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In an accurate free-form deformation of a polygonal object, only the linear geometry, e.g., 
triangles or planar polygons, is deformed as triangular Bézier patches or trimmed tensor 
product Bézier patches; the related normal field is not considered. Thus, the geometry 
appearance and shading of the deformed object are typically not smooth. In this paper, 
both the linear geometry and normal of a polygonal object are simultaneously considered 
in the framework of accurate free-form deformation. First, each triangle and its normal 
field are deformed as two cubic triangular Bézier patches. Then, the curved geometry 
corresponding to the deformed triangles is locally adjusted to tone the smoothness of the 
geometry appearance according to the deformed normal field. The deformed normal field 
is adjusted accordingly. As a result, a smooth free-form deformation with visually plausible 
smooth geometry and shading is obtained. Furthermore, the sharp features in the polygonal 
object can be preserved. Because the curved geometry and normal field adjustments are 
local operations, all of the above computations can be performed in parallel on a GPU. The 
experimental results show that the method can deform a complex polygonal object as a 
smooth object in real time while preserving sharp features.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Free-form deformation (FFD) is a prevalent shape manipulation and shape animation method in computer graphics and 
geometric modeling (Sederberg and Parry, 1986). Classic FFD is conducted on the sampled points of the geometric model. 
However, the approach tends to produce an aliased deformation result when using a low sampling density.

As an alternative, accurate FFD (Feng et al., 1998, 2002; Feng and Peng, 2000) deforms the planar polygons as a set 
of triangular Bézier patches or trimmed tensor-product Bézier patches based on the functional composition of Bernstein 
polynomials (DeRose, 1988; DeRose et al., 1993). The deformation result is accurate for polygonal objects in theory. The 
accurate FFD considers only the geometry of the original model, excluding its normal field. As a result, the deformed object 
is only position continuous (C0) for its geometry. Its geometric appearance (e.g., silhouettes and the common edge of two 
patches) and shading are not smooth because the normal field is discontinuous.

In mathematics, the normal is a differential attribute of the surface. In many graphics applications, the geometry and 
normal of a polygonal object are independently defined. Each vertex is equipped with one or more normals. In general, the 
independent normal is an approximation of the potentially true normal. The sharp features, such as sharp edges and corners, 
can also be preserved by assigning several normals to one vertex. For example, Phong shading can achieve smooth shading 
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Fig. 1. Examples of classic FFD, accurate FFD and smooth FFD.

effect at a low computational cost via linear normal interpolation across a triangle. To alleviate the unsmooth silhouette 
problem in Phong shading, the PN-triangle (Vlachos et al., 2001) method and Phong tessellation (Boubekeur and Alexa, 
2008) method alter the linear geometry of a triangle as a curved geometry according to the related normal field.

In this paper, a new GPU-based smooth FFD with sharp feature awareness is proposed for polygonal objects in the frame-
work of accurate FFD, where both the geometry and normal are simultaneously considered. The deformations of the linear 
geometry (triangle) and linear normal field defined on the triangles are approximated as two cubic triangular Bézier patches 
for efficiency. As a result, the geometry appearance and shading of the deformed objects are visually plausible smooth, and 
the sharp features can also be well preserved. Fig. 1 shows examples of various FFD results. The main contributions of the 
paper are summarized as follows:

• Both the linear geometry and its normal field are considered in the framework of accurate FFD.
• The deformed object exhibits a continuous shading mimicking a G1 surface over smooth edges (implemented as C0

normal field over a C0 geometry), while sharp edges exhibit a discontinuous normal field.
• All of the computations are local and can be implemented fully in parallel on a GPU.

2. Related work

FFD, which was first proposed by Sederberg and Parry (1986), is an intuitive model manipulation and soft object ani-
mation method. The main concept of FFD is to embed the object into an intermediate space, e.g., a Bézier volume. Users 
first edit the shape of the intermediate space; then, the space deformation is transferred to the embedded object, whereas 
the topological connectivity of the object remains unchanged. There are many successive studies regarding FFD. Most of 
these studies focus on improving the interactive means of FFD (Coquillart, 1990; Hui, 2002; MacCracken and Joy, 1996;
McDonnell et al., 2007; Xu et al., 2013). Gain and Bechmann (2008) provided a detailed survey of these methods.

