converted into
a linear system Ax = b as follows:

αδ(ssp′
i) = αδ′

i, for i ∈ 1, 2, 3, . . . , K ,

ssp′
i = ssp0

i , for i ∈ 1, 2, 3, . . . , m.

The linear system can be solved by applying the conju-
gate gradient method to the associated normal equations
(ATA)x = ATb.

Propagation of local transforms. Since the high frequency
geometric detail definitions are sensitive to linear trans-
formation, especially to rotation of the sample points, it
is important to define the deformed position of each sim-
plification point in its local frame. A distance-dependent
propagation scheme is then adopted to derive the local
transformation Ti for other simplification point pi besides
the handle points, which converts the geometric details δi
in the global coordinates to new transformed geometric
details δ′

i = Tiδi in the local frame.
After the user defines a region of interest (ROI) on

the model and specifies some points as handles, the trans-
forms of the editing handles can be propagated to all
simplification points in the region of interest via a deform-
ation strength field

f(p) = β

(
d0(p)

d0(p)+d1(p)

)

where d0(p) and d1(p) measure the relative distances of
simplification sample point p from the SSP outside the
interest region and from the handles, and β(·) is a continu-
ous blending function with β(0) = 0 and β(1) = 1. So, the
closer a simplification point is to the handles, the stronger
the deformation will be for that point, and the deforma-
tion will be weak if the simplification point approaches to
border of the influence region.
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Fig. 8a–d. Global editing tentacle model with our framework.
a Original tentacle model, b the editing result for tentacle by pre-
serving linear Laplacian geometric details, c and d the editing
results for tentacle according to different manipulations for handle
points on the tip of tentacle

The local transform Ti can then be represented as
a quaternion Qi , and the final transform quaternion at sim-
plification sample point pi can be interpolated as:

Qi = f( pi)Qhandle + (1− f( pi))Q I

where Q I denotes a quaternion for the identity transform.
This formula simply blends the transform of the handles
with the identity using the distance-dependent strength
field. The transform is then propagated smoothly to all
simplification points in the region of interest.

The propagation of local transforms for tentacle of Oc-
topus are shown in Fig. 8b–d. Note that the orientation of
suckers on the tentacle are well-preserved after some rota-
tions of handle point.

6.2 Diffusing the deformation field

The detail-preserving editing operation for simplification
points defines deformation fields only at the simplification
points. The deformation fields should be diffused to other
sample points on the geometry. To satisfy the intrinsic
shape features, the local coordinates for the transformed
surface pieces should be invariant after deforming oper-
ations [27].

Let p be the sample point that needs to be deformed,
called an alive point, SSP = {sspi, i = 0, 1, 2, . . . , m} be
some neighboring simplification points in their original
state, sorted by the distances to the alive point, and sim-
plification point ssp0 is the nearest. The relative displace-
ment p − ssp0 can be encoded in m coordinate systems
{E1

i , E2
i , E3

i } with respect to the local frames of sspi yield-
ing m relative coordinates {(c1

i , c2
i , c3

i ), i = 1, 2, . . . , m},
such as,

p− ssp0 = c1
i E1

i + c2
i E2

i + c3
i E3

i

and they are stored with the alive point p.
After deforming the geometry, the coordinate sys-

tem {E
′1
i , E

′2
i , E

′3
i } for each simplification point is re-

constructed according to its deformed position {ssp′
i, i =

1, 2, . . . , m}. The local coordinates for the alive point at
the local frame of sspi can be transformed back into world
coordinates, yielding m positions for the alive point:

p′
i = ssp′

0 + c1
i E

′1
i + c2

i E
′2
i + c3

i E
′3
i .

And the final deformed position for the alive point p is
computed as a weighted sum of the m deformed pos-
itions p′

i .

