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Abstract
Registration is a key step in the 3D reconstruction of real-world objects. In this paper, we propose a hierarchical
method for the rigid registration of multiple views. The multiview registration problem is solved via hierarchical
optimization defined on an undirected graph. Each node or edge in this graph represents a single view or a
connection between two overlapped views, respectively. The optimizations are performed hierarchically on the
edges, the loops, and the entire graph. First, each overlapped pair of views is locally aligned. Then, a loop-based
incremental registration algorithm is introduced to refine the initial pairwise alignments. After a loop is registered,
the views in the loop are merged into a metaview in the graph. Finally, global error diffusion is applied to the entire
graph to evenly distribute the accumulated errors to all views. In addition, a new objective function is defined to
describe the loop closure problem; it improves the accuracy and robustness of registration by simultaneously
considering transformation and registration errors. The experimental results show that the proposed hierarchical
approach is accurate, efficient and robust for initial view states that are not well posed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

The 3D reconstruction of real-world objects using modern
acquisition facilities is of great concern in many areas such
as computer graphics, computer-aided design and comput-
er vision. As a result of limited fields of view and self-
occlusion, a 3D acquisition device can capture only partial
information about an object from a single viewpoint. To ob-
tain a complete model, multiple partial views of the model
must be acquired. These views are independently captured
in different local coordinate systems; therefore, they must be
registered into a common global coordinate system. Hence,
multiview registration is a necessary and important step in
3D reconstruction.

In general, multiview registration can be formulated as an
optimization problem. The goal of optimization is to find a
transformation for each view such that the overlapping re-
gions of the transformed views are aligned with each other as
closely as possible. If the transformations are restricted to be
rigid, the problem is characterized as multiview rigid regis-
tration. Pairwise registration (alignment) is a special case of
multiview registration in which only one pair of overlapped
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views is considered. The problem of pairwise registration
has already been well studied [CB12], and its solution can
serve as an initial approach to the multiview case. For ex-
ample, each overlapped pair of views is first locally aligned;
then, all views can be sequentially integrated into a com-
mon coordinate system using the transitivity of the transfor-
mations. This method is termed Sequential Integration (SI).
However, this approach will encounter the well-known loop
closure problem [GCRN09], where the transformations are
not consistent in the loops and the registration result exhibits
visible misalignments due to accumulated errors.

Many global algorithms have been proposed to solve the
loop closure problem. Some of them diffuse the transforma-
tion errors of local pairwise alignments to achieve consisten-
cy of transformations [SLW04, GP14]. These methods are
generally efficient because only the transformations need be
considered in the global optimization. However, the regis-
tration errors may not be minimized following the diffusion
of the transformation errors. Other global methods global-
ly minimize the registration errors in all overlapped view
pairs [WB01, LZY∗14]. These methods are not as efficient
as those based on the diffusion of transformation errors be-
cause the global optimization must include all data in the
overlapping regions. Moreover, the choice of optimization
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strategy also has a significant impact on the registration re-
sults. For example, incremental optimization can avoid local
minima but tends to produce accumulated errors, whereas
simultaneous optimization can eliminate accumulated errors
but may lead to local minima. The robustness with respect to
initial view states that are not well-posed is another concern
in the multiview registration problem.

In this paper, we present a hierarchical approach to mul-
tiview rigid registration. The multiple views and their over-
lapping relations are represented using an undirected graph.
The nodes and edges in the graph represent the views and the
overlapping relations of the view pairs, respectively. Three-
level hierarchical optimization is performed on the graph.
In this optimization procedure, the edges, the loops and
the graph itself are the basic processing units of each lev-
el from bottom to top. The optimizations at the three levels
are termed Initial Pairwise Alignments (IPA), Loop-based
Incremental Registration (LIR) and Global Errors Diffusion
(GED). In addition, to achieve more accurate and robust reg-
istration, a new objective function is proposed to solve the
loop closure problem. It is designed to simultaneously mini-
mize the transformation and registration errors. By combin-
ing the hierarchical optimization mechanism with the new
objective function, the proposed approach is shown to be ac-
curate, efficient and robust for views with poor position ini-
tialization. The main contributions of our work can be sum-
marized as follows:

• A hierarchical approach to the problem of multiview rigid
registration is proposed.

• A new objective function that improves the accuracy and
robustness of registration by considering both transforma-
tion errors and registration errors is defined to solve the
loop closure problem.

2. Related Work

Over the past two decades, the registration of 3D shapes has
been an intensively studied problem. In recent works, Tam
et al. [TCL∗13] present a survey that classifies various tech-
niques for both rigid and non-rigid registration, and Díez et
al. [DRLS15] offer a qualitative review of several 3D coarse
registration methods. In this section, we simply classify rigid
registration problems as either pairwise registration or mul-
tiview registration.

Pairwise registration. The simplest case in 3D registration
is the registration of two overlapping views. If point cor-
respondences between the two views are known a priori,
then the problem can be formulated as the minimization of
the sum of the squared distances between all correspond-
ing point pairs. Closed-form solutions of this minimization
problem can be derived using the Singular Value Decompo-
sition (SVD) method [AHB87]. Thus, correspondence is the
most important factor in pairwise registration.