Traditional FFD and its extensions deform the sampled vertices of the model. Thus, the quality of the deformation result 
depends on the sampling density of the vertex. As a solution to the sampling problem, adaptive upsampling approaches 
(Gain and Dodgson, 1999; Griessmair and Purgathofer, 1989; Parry, 1986) are more efficient than the naive uniform upsam-
pling approach on CPU. The adaptive upsampling approaches consider the polygon size or surface curvature and upsample 
the model if necessary. But they cannot handle certain special or pathological cases well, and are difficult to be ported on 
GPU. Accurate FFD, which was proposed by Feng et al. (1998, 2002), Feng and Peng (2000), is an alternative approach to 
solving the sampling problem. However, it is computationally intensive, and it also consumes considerable bandwidth, i.e., 
transferring a large amount of data from the CPU to the GPU after the intensive computations are performed in the CPU. 
Thus, the algorithms are not interactive or performed in real time in practical applications.

In the recent years, GPUs have been widely adopted for FFD implementations due to their tremendous parallel com-
puting power. Chua and Neumann (2000) proposed an OpenGL-oriented hardware evaluator sub-system to accelerate FFD 
evaluations. However, none of the GPU vendors integrate this type of dedicated sub-system into their GPUs. In contrast, 
GPUs have evolved into general-purpose many-core processors. Schein and Elber (2006) implemented a GPU-accelerated 
FFD using the NVIDIA CG language. Jung et al. (2011) achieved the same goal using NVIDIA CUDA and embedded it to the 
X3D system. Hahmann et al. (2012) proposed a GPU-based, volume-preserving FFD. They employed the multilinear property 
of volume constraint and derived an explicit solution. The GPU acceleration component implemented by CUDA is 6.5-times 
faster than its CPU counterpart.

Cui and Feng (2013, 2014) proposed GPU-based accurate FFD of polygonal objects, the results of which are represented 
in terms of trimmed tensor product Bézier patches or triangular Bézier patches. They are sufficiently efficient to meet the 
real-time or interactive demands of large-scale models. However, the deformation is only performed on the linear geometry, 
without considering the normal of the model. The actual normal of the resulting Bézier patch is adopted for rendering. 
Due to the piecewise linear continuity of the polygonal object, the deformed object is only C0 continuous. As a result, both 
the geometric appearance and shading effect are unsmooth. The PN-triangle method (Vlachos et al., 2001) decouples the 
linear geometry and normal information of a polygonal object to achieve visually plausible smooth geometry and shading, 
in which it adopts cubic and quadratic triangular Bézier surfaces to represent the geometry and normal, respectively. Phong 
tessellation (Boubekeur and Alexa, 2008) proposed by Boubekeur et al. uses scalar tags to solve the sharp edge problem. 
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The decoupled approaches inspired us to propose a novel method to address the above smoothness problem in the accurate 
FFD of polygonal objects.

3. Overview of accurate FFD in terms of triangular Bézier patches

The GPU-based accurate FFDs (Cui and Feng, 2013, 2014) of polygonal objects adopt trimmed tensor product Bézier 
patches and triangular Bézier patches as the deformation result, respectively. In this paper, we adopt the framework of 
accurate FFD using triangular Bézier patches (Feng et al., 1998; Feng and Peng, 2000; Cui and Feng, 2014) since it is more 
efficient than the one using trimmed tensor product Bézier patches. Some basic notation is introduced below.