Fig. 9a–c. Up-sampling procedure. a Hole detection: the blue seg-
ments indicate the sparsest direction of boundary points, b Up-
sampling: the red circles are new samples placed along the spars-
est direction of boundary points, c Relaxation: all red circles are
pushed by repulsion force and cover the hole

Fig. 10a–c. Up-sampling for point-sampled model. a Under-
sampled point-sampled model, b refined model after up-sampling
scheme, c rendering result of the refined model
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Table 1. Statistics and timings for editing different models. The timing is tested on a PC with a Pentium 4 2.0 GHz CPU, 512 M memory

Point-sampled models Horse Dog Tentacle Dinosaur

#Total sample points 48 484 95 063 44 383 56 194
#Total simplification points 3287 5275 3339 5954
#ROI simplification points 687 2135 3122 5584
Linear Laplacian geometric detail For editing SSPs 0.1014 s 0.3180 s 1.6070 s 2.5838 s

For diffusion 0.3223 s 0.7476 s 0.8278 s 1.1815 s
Quadric synthetical geometric detail For editing SSPs 0.1897 s 0.9469 s 1.9777 s 4.8977 s

For diffusion 0.3239 s 0.7497 s 0.8338 s 1.5482 s
Cubic synthetical geometric detail For editing SSPs 1.1658 s 9.4520 s 20.7778 s /

For diffusion 0.3247 s 0.7499 s 0.8423 s /

Fig. 11a–u. Local editing horse model with our framework. For every group of the editing results, the second picture is the editing result,
the first and the third show the color map of the original model and the edited model, respectively. a–c Original horse model, the curvature
and segmentation by mean shift, d–f the editing result for horse by preserving linear Laplacian geometric details (λ = 0.2), g–i the editing
result for horse by preserving linear Laplacian geometric details (λ = 1.0), j–l the editing result for horse by preserving quadric synthet-
ical geometric details (λ = 0.2, µ = 1.8), m–o the editing result for horse by preserving quadric synthetical geometric details (λ = 1.0,
µ = 1.6), p–r the editing result for horse by preserving cubic synthetical geometric details (λ = 0.2, µ = 1.8), s–u the editing result for
horse by preserving cubic synthetical geometric details (λ = 1.0, µ = 1.6), respectively

6.3 Postprocessing: Up-sampling for deformed geometry

The up-sampling procedure for deformed sampled-point
geometry consists of three steps (see Fig. 9).

The first step is to detect holes on the deformed model.
For sample point pi , its mean shift neighboring points

Ni = {qij} are determined,and they are projected onto the
fitting tangent plane at pi , whose projections are denoted
as {q∗

ij}. The corresponding covariance matrix can be con-
structed for {q∗

ij}, and two eigenvectors e1
i and e2

i are
computed which correspond to the two nonzero eigenval-
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Fig. 12. Large range editing Stanford armadillo model with our framework. First row: original model, the curvature and segmentation
by mean shift clustering, respectively; Second row: the editing result for armadillo by preserving quadric synthetical geometric details
(λ = 0.2, µ = 1.8), and third row: the editing result for the armadillo by preserving cubic synthetical geometric details (λ = 0.6, µ = 1.8)
according to different handle manipulations, the two handle points are specified at the end of each hand, respectively

ues. It is asserted that if the sample point pi locates near
a convex boundary of the sparse region, which is recog-
nized as a hole, the direction e1

i (or −e1
i ) will point to the

hole. Otherwise, if pi locates near a concave boundary
of the hole, the directiony e2

i (or −e2
i ) point to the hole.

We then calculate the sampling densities along directions
e1

i , −e1
i , e2

i , −e2
i . If the density along one direction is ap-

proximate zero, it shows that pi is on the boundary of
a hole, and the geometry should be up-sampled along the
sparse direction.

The second step is up-sampling along the sparse direc-
tion near the hole according to pre-defined density thresh-
old.

Finally, to obtain a more uniform sampling geom-
etry, a relaxation operator is applied to the up-sampled
surface, which rearranges the sample points on the sur-
face similar to the relaxation approach proposed by Pauly
et al. [20].

The example of Max-Planck model with up-sampling
is shown in Fig. 10a–c.