Distinguished by their approaches to correspondence

matching, the solutions to the pairwise registration prob-
lem can be categorized into two classes. One is the Iterative
Closest Point (ICP) class [BM92], in which pairs of clos-
est points are matched to serve as correspondences and the
sum of the squared distances between these pairs is itera-
tively minimized. The ICP algorithm has been widely used,
and many variants have been developed by modifying ei-
ther the alignment metric, the rejection of point pairs, or
the method of optimization [RL01]. For example, the point-
to-point distance metric may be replaced by a more accu-
rate point-to-plane distance metric [CM92]. Ignoring point
pairs near the boundary [TL94] and rejecting point pairs
for which the distance between the points is greater than a
given threshold [Zha94] can eliminate incorrect correspon-
dences and improve registration accuracy. Recently, several
new optimization models, such as the Sparse ICP [BTP13]
and the stochastic optimization method [AGV∗14], which
can enhance the robustness of registration with respect to
noises and outliers, have been proposed. Given good initial
positional states and sufficient overlapping regions, the ICP
method and its variants are generally accurate and efficient.
Hence, we adopt the ICP method to perform pairwise align-
ment in our proposed registration method.

Solutions of the second class are known as voting meth-
ods [GMGP05,AMC08]. In an algorithm of this type, sparse
feature points are extracted for correspondence matching.
Transformations are calculated based on these sparse cor-
respondences and recorded for voting. The alignment that
receives the most votes is selected as the optimal alignmen-
t. Thus, this class of approaches is insensitive to the initial
positional states, and the accuracy of the registration result
depends on the accuracy of feature location and matching.

Multi-view registration. Multiview registration is more
complicated than pairwise registration. The simple integra-
tion of local pairwise alignments will lead to the loop closure
problem. Thus, a global method should be adopted. The pro-
cess of solving the loop closure problem is also called loop-
closing.

Certain global methods take advantage of local pairwise
alignments and perform loop-closing by diffusing the trans-
formation errors in the initially aligned view pairs. Sharp
et al. [SLW04] evenly distributed the deviations of rotation
and translation among all overlapped view pairs to obtain
rigid consistency in the transformations. Govindu et al. and
Torsello et al. represented 3D rigid transformations using Lie
algebra parameters [GP14] and dual quaternions [TRA11],
respectively. They diffused the transformation errors using
these new representations. An explicit loop-closing tech-
nique was proposed by Sprickerhof et al. [SNLH09]. These
authors detected loops along the scanning path. Once the
loops were detected, the transformation errors in the loops
were recursively propagated to other adjacent loops. The ap-
proaches described above are very efficient because their op-
timization calculations involve only a small number of ma-
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trix or algebraic operations. However, the registration errors
cannot be guaranteed to be minimized because the data in the
overlapping regions are not considered in the loop-closing
procedure.

Other global methods attempt to minimize the sum of the
registration errors in all overlapped view pairs to achieve the
direct diffusion of the registration errors. Chen et al. [CM92]
proposed an incremental registration algorithm wherein the
first two views are registered into a metaview, into which
the other views are incrementally merged. Another incre-
mental algorithm that evenly diffuses the pairwise regis-
tration errors under the assumption of perfect pairwise ini-
tialization was proposed by Pulli [Pul99]. Incremental reg-
istration can avoid local minima, but it may produce ac-
cumulated deviations. To overcome this problem, Bergevin
et al. [BSGL96] introduced a simultaneous registration s-
trategy. They calculated the transformation of each view
separately and then applied all transformations simultane-
ously before the next round of correspondence matching.
Given correspondences in all overlapping regions, the si-
multaneous calculation of all transformations was achieved
by Williams et al. [WB01]. To make the rigid transforma-
tions consistent in the global registration procedure, Liu et
al. [LZY∗14] proposed a globally consistent formulation by
choosing a single view as an fixed anchor. In addition to the
above methods, certain global methods have adopted spe-
cial optimization models. Stoddart et al. [SH96] simulat-
ed the registration process using a spring model, in which
the optimal registration corresponded to a stable state of the
physical system. Krishnan et al. considered optimization on
a manifold [KLMV05]. Pottmann et al. [PLH02] studied
the dynamic registration problem and accelerated the con-
vergence speed of the optimization by linearizing the mo-
tion between successive scanned views [BTP14]. Notably,
Huang et al. [HZG∗12,HG13] recently developed optimiza-
tion approaches to extract consistent maps from a collection
of related shapes, directly solving the loop closure problem
by establishing cycle-consistent point correspondences.

3. Hierarchical Registration

Figure 1 shows an overview of the proposed hierarchical reg-
istration algorithm. The registration procedure is performed
from the bottom up. First, each view pair connected by an
edge in the graph is aligned locally. Then, the initial pair-
wise alignments are refined via loop-based incremental reg-
istration. The views in each registered loop are merged into
a metaview, and the graph is updated. Finally, global error
diffusion is applied to the entire graph.

The registration procedure begins with the initially posed
views. The initialization can be achieved manually or using
various voting methods [GMGP05,AMC08]. It is worth not-
ing that the proposed registration method is not completely
insensitive to the initial positions of the views, although a
coarse initialization is sufficient.