R(u, v, w) is a B-spline volume of degree nu × nv × nw with mu × mv × mw control points:

R(u, v, w) =
mu−1∑

i=0

mv−1∑
j=0

mw−1∑
k=0

Ri jk Ni,nu (u)N j,nv (v)Nk,nw (w) (1)

where {Ri jk}mu−1,mv −1,mw −1
i=0, j=0, k=0 are the control points, {Ni,nu (u)}mu−1

i=0 , {N j,nv (v)}mv −1
j=0 and {Nk,nw (w)}mw −1

k=0 are normalized 
B-spline basis functions, and {ui}nu+mu

i=0 , {vi}nv +mv
j=0 and {wk}nk+mk

k=0 are the knot vectors along the u, v and w directions, 
respectively. Every three-dimensional region [ui, ui+1] × [v j, v j+1] × [wk, wk+1] is called a knot box, where nu ≤ i < mu , 
nv ≤ j < mv and nw ≤ k < mw , respectively.

As described in Feng et al. (1998), Feng and Peng (2000), Cui and Feng (2014), each polygon of the model is first clipped 
against the knot boxes such that the generated sub-polygons lie inside of a knot box. Second, the generated sub-polygons 
are triangulated. The accurate FFD of such a sub-triangle in a knot box governed by R(u, v, w) is a triangular Bézier patch 
(Feng et al., 1998; Feng and Peng, 2000), whose degree is n = nu + nv + nw . Let the triangular Bézier patch be denoted as 
P(u, v, w):

P(u, v, w) =
∑

i+ j+k=n
0≤i, j,k≤n

Pi jk Bn
i jk(u, v, w), u, v, w ≥ 0, u + v + w = 1 (2)

where {Bn
ijk(u, v, w) = n!

i! j!k! ui v j wk | i + j + k = n} are the Bernstein basis functions defined on a 2D simplex, i.e., a triangle. 
Its control points are {Pi jk | i + j + k = n}, which can be efficiently computed via polynomial interpolations (Feng and Peng, 
2000).

4. Smooth FFD with sharp feature awareness

The input of the proposed method is a polygonal mesh with vertex, vertex normal and face information. Each vertex has 
one or more normals. A vertex with only one normal is called a “smooth vertex”, and a vertex with multiple normals is 
called a “sharp vertex”. An edge with two smooth end vertices is called a “smooth edge”, and an edge with at least one 
sharp end vertex is called a “sharp edge”.

4.1. Fitting deformed normal field as triangular Bézier patches

As described above, the previous accurate FFD methods (Cui and Feng, 2013, 2014) generate unsmooth shading effect 
due to unsmooth deformed geometry, as shown in Fig. 1(d). To achieve a smooth shading result, the deformed geometry 
should be equipped with a C0 and discontinuous normal field at a smooth edge and sharp edge, respectively, in the accurate 
FFD framework.

The normal field generation is formulated as a constrained fitting problem, where the fitted triangular Bézier patch 
should pass the constraint normals along the boundary curves. Such constrained problems are common in spline modeling, 
for example, Liu et al. (2014) use cubic Bézier spline constrained fitting to calculate deformed cubic Bézier splines. As 
illustrated in Fig. 2, the solid normals denote the constraint normals, whereas the dashed normals denote the fitting normals 
on the original object. If the degree of the adopted triangular Bézier patch is k, the numbers of constraint and fitting normals 
are 3k and m = (n + 1)(n + 2)/2, respectively, where n = nu + nv + nw . In this paper, the degree of the normal triangular 
Bézier patch is 3, which provides flexibility and feasibility for practical applications. All sampled normals on the deformed 
object can be obtained by deforming the sampled normals from the linear normal field defined on the triangle (Gain and 
Dodgson, 1999), which can be formulated as follows:

N X̄ = (J · J̄∗)TNX (3)

where NX is the original normal, N X̄ is the deformed normal, and J is the Jacobian of the embedding function, J̄ is the 
Jacobian of the deformation function R(u, v, w) in Eq. (1), and J̄∗ is its adjoint matrix.
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Fig. 2. Illustration of the fitting and constraint normals sampled on the triangle.