7 Experimental results and discussion

All the algorithms presented in this paper are implemented
and tested on a PC with a Pentium 4 2.0 GHz CPU, 512 M
memory and Windows XP. Table 1 shows the data statis-
tics and timings for editing different models presented
in this paper. Other information of each model includes
the number of sample points, the number of simplifica-
tion points, and the number of simplification points in
the region of interest, timings for editing simplification
points and for diffusing the deformation via the linear,
the quadric and cubic synthetical geometric detail, respec-
tively. As can be seen from the performance data, the
deformation for large scale detailed geometry is proved ef-
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Fig. 13. Global editing dinosaur model with our framework. First row: original model, the curvature and segmentation by mean shift clus-
tering, respectively; Second row: the global editing result for dinosaur by preserving linear Laplacian geometric details (λ = 0.2), and third
row: the global editing result for dinosaur by preserving quadric synthetical geometric details (λ = 0.6, µ = 1.8) according to different
handle manipulations, the four handle points are specified at the mouth, the end of tail, and the front claws, respectively

fectively by our proposed methods, and the user can edit
and deform the point-sampled geometry interactively or in
reasonable computing time.

Figure 11 shows some local editing results for horse
model, in which the horse head is selected as region of
interest and is edited with our scheme. To compare the
results by editing different geometric details, the han-
dle points remain unchanged during user manipulations.
Our experimental results show that preserving quadric and
cubic synthetical geometric details during editing can al-
ways yield more natural deformation than linear geometric
details. Moreover, to reflect the variation of details for dif-
ferent editing, for each group of the results, we illustrate

our editing result of model (the second picture), the color
map of original model (the first picture) and color map of
edited model (the third picture). The comparisons between
the color map of original model and those of edited model
indicate that the high frequency details are preserved well.

Figure 12 shows some large range editing results for
the Stanford armadillo model with our framework, the up-
per half body of the armadillo is defined as ROI and is
edited with our geometric detail preservation scheme. Two
handle points are specified at the end of each hand respect-
ively.

Figures 8 and 13 show some global editing results
under the user manipulation. For the tentacle model,
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one handle point on the tip of the tentacle is specified
and manipulated, and all the other sample points are
deformed systematically by our geometric detail preserva-
tion scheme. Four handles are specified for the dinosaur
model: one is on the mouth, one is on the end of tail, and
the other two is on the front claws.

In view of other detail-preserving editing approaches,
we should point out that our high frequency detail-based
editing scheme directly includes the Laplacian editing
method [13, 25] – linear geometric details preservation. In
addition, the existing gradient-domain techniques [11, 30]
can hardly be generalized to point-sampled models be-
cause of their relying heavily on globally consistent topo-
logical information between sample points.

8 Conclusions and future work

In this paper, based on the high-pass transfer func-
tions under the framework of spectral analysis, the lin-
ear, quadric and cubic synthetical geometric details for
point-sampled geometry are defined. Following our new
definition of high frequency geometric details, a new
approach of geometric detail manipulation and a detail-
preserving editing framework are investigated. The detail
manipulation operations can scale and enhance directly
the geometric details of the underlying geometry. The
detail-preserving editing operation proceeds by adjust-
ing the position of a few simplification sample points
interactively, then diffusing the deformation field to other

affected sample points on the underlying geometry. A new
up-sampling and relaxation procedure is proposed for
postprocessing the deformed model to achieve uniform
sampling density.

However, in our editing framework, to compensate for
the rotation-invariance of geometric details and to pre-
serve the local details naturally, the local rotation trans-
forms of the editing handles should be explicitly propa-
gated to all simplification points. This step may lead to
unnaturally and implausible results for large deformations,
such as those found with characters performing nonrigid
and highly exaggerated movements. To solve this prob-
lem, volumetric details for each sample point can be de-
fined and should be preserved during the editing and de-
formation procedure.

In the future, more interactive editing and deform-
ation operations based on high frequency geometric de-
tails should be investigated, for example, detail trans-
fer, deformation transfer, shape interpolation, etc. Another
challenging area for future work may be the investigation
of other rigid motion invariant intrinsic representation of
point-sampled surfaces.

Acknowledgement The authors would like to thank Prof. Mark
Pauly and Dr. Richard Keiser for providing the Octopus model.
This research work is supported by The National Basic Research
Program of China (973 Program) under Grant No. 2002CB312101,
National Natural Science Foundation of China (NSFC) under Grant
Nos. 60503056, 60333010 and Natural Science Foundation of Zhe-
jiang Province under Grant No. R106449.