… 

Initial Pairwise Alignment (IPA) 

Loop-based Incremental Registration (LIR) 

Global Error Diffusion (GED) 

Edge level 

Loop level 

Graph level 

Figure 1: Overview of the hierarchical multiview rigid regis-
tration algorithm: Each blue point represents a view. Each
line segment indicates the overlapping relation between a
pair of views. Loops that consist of red edges are merged
into metaviews (red circles).

Figure 2 offers a preview of various registration results
obtained using various combinations of SI method and the
operations that compose our algorithm. The results of the SI
method exhibits visible misalignments as a result of the ac-
cumulated errors, as shown in the first column. The effects
of LIR and GED are illustrated by the registration error his-
tograms presented in the second column and third columns,
respectively: LIR is designed to refine the initial pairwise
alignments, and GED is used to evenly diffuse the registra-
tion errors of all overlapped view pairs.

3.1. Initial Pairwise Alignment

Pairwise alignment is the fundamental operation used in our
approach. We employ an ICP method to perform this task.
In this method, a point-to-plane distance is adopted to define
the alignment metric [CM92]. We implement an approxima-
tion of this metric with a projection method. Each point e-
quipped with a normal defines a plane. Each source point is
projected on the plane defined by its closest target point. To-
gether, the projection point on the target plane and the source
point then constitute a correspondence. Although various lo-
cal fitting methods could be used to obtain a high-order ap-
proximation (instead of a linear plane), this would be time
consuming. We choose the first-order approximation (plane)
as a trade-off between accuracy and efficiency.

When a pair of overlapped views is aligned, the result-
ing rigid transformation is not invertible in general, which
means that the inverse transformation can not be generat-
ed by swapping the source view and the target view. This
is undesirable because the presence of inconsistent direct-
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Figure 2: Illustrations of various registration results obtained
using different combinations of SI method and the opera-
tions in our algorithm. In the first row, different colors repre-
sent different views. The second and third rows show slices
and zoomed slices, respectively, of the registered models.
The last row shows the registration error of each overlapped
view pair in terms of the root mean square (RMS) error.

ed edges will greatly increase the complexity of addressing
the loop closure problem. Therefore, we wish to represent
the registration problem using an undirected graph. We ad-
dress the direction issue by adopting a bi-directional projec-
tion approach [LZY∗14], in which we project the points in
the source view onto the target view and vice versa. Thus,
the same numbers of sampling points can be collected for
both the source view and the target view. In this way, a one-
to-one correspondence can be established. Among the corre-
sponding points, some will be the original sampling points,
and the others are the projection points. The point correspon-
dence will remain unchanged when the alignment direction
is inverted. Thus, invertible transformations can be obtained
in our initial pairwise alignment.

3.2. Loop Closure Problem

Via the bi-directional ICP method introduced in Section 3.1,
a set of invertible rigid transformations is obtained from the
initial pairwise alignments. Before describing the details of
LIR at the loop level, we will first introduce a new objective
function for the loop closure problem and its solution. This
objective function is fundamental to both LIR and GED.

3.2.1. Loop Closure for One Loop

Let L be a loop that contains L views {Vt}L
t=1 with VL+1 =

V1, and let Ψ = {ψt}L
t=1 be the set of rigid transformations

obtained from the initial pairwise alignments, where

ψt : Vt → Vt+1, t = 1, . . . ,L. (1)

Then, the transformations in Ψ should, in theory, satisfy the
following consistency constraint:

ψ1 ◦ψ2 ◦ · · · ◦ψL = I, (2)

where I is the identity transformation. Because all of these
transformations are calculated individually from a set of mu-
tually independent pairwise alignments, the constraint speci-
fied in Equation (2) is not fulfilled in general. There are sev-
eral ways to optimize the rigid transformations in Ψ such
that the optimized transformations satisfy the loop closure
constraints.

Minimization of transformation errors. In this method, a
set of new rigid transformations Ψ̂ = {ψ̂t}L

t=1 is identified
such that the error between the corresponding transforma-
tions in Ψ and Ψ̂ is minimized subject to the loop closure
constraint, i.e.,

minimize
Ψ̂

L

∑
t=1
‖ψ̂t −ψt‖2

subject to ψ̂1 ◦ ψ̂2 ◦ · · · ◦ ψ̂L = I

(3)

where the norm ‖ψ̂t − ψt‖ is a metric that measures the
distance between ψ̂t and ψt , which is also called the trans-
formation error of the pairwise alignment Vt → Vt+1. The
norm could be a Frobenius norm of the matrix or a met-
ric defined in terms of the angle of rotation and the length
of translation [SLW04], or other forms of the norm defined
in space of Lie algebra [GP14] or in a quaternion formula-
tion [TRA11]. The purpose of this minimization is to diffuse
the transformation errors such that the variation between ψ̂t
and ψt is minimized. In theory, if the initial pairwise align-
ments are well-solved, then the induced variations in regis-
tration errors should also be minimized. However, the rela-
tionship between the two types of errors is not intuitive in
practical applications. For example, depending on the posi-
tion of the center of rotation, a small rotation may lead to a
large deviation of a data set.