The above constrained normal field fitting can be formulated as follows. First, the m fitting normals can be expressed as
⎛
⎜⎜⎜⎝

B3
300(U1) B3

210(U1) · · · B3
003(U1)

B3
300(U2) B3

210(U2) · · · B3
003(U2)

...
...

. . .
...

B3
300(Um) B3

210(Um) · · · B3
003(Um)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P0
P1
...

P9

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q1
Q2
...

Qm

⎞
⎟⎟⎟⎠ (4)

where {Uk = (uk, vk, wk)}m
k=1 are the barycentric parameters of uniformly sampling normals; {Pk}9

k=0 are the control points 
of the cubic triangular Bézier patch for the normal field; and {Qk}m

k=1 are the deformed sampling normals corresponding to 
{Uk = (uk, vk, wk)}m

k=1. Eq. (4) can be rewritten as

MP = Q (5)

Then, the 3k(k = 3) constraint normals can be expressed as:
⎛
⎜⎜⎜⎝

B3
300(Us1) B3

210(Us1) · · · B3
003(Us1)

B3
300(Us2) B3

210(Us2) · · · B3
003(Us2)

...
...

. . .
...

B3
300(Us9) B3

210(Us9) · · · B3
003(Us9)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

P0
P1
...

P9

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q̄1

Q̄2
...

Q̄9

⎞
⎟⎟⎟⎠ (6)

where {Usk = (usk , vsk , wsk )}9
k=1 are the barycentric parameters of the constraint normals, which are uniformly distributed 

along the boundaries of the triangular domain, and {Q̄k}9
k=1 are the deformed constraint normals. Eq. (6) can be rewritten as

M̄P = Q̄ (7)

The constraint normal fitting is to minimize (MP − Q)T(MP − Q) subject to the constraint M̄P = Q̄. Using the method of 
Lagrange multipliers, we obtain

(
MTM M̄T

M̄ O

)(
P
�

)
=

(
MT O
O I

)(
Q
Q̄

)
(8)

where � is the vector of 9 Lagrange multipliers, O is a zero matrix, and I is an identity matrix.
All the triangular Bézier patches of the normal field are of degree 3. Thus, Eq. (8) can be combined for all normal patches 

as follows:(
MTM M̄T

M̄ O

)(
PN

�N

)
=

(
MT O
O I

)(
QN

Q̄N

)
(9)

PN is the control points of all cubic triangular Bézier surfaces of normal field, �N is all of the Lagrange multipliers, and 
QN and Q̄N are the sampled fitting normals and sampled constraint normals on all of the normal patches, respectively. The 
analytical solution to Eq. (9) is:

(
PN

�N

)
=

(
MTM M̄T

M̄ O

)−1 (
MT O
O I

)(
QN

Q̄N

)
(10)

Due to the fixed sampling parameters, the product of the first two matrices on the right of Eq. (10) is independent of the 
specific model. Thus they can be pre-computed and loaded if necessary. Furthermore, the last 9 rows of the matrix product 
are about the solutions of Lagrange multipliers and can be ignored. As a result, the control points of all cubic normal patches 
can be denoted as:

PN = Mr

(
QN

Q̄N

)
(11)
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Fig. 3. Shading result using constrained fitting normal field of the deformed model in Fig. 1(d) and its geometry artifacts.

where Mr are the first 10 rows of(
MTM M̄T

M̄ O

)−1 (
MT O
O I

)

In this manner, we can obtain the continuous normal fields across the deformed model. Fig. 3 shows the shading result 
of Fig. 1(d).

4.2. Improvement of the deformed geometry

The shading in Fig. 3 is smooth except for the geometry artifacts, i.e., the unsmooth silhouettes and patch boundaries. 
Various solutions can be used to alleviate the artifacts for the Phong shading of polygonal objects (Vlachos et al., 2001;
Boubekeur and Alexa, 2008). A method inspired by the PN-triangles (Vlachos et al., 2001) is proposed to improve the 
silhouettes, patch boundaries, and keep the sharp edges.