References
1. Alexa, M.: Differential coordinates for

local mesh morphing and deformation.
Visual Comput. 19(2), 105–114 (2003)

2. Au, O.-C., Tai, C.-L., Liu, L., Fu, H.: Dual
Laplacian editing for meshes. IEEE Trans.
Vis. Comput. Graph. 12(3), 386–395 (2006)

3. Bao, Y., Guo, X., Qin, H.: Physically-based
morphing of point sampled surfaces.
Comput. Anim. Virtual Worlds 16(3–4),
509–518 (2005)

4. Cheng, Y.: Mean shift, mode seeking, and
clustering. IEEE Trans. Pattern Anal.
Machine Intell. 17, 790–799 (1995)

5. Comaniciu, D., Meer, P.: Mean shift
analysis and applications. In: Proceedings
of IEEE International Conference on
Computer Vision, pp. 1197–1203. IEEE
Computer Society, Washington (1999)

6. Comaniciu, D., Meer, P.: Mean shift:
a robust approach toward feature space
analysis. IEEE Trans. Pattern Anal.
Machine Intell. 24(5), 603–619 (2002)

7. Guo, X., Li, X., Bao, Y., Gu, X., Qin, H.:
Meshless thinshell simulation based on
global conformal parameterization. IEEE
Trans. Vis. Comput. Graph. 12(3), 375–385
(2006)

8. Guo, X., Qin, H.: Dynamic sculpting and
deformation of point set surfaces. In:
Proceedings of Pacific Graphics,
pp. 123–130. IEEE Computer Society,
Washington (2003)

9. Guo, X., Qin, H.: Real-time meshless
deformation. Comput. Anim. Virtual
Worlds 16(3–4), 189–200 (2005)

10. Guskov, I., Sweldens, W., Schroder, P.:
Multiresolution signal processing for
meshes. In: Proceedings of ACM
SIGGRAPH, pp. 325–334. ACM Press,
New York (1999)

11. Huang, J., Shi, X., Liu, X., Zhou, K.,
Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B.,
Shum, H.-Y.: Subspace gradient domain
mesh deformation. ACM Trans. Graph.
25(3), 1126–1134 (2006)

12. Kobbelt, L., Campagna, S., Vorsatz, J.,
Seidel, H.-P.: Interactive multi-resolution
modeling on arbitrary meshes. In:
Proceedings of ACM SIGGRAPH,
pp. 105–114. ACM Press, New York (1998)

13. Lipman, Y., Sorkine, O., Cohen-Or, D.,
Levin, D., Rossl, C., Seidel, H.-P.:
Differential coordinates for interactive
mesh editing. In: Proceedings of Shape

Modeling International, pp. 181–190. IEEE
Computer Society, Washington (2004)

14. Lipman, Y., Sorkine, O., Levin, D.,
Cohen-Or, D.: Linear rotation-invariant
coordinates for meshes. ACM Trans.
Graph. 24(3), 479–487 (2005)

15. Miao, Y., Feng, J., Xiao, C., Li, H.,
Peng, Q.: Detail-preserving local editing for
point-sampled geometry. In: Proceedings of
Computer Graphics International
Conference, Lecture Notes in Computer
Science, vol. 4035, pp. 673–681. Springer,
Germany (2006)

16. Muller, M., Heidelberger, B., Teschner, M.,
Gross, M.: Meshless deformations based on
shape matching. ACM Trans. Graph. 24(3),
471–478 (2005)

17. Muller, M., Keiser, R., Nealen, A.,
Pauly, M., Gross, M., Alexa, M.:
Point-based animation of elastic, plastic,
and melting objects. In: Eurographics/ACM
SIGGRAPH Symposium on Computer
Animation, pp. 141–151. Eurographics
Association, Switzerland (2004)

18. Nealen, A., Sorkine, O., Alexa, M.,
Cohen-Or, D.: A sketch-based interface
for detail-preserving mesh editing.



Y. Miao et al.

ACM Trans. Graph. 24(3), 1142–1147
(2005)