Minimization of registration errors. In the initial pairwise
alignments, pairs of corresponding points are generated dur-
ing each ICP iteration. The point pairs generated in the fi-
nal iteration are called concrete point pairs [Pul99]. Another
loop-closing approach for L concerns the registration errors
of these concrete point pairs. The objective function is to
used to minimize the sum of the squared distances between
all of the concrete point pairs. It can be formulated as

minimize
Ψ̂

L

∑
t=1

Nt

∑
i=1
‖ψ̂t(xt

i)−yt
i‖2

subject to ψ̂1 ◦ ψ̂2 ◦ · · · ◦ ψ̂L = I

(4)

where (xt
i ,y

t
i) is a concrete point pair as shown in Figure

3; Nt is the number of concrete point pairs between Vt and
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Figure 3: Illustrations of concrete pairings (solid green lines)
and virtual pairings (dotted green lines): (xt

i ,y
t
i) is a concrete

point pair, (xt
i , x̄

t
i) and (yt

i , ȳ
t
i) are virtual point pairs, and V̄t

and V̄t+1 are the virtual views transformed from Vt and Vt+1
by ψt and ψ

−1
t , respectively. Note that in each concrete point

pair considered, only one point is an original sample and the
other is its projected point generated in the final ICP itera-
tion, whereas the concrete point pairs considered in [Pul99]
consist entirely of original sample points.

Vt+1; and ∑
Nt
i=1 ‖ψ̂t(xt

i)− yt
i‖2 is called the registration er-

ror of the pairwise alignment Vt → Vt+1. This formula-
tion globally minimizes the registration errors of all pairwise
alignments.

Equation (4) is an attractive formulation for solving the
loop closure problem, but it may fail to address a lack of
salient geometric features in certain overlapping regions, e.g.
planar or spherical regions. In these regions, the results of
the initial pairwise alignments often exhibit drift because
the their registration errors may remain very small even in
the case of large drifts. The drift problem is also difficult
to detect and overcome when using Equation (4) to address
registration errors. However, we find that if there are large
disparities in the overlapping regions of aligned view pairs
that are subject to drift, then the corresponding transforma-
tions ψ1 ◦ψ2 ◦· · ·◦ψL should be far from I because the drift-
affected pairwise alignments often contain large transforma-
tion errors. Thus, minimizing the transformation errors us-
ing Equation (3) can be regarded as a heuristic solution to
the drift problem.

Minimization of both transformation errors and regis-
tration errors. As seen from the analysis given above, a
heuristic and reasonable objective function for loop closure
should simultaneously minimize transformation errors and
registration errors. Thus, both the concrete point pairs and
the transformations in Ψ should be considered. This can be
accomplished using the concept of virtual mates proposed
by Pulli [Pul99]. Consider the concrete point pair (xt

i ,y
t
i) in

Equation (4); the virtual mates of these points, x̄t
i and ȳt

i , are

defined as

x̄t
i = ψt(xt

i) and ȳt
i = ψ

−1
t (yt

i) (5)

respectively, and the resulting pairs (xt
i , x̄

t
i) and (yt

i , ȳ
t
i) are

called virtual point pairs (see Figure 3). By replacing the reg-
istration errors in Equation (4) with the sum of the squared
distances between virtual point pairs, the new objective func-
tion can be defined as follows:

minimize
Ψ̂

L

∑
t=1

Nt

∑
i=1

(‖ψ̂t(xt
i)− x̄t

i‖2 +‖ψ̂−1
t (yt

i)− ȳt
i‖2)

=
L

∑
t=1

Nt

∑
i=1

(‖(ψ̂t −ψt)(xt
i)‖2 +‖(ψ̂−1

t −ψ
−1
t )(yt

i)‖2)

subject to ψ̂1 ◦ ψ̂2 ◦ · · · ◦ ψ̂L = I
(6)

Let us consider the point xt
i and its virtual mate x̄t

i in Equa-
tion (6). On the one hand, according to the definition of a vir-
tual mate given in Equation (5) and the second line of Equa-
tion (6), the minimization of ‖(ψ̂t−ψt)(xt

i)‖2 will indirectly
lead to the minimization of ‖ψ̂t −ψt‖, which is equivalent
to the minimization of the transformation errors. On the oth-
er hand, the virtual mate x̄t

i already lies in the position to be
convergent, which minimizes the registration error between
Vt and Vt+1. Obviously, x̄t

i is very close to the target point
yt

i . Therefore, minimizing ‖ψ̂t(xt
i)− x̄t

i‖2 can be regarded as
an indirect method of minimizing the registration error.

Virtual pairing has another advantage over concrete pair-
ing, i.e., its robustness to noise and outliers. For quadrat-
ic minimization, the solution will bias the answer in favor
of minimizing the distances between widely separated point
pairs. If we adopt concrete pairing, any noise and outliers
present in the overlapping regions are likely to result in point
pairs separated by longer distances compared with those that
lie in well-sampled regions. This will cause the registration
result to deviate from the correct one. However, in the virtual
pairing approach, the geometrical shapes of the source point
set and the corresponding target point set (virtual mates) are
the same. Regardless of the presence of noise or outliers,
the distances between the virtual point pairs are determined
solely by the relative transformation between the two point
sets. Thus, the optimization will be less seriously affected by
noise or outliers than that in the concrete approach.

3.2.2. Loop Closure for Multiple Loops

Having defined the new objective function for the closure of
one loop, we now extend it to the closure of multiple loops.
Consider M views {Vm}M

m=1, which form K loops, {Lk}K
k=1.