In the PN-triangle algorithm (Vlachos et al., 2001), a cubic triangular Bézier patch is adopted to replace the corresponding 
triangle to obtain a smooth geometry appearance in Phong shading. In the accurate FFD, the deformed object is represented 
in terms of triangular Bézier patches (Feng et al., 1998; Feng and Peng, 2000; Cui and Feng, 2014), whose degree is the de-
gree of the B-spline volume, and is typically higher than 3. High degree will result in high computational costs. Furthermore, 
the corresponding geometry adjustment becomes complex because there are many more control points. According to our 
experiments, the cubic triangular Bézier patch is feasible and sufficiently flexible to approximate the geometry of the accu-
rate FFD result. Similar to the constrained normal field fitting approach in Section 4.1, the geometry can be approximated 
by cubic triangular Bézier patches using the following equation:

PV = Mr

(
QV

Q̄V

)
(12)

where PV is the control points of all cubic triangular Bézier patches of the deformed object. QV and Q̄V are those sampled 
fitting points and sampled constraint points on all cubic triangular Bézier patches, respectively. The sampling strategy is the 
same as that of the normal field in Section 4.1.

Using the above method, a C0 continuous geometry and a C0/discontinuous normal field across the smooth and sharp 
edges are obtained. Next, the geometry is adjusted to obtain a smooth geometry appearance along smooth edges and to 
preserve shape features along sharp edges.

The adjustment of triangular Bézier patches sharing a smooth edge is similar to the PN-triangle method. As shown in 
Fig. 4(a), the PN-triangle approach projects (2V 0 + V 1)/3 into the tangent plane at V 0 (Vlachos et al., 2001), whereas the 
proposed method projects the corresponding edge control point P0 onto the tangent plane at V 0. Thus, a visually plausible 
smooth geometry (C0 in fact) across the smooth edge is obtained. In Fig. 4(a), red and green dashed lines indicate two 
original triangles, and red and green solid curve nets indicate cubic triangular Bézier patches, which are the adjustment 
results.

Similarly, the geometry adjustment of patches sharing a sharp edge is shown in Fig. 4(b). The two corresponding control 
points P0 and P ′

0 in the neighboring triangular Bézier patch f0 and f1 sharing a sharp edge are projected to the vector 
t = n0 ×n1, where n0 and n1 are two distinct normals at the same vertex V 0. This method yields a C0 continuous geometry 
across a sharp edge, which can preserve the sharp feature along the sharp edge.

After the above adjustment, visually plausible smooth geometries, such as silhouettes and edges, will be obtained. The 
sharp features along the sharp edges are also preserved. An example is shown in Fig. 5. It is worth noting that the generated 
geometry is different than the original discrete polygonal mesh in the rest-pose because of the higher-order interpretation 
of the polygonal mesh.

4.3. Consideration of knot box clipping

If there is only one knot box, the above deformed geometry and normal field methods are suitable. However, for the 
case of general B-spline volumes, the input polygonal object will be clipped against the knot boxes, and thus, all of the sub-
triangles will lie in one knot box. If the above adjustment method is directly applied to the subdivided polygonal object, 
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Fig. 4. Adjustment of control points of the deformed geometry. (For interpretation of the references to colour in this figure, the reader is referred to the 
web version of this article.)

Fig. 5. Shading result after adjusting the deformed geometry in Fig. 3.

Fig. 6. Unfairness near the clipping points in the deformed geometry and the improvement. (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.)

the deformed geometry does not appear fair near the knots. An example is shown in Fig. 6. Fig. 6(a) is the deformed ge-
ometry by a B-spline volume with multiple knot boxes. Both the geometry and shading are smooth. However, the geometry 
appearance is not fair. The bold curves are the deformed curves corresponding to the original triangles on the model; the 
thin curves are the deformed curves of the sub-triangles resulting from knot box clipping and subsequent triangulation. The 
unfair parts are indicated in the red rectangles in Fig. 6(b). Since the sub-triangles from one original triangle are co-planar