19. Pauly, M., Gross, M.: Spectral processing
of point-sampled geometry. In: Proceedings
of SIGGRAPH, pp. 379–386. ACM Press,
New York (2001)

20. Pauly, M., Gross, M., Kobbelt, L.: Efficient
simplification of point-sampled surfaces. In:
Proceedings of IEEE Visualization,
pp. 163–170. IEEE Computer Society,
Washington (2002)

21. Pauly, M., Keiser, R., Adams, B., Dutre, P.,
Gross, M., Guibas, L.: Meshless animation
of fracturing solids. ACM Trans. Graph.
24(3), 957–964 (2005)

22. Pauly, M., Keiser, R., Kobbelt, L.,
Gross, M.: Shape modeling with
point-sampled geometry. ACM Trans.
Graph., 22(3), 641–650 (2003)

23. Pauly, M., Kobbelt, L., Gross, M.:
Point-based multiscale surface
representation. ACM Trans. Graph. 25(2),
177–193 (2006)

24. Sorkine, O.: Laplacian mesh processing.
State of The Art Report. In: Proceedings of

the Eurographics, pp. 53–70. Eurographics
Association, Switzerland (2005)

25. Sorkine, O., Lipman, Y., Cohen-Or, D.,
Alexa, M., Rossl, C., Seidel, H.-P.:
Laplacian surface editing. In: Proceedings
of the Eurographics/ACM SIGGRAPH
Symposium on Geometry Processing,
pp. 179–188. Eurographics Association,
Switzerland (2004)

26. Taubin, G.: A signal processing approach
to fair surface design. In: Proceedings of
ACM SIGGRAPH, pp. 351–358. ACM
Press, New York (1995)

27. Wicke, M., Steinemann, D., Gross, M.:
Efficient animation of point-sampled thin
shells. Comput. Graph. Forum 24(3),
667–676 (2005)

28. Xiao, C., Miao, Y., Liu, S., Peng, Q.:
A dynamic balanced flow for filtering
point-sampled geometry. Visual Comput.
22(3), 210–219 (2006)

29. Xiao, C., Zheng, W., Miao, Y., Zhao, Y.,
Peng, Q.: A unified method for appearance
and geometry completion of point set

surfaces. Visual Comput. 23(6), 433–443
(2007)

30. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H.,
Guo, B., Shum, H.-Y.: Mesh editing with
poisson-based gradient field manipulation.
ACM Trans. Graph. 23(3), 641–648 (2004)

31. Zayer, R., Rossl, C., Karni, Z.,
Seidel, H.-P.: Harmonic guidance for
surface deformation. Comput. Graph.
Forum 24(3), 601–609 (2005)

32. Zhou, K., Huang, J., Snyder, J., Liu, X.,
Bao, H., Guo, B., Shum, H.-Y.: Large mesh
deformation using the volumetric graph
Laplacian. ACM Trans. Graph. 24(3),
496–503 (2005)

33. Zorin, D., Schroder, P., Sweldens, W.:
Interactive multiresolution mesh editing. In:
Proceedings of ACM SIGGRAPH,
pp. 259–268. ACM Press, New York (1997)

34. Zwicker, M., Pauly, M., Knoll, O.,
Gross, M.: Pointshop 3D: An interactive
system for point-based surface editing.
ACM Trans. Graph. 21(3), 322–329 (2002)

YONGWEI MIAO born in 1971, Ph.D., asso-
ciate professor. His research interests include
virtual reality, digital geometry processing and
computer-aided geometric design.

JIEQING FENG born in 1970, Ph.D., professor.
His research interests include space deformation,

computer-aided geometric design, and computer
animation.

CHUNXIA XIAO born in 1976, Ph.D. His re-
search interests include virtual reality, digital
geometry processing and point-based computer
graphics.

QUNSHENG PENG born in 1947, Ph.D., profes-
sor. His research interests include virtual reality,
realistic image synthesis, infrared image synthe-
sis and computer animation, scientific visualiza-
tion.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