The loop Lk consists of Lk views Vtk
1
,Vtk

2
, . . . ,Vtk

Lk
. In these

views, there are P pairs of views that have overlapping re-
gions, which were initially pairwise aligned. Let ψα,β de-
note the rigid transformation that aligns Vα to Vβ, where
(α,β)↔ µ, for µ = 1, . . . ,P. A straightforward generaliza-
tion of Equation (6) is to simultaneously close all K loops,
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where the objective function remains defined as the sum of
the squared distances between all virtual point pairs:

minimize
P

∑
µ=1

Nµ

∑
i=1

(‖ψ̂α,β(x
µ
i )− x̄µ

i ‖
2 +‖ψ̂−1

α,β(y
µ
i )− ȳµ

i ‖
2)

subject to ψ̂tk
1 ,t

k
2
◦ ψ̂tk

2 ,t
k
3
◦ · · · ◦ ψ̂tk

Lk
,tk

1
= I

for k = 1, . . . ,K
(7)

where ψ̂α,β is the rigid transformation to be optimized;
(xµ

i ,y
µ
i ) is a concrete point pair in the pairwise alignment

Vα→Vβ; x̄µ
i and ȳµ

i are the virtual mates of these points, i.e.,
x̄µ

i = ψα,β(x
µ
i ) and ȳµ

i = ψ
−1
α,β

(yµ
i ); and Nµ is the number of

concrete point pairs between Vα and Vβ.

However, a constrained optimization problem is, in gen-
eral, difficult to solve. Inspired by the method described
in [LZY∗14], we propose an elaborate approach in which E-
quation (7) is converted into an unconstrained optimization
problem. Let φ̂m be the transformation to be optimized for
Vm, for m = 1, . . . ,M. Then, ψ̂α,β can be rewritten as

ψ̂α,β = φ̂
−1
β
◦ φ̂α (8)

By substituting Equation (8) to Equation (7), the objective
function can be reformulated as

E =
P

∑
µ=1

Nµ

∑
i=1

(‖φ̂−1
β
◦ φ̂α(xµ

i )− x̄µ
i )‖

2 +‖φ̂−1
α ◦ φ̂β(y

µ
i )− ȳµ

i ‖
2)

=
P

∑
µ=1

Nµ

∑
i=1

(‖φ̂α(xµ
i )− φ̂β(x̄

µ
i )‖

2 +‖φ̂β(y
µ
i )− φ̂α(ȳµ

i )‖
2)

(9)
In addition, the loop closure constraints given in Equation
(7) will be automatically satisfied. Because the transforma-
tions in Φ̂ = {φ̂m}

M
m=1 are mutually independent, the min-

imization of E in Equation (9) becomes an unconstrained
optimization problem.

Recall the single-loop case; Equation (6) can be convert-
ed into an unconstrained optimization problem in a similar
manner. Let φ̂t denote the transformation to be optimized for
Vt , for t = 1, . . . ,L. Then, ψ̂t = φ̂

−1
t+1 ◦ φ̂t , and the objective

function given in Equation (6) can be reformulated as

E(L) =
L

∑
t=1

Nt

∑
i=1

(‖φ̂−1
t+1 ◦ φ̂t(xt

i)− x̄t
i)‖2 +‖φ̂−1

t ◦ φ̂t+1(y
t
i)− ȳt

i‖2)

=
P

∑
t=1

Nt

∑
i=1

(‖φ̂t(xt
i)− φ̂t+1(x̄

t
i)‖2 +‖φ̂t+1(y

t
i)− φ̂t(ȳt

i)‖2)

(10)
where E(L) can be regarded as a special case of E in Equa-
tion (9) that is to close only one loop L.

3.2.3. Optimization

The minimization of E in Equation (9) can be achieved
using the simultaneous registration method developed by

Williams and Bennamoun [WB01]. Unlike methods that
solve each transformation separately [BSGL96] or incre-
mentally [Pul99], the simultaneous method simultaneously
solves all transformations as long as the correspondences in
all overlapping regions are given. Thus, the seesaw effect
can be substantially alleviated, and the amount of accumu-
lated error will decrease.

We briefly introduce the simultaneous method as follows.
For details of the proofs, readers can refer to the original
paper [WB01]. In Equation (9), each unknown rigid trans-
formation φ̂m consists of a 3× 3 rotation matrix Rm and a
3×1 translation vector Tm. We concatenate all of these ma-
trices and vectors into a (3× 3M) matrix R and a (3M× 1)
vector T:

R =
[

R1 . . .RM
]

and T =

 T1
...

TM

 (11)

Then, E becomes a function of R and T. First, under the as-
sumption that R is known, E can be minimized by comput-
ing the partial derivative with respect to each component of
T and equating these partial derivatives to zero. The result is
a linear system in terms of T because E is a quadratic func-
tion of T. Thus, the optimal Tmin can be obtained by solving
the linear system, which is written in terms of the given R.
Upon substituting Tmin back into E, E becomes the function
only of R. The optimal Rmin is determined using an iterative
algorithm as follows. First, each rotation matrix Rm is initial-
ized as an identity matrix. Then, by fixing the other rotation
matrices, a temporary optimum of Rm can be obtained using
the SVD method. This temporary optimization is iteratively
applied to each rotation matrix Rm, for m = 1, . . . ,M,, and
the optimized rotation matrix is immediately updated before
the next iteration. Because the SVD method causes E to de-
crease rapidly during each iteration, the optimization of R
typically converges within 10 iterations.

In this manner, both Rmin and Tmin can be obtained. The
largest size of the matrices involved in the computation is
3M×3M or 3P×3P, and the matrices are generally sparse,
with at most 3×3×P nonzero elements. Furthermore, we do
not need to perform any additional correspondence match-
ing to generate virtual point pairs because these point pairs
can be determined using the transformations resulting from
the initial pairwise alignments and the concrete point pairs
generated in the final ICP iteration. The virtual point pairs
between each overlapped view pair are transformed into a
3× 3 covariance matrix for use in the optimization compu-
tation, which can be pre-calculated and recorded to avoid
repetitive calculations.

3.3. Loop-based Incremental Registration

Given a set of views that contain multiple loops and have
been initially pairwise aligned, the multiple loops can be si-
multaneously closed by solving Equation (9). However, this
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Table 1: Performance of our method for the examples shown in Figure 5.

Model Data size Num of Num of Num of IPA time LIR time GED time Total time
name (106 Points) views edges loops (min.) (min.) (min.) (min.)
Buste 0.32 16 30 15 2.2 1.3 0.02 3.5

Buddha 1.09 15 31 17 3.3 2.4 0.03 5.7
Dragon 1.23 45 88 44 5.6 5.2 0.09 10.9
Neptune 4.71 39 75 37 13.4 12.2 0.3 25.9

may generate undesirable results if the view pairs are not
initially well aligned. For example, when two views are ini-
tially posed far apart and their overlapping region is relative-
ly small, the pairwise alignment is likely to be imperfect or
even incorrect. Then the loops that contain the imperfectly or
incorrectly aligned view pairs may suffer large transforma-
tion errors and registration errors. If these loops are directly
closed, these large errors will be diffused to other perfectly
aligned view pairs. This will eventually lead to the local min-
ima problem, as shown in the second column of Figure 2. To
overcome this problem, we develop a loop-based incremen-
tal registration algorithm that closes each loop individually
and incrementally to refine the initial pairwise alignments.

3.3.1. Priority

The order in which the alignments are performed plays an
important role in many incremental registration algorithms.
A suitable order typically accelerates the convergence of op-
timization and reduces the risk of falling into local minima.
In general the order can be determined based on pre-defined
priorities. For example, the view pair with the largest over-
lapping region is always aligned first.

Rather than consider the priority of the view pairs, we de-
fine the priority for the view loops, which are the basic pro-
cessing units of the middle level. Because pairwise align-
ments have been initially performed in each loop, the loop
registration task is that of loop-closing. To alleviate the neg-
ative influences caused by imperfect initial pairwise align-
ments, the loops that contain well aligned view pairs will be
closed first. Thus, the definition of the priority should reflect
the quality of the initial pairwise alignments in each loop.
Intuitively, the registration errors can be used to assess the
quality of the pairwise alignments in a loop. As seen from
the the analysis presented in Section 3.2.1, a more reliable
and reasonable assessment criterion should also include the
transformation errors. Therefore, we use the objective func-
tion E(L) given in Equation (10) to define the loop priority.

We again consider the loop L defined in Section 3.2.1. Af-
ter applying loop-closing to L by minimizing E(L), we can
obtain the residual error in E(L), i.e., Emin(L), which is a re-
flection of both the transformation errors and the registration
errors. Thus, the priority of L is defined as

p =
Emin(L)
∑

L
t=1 Nt

(12)

where p is simply the mean residual error of E(L). General-
ly, the smaller are the registration errors and transformation
errors in L, the smaller p will be, then the higher is the pri-
ority that should be given to L. Note that the loop-closing is
tentative, which means that the transformations of {Vt}L

t=1
are not updated to satisfy the consistency constraints. Thus,
it serves merely as a pre-computation of the priority used to
guide the order of the real loop-closing operation.

3.3.2. Algorithm Pipeline

We now introduce the pipeline of our loop-based incremen-
tal registration algorithm. The methods of loop detection and
selection that are used to ensure the integrity of the algorith-
m will be introduced in Section 3.3.3. Under the assumption
of a view graph that contains a set of loops, the pipeline of
this algorithm is as follows:

1. Compute the initial priorities of all loops using Equation
(12).

2. Select the loop in the graph with the highest priority and
apply loop-closing to it to update the transformations.

3. Merge the views in this closed loop into a metaview Vmeta
and then generate a new graph.

4. Re-perform the pairwise alignments related to Vmeta in
the new graph and update the virtual point pairs.

5. Compute the priorities for the newly generated loops.
6. Return to 2 until there are no loops left in the graph.

The loop level in Figure 1 illustrates the evolution of a graph
as the above algorithm is performed. The key components
of the algorithm are pairwise alignment and loop-closing,
which have been introduced in detail in previous section-
s. The merging of a loop into the metaview should be per-
formed after the loop is closed to ensure that transformation
consistency is satisfied. The refinement of the pairwise align-
ment occurs in Step 4. During the alignment of a certain view
Vm with the metaview Vmeta, the overlapping region between
these two views is larger than that produced in the alignment
of Vm with each single view in Vmeta. A larger overlapped
region typically results in more reliable and more accurate
registration result, especially when the views are provided
with initial states that are not well posed .

3.3.3. Loop Detection and Selection

The above algorithm requires a set of pre-detected loops as
input. Thus, we should design an efficient and effective al-
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Figure 4: Loop detection and selection. The edges of the
maximum spanning tree are drawn as solid purple lines. The
solid blue lines are the edges that have been added back into
the graph. The loops marked with red circles are the current-
ly selected loops.

gorithm for loop detection and selection, especially for com-
plex graphs that contain large numbers of nodes and edges.
During loop selection, there are three factors that should be
considered. First, it is preferable to select loops that contain
large overlapping regions. Second, the path of the selected
loops should be as short as possible because a long path tend-
s to produce a large accumulated error, which cause the loop
to have a low priority. Third, some loops may be redundant,
i.e., they are composed of other loops.

Here, an algorithm that considers the three factors stated
above is proposed as follows:

1. Compute the size of the overlapping region in each over-
lapped view pair after the initial pairwise alignment and
set this value as the weight of the edge.

2. Extract the maximum spanning tree from the graph; the
edges that contained in this tree remain in the graph, and
the other edges are pushed into a priority queue.

3. The edge with the highest weight is taken from the queue
and added back to the graph.

4. Select the newly generated loop with the shortest path.
5. Return to 3 until no edges remain.

Figure 4 illustrates an example of loop detection and selec-
tion. In Step 1, the size of the overlapping region can be
estimated based on the number of concrete point pairs. The
generation of loops begins with the maximum spanning tree
extracted in Step 2 because we must guarantee the connec-
tivity of the graph. In Step 3, once an edge is added to the
graph, at least one loop will be generated, but only one of
these loops will be independent. Finally, a set of indepen-
dent loops that includes all of the edges is selected. If the
numbers of nodes and edges are M and P respectively, then
the number of selected independent loops will be P−M+1.

3.4. Global Error Diffusion

The global error diffusion is performed at the top level of our
approach and is applied to the entire graph. The purpose is to
diffuse the accumulated deviations possibly produced in the
loop-based incremental registration. This step simply con-
sists of simultaneously applying the loop-closing to all loops
by solving Equation (9). Note that the pairwise alignments

Figure 5: Registrations of real scanning range data. First
column: initial states. Second column: graphs. Last two
columns: the registration results from two viewpoints. Rows
from top to bottom: Buste, Buddha, Dragon, and Neptune.

considered here have already been refined in the loop-based
incremental registration, i.e., the virtual point pairs that are
used are generated from these refined pairwise alignments.

4. Results and Discussion

The proposed algorithm was implemented on a PC with a 3.4
GHz*8 CPU (Intel i7-3770), 16GB of RAM and the Win-
dows 7 OS. The data in our experiments are all real scanning
data, except for one dataset with synthetic noise and outliers
and another used for benchmarking.

4.1. Registration Results

Figure 5 shows our registration results for four classic mod-
els, with different colors indicating different views. In the
first column, we present the results of a quite coarse initial-
ization obtained using the method of Aiger et al. [AMC08].
Although we could obtain a better initialization with more
careful parameter selection, we declined to do so to facilitate
the investigation of the robustness of our method to with re-
spect to poor initial view states. In the first and second rows,
the number of views is small; therefore, we can clearly see
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Concrete PairingOur StandardWithout LIR

Figure 6: Registration of an example with smooth overlap-
ping regions. The first row shows the initial view states, the
registered model generated by our standard algorithm and
a slice of this model. The three rows below show zoomed
slices of the results of our algorithm without LIR, our stan-
dard algorithm, and our algorithm using concrete pairing.

the structures of the graphs. Most loops in these two graphs
are simple triangles or quadrangles, and they are connected
to each other in a manner similar to a strip. For example,
the graph of Buddha is simply a circular strip of triangles.
The third and fourth rows show more complex examples, in
which the topology of the graph is quite complicated and
the number of loops would be difficult to count manually.
Some automatically detected and selected loops in these two
graphs may have a long path, but they will eventually degen-
erate into short-path loops because of the merging operation
performed during the loop-based incremental registration. In
the third row, although the initial states is very messy, all the
views of the Dragon model remain well aligned.

The performances of our method when applied to these
examples are summarized in Table 1. We find that the most
time-consuming step of our algorithm is the IPA step. This is
because many closest point queries are performed via KD-
tree. Because these closet point queries are mutually inde-
pendent during each ICP iteration, we implemented them in
a multi-thread manner, which provides an acceleration by a
factor of approximately 4. The LIR step requires an amoun-
t of time comparable to that of the IPA step. During LIR,
more than 95% of the time is spent on the re-performance
of the pairwise alignments relative to the metaviews, where-
as the time required for the priority calculations and loop-
closing is less than 5%. As expected, the GED step requires
the least amount of time because of the high efficiency of our
adopted optimization approach.

Without LIR Concrete PairingOur Standard

Figure 7: Registration of an example with synthetic noise
and outliers. The number of synthetic points is 10% of the
number of original sample points. The first row shows the
initial state, the registration result generated by our standard
algorithm and two slices of this result. The two rows below
show clearer views of these slices, with each column corre-
sponding to the result produced by our standard algorithm or
one of its two variants, as in Figure 6.

In addition to the above examples, other data sets were
also tested. Figure 6 shows a unique example in which the
overlapping regions are very smooth. The bottom portion of
the model is planar, and thus, the pairwise alignment in this
region is likely to exhibit drift. To demonstrate the robust-
ness of our method, two variants of our standard algorithm
were implemented for comparison. One is performed with-
out the LIR step and the other was performed using con-
crete pairing. Through carefully observation and compari-
son of the zoomed slices, we find that the concrete pairing
approach cannot successfully address the drift problem and
that direct global optimization without the LIR step tends
become trapped in a local minimum. However, both these
problems are overcome in our standard algorithm. Figure 7
presents an example that includes synthetic noise and out-
liers. To eliminate the negative effects caused by noise and
outliers in the IPA step at the bottom level of our approach,
the Sparse ICP method [BTP13] is adopted to execute the
pairwise registration task. This example was also tested us-
ing the same two variants of our standard algorithm that were
used to generate the results presented in Figure 6. The reg-
istration results demonstrate the robustness of our standard
algorithm to noise and outliers.
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Table 2: Comparison of registration error and performance

Test
ELCH Liu’ method Pulli’s method Ours

error (10−4) time error (10−4) time error (10−4) time error (10−4) time
rms max (min.) rms max (min.) rms max (min.) rms max (min.)

1 6.38 20.18 15.36 2.47 8.54 113.27 2.55 10.74 16.14 2.32 5.06 23.79
2 20.2 258.6 23.68 33.1 573.1 134.75 3.92 15.57 24.48 2.32 5.15 32.88

4.2. Evaluation and Comparison

We evaluated our approach on a set of synthetic scanning da-
ta. Simulating a virtual scanner using the Z-buffer technique,
we obtained 42 scans of the Armadillo mesh model normal-
ized in a unit cube from 42 evenly distributed directions.
Thus, each point in the scans has a corresponding ground
truth. Using the synthetic scanning data, we compared our
approach with three other approaches. The first approach
considered for comparison was the ELCH [SNLH09], which
is a representative loop-closing method that diffuses trans-
formation errors. The second was Liu’s method [LZY∗14],
which is a state-of-art global rigid registration method. The
third was Pulli’s method [Pul99], which also uses virtual
pairing and shares many similarities with our method.

To evaluate the accuracy of our algorithm, we first tested
the data sets with good initial position states, called Test 1
(see the first two columns in Figure 8). As shown in Table
2, our method produces a smaller error. The ELCH produces
the largest error because it only distributes transformation
errors to adjacent views. Pulli’s method and Liu’s method
demonstrate a comparable accuracy to ours but with a slight-
ly larger error. This is primarily because Pulli’s optimization
is incremental and Liu’s optimization is achieved through
a sequence of one-to-many alignments, whereas, the glob-
al optimization in our approach is simultaneously performed
for all views; therefore, the errors are more evenly diffused.

To demonstrate the robustness of our algorithm, we also
tested the data sets with a poor initialization, called Test 2
(see the last two columns in Figure 8). In this case, both
ELCH and Liu’s method fall into a local minimum that is
a significant distance from the correct alignment, whereas
our method works well and achieves satisfactory results as
in Test 1. Pulli’s method performs better than ELCH and
Liu’s method, but the poor initial states may lead to some
imperfect initial pairwise alignments and the virtual point
pairs used by Pulli are not updated as ours are; thus, its result
eventually falls into a local minimum near the correct one.

The runtimes of ELCH, Pulli’ method and our algorithm
are shorter than that of Liu’s method. The is primarily be-
cause except for Liu’s method, they are all implemented in
a multi-thread manner for the closest point queries. More-
over, Liu’s method requires a non-linear optimization to find
the optimal correspondences; therefore, it is slower. ELCH
is faster than Pulli’s method and our method, because except
for the pairwise alignments, its optimization involves only

a small number of transformations. Pulli’s method and our
method optimize the the transformations and the data sets in
the overlapped regions together to achieve a higher accura-
cy. However, Pulli’s method is faster than ours because our
method includes an additional LIR step to refine the initial
pairwise alignments.

5. Conclusion and Future Work

We have presented a hierarchical method that addresses the
multiview registration problem. Initial pairwise alignments,
loop-based incremental registration and global error diffu-
sion constitute the three levels of our method. With this hi-
erarchical scheme, our approach is found to be efficient and
robust to initial view states that are not well-posed . A new
objective function that can provide high accuracy and ro-
bustness by simultaneously minimizing transformation and
registration errors has also been defined for loop-closing.

Although we have provided a multi-thread implementa-
tion of our algorithm, a more efficient implementation can
be achieved if we consider GPU acceleration. The bottle-
neck of our algorithm lies in the correspondence matching
procedure, during which numerous closest point queries can
be executed in parallel. Moreover, the initial pairwise align-
ments performed in our algorithm are mutually independent,
which can provide offer greater parallelism.

Another future direction is that of nonrigid registration.
Intuitively, our approach can be easily extended to a nonrigid
version. We need only modify the relevant rigid transforma-
tion to be nonrigid. Our loop-closing algorithm still operates,
with little modification, as long as the virtual point pairs pro-
duced by the nonrigid pairwise alignment are provided.
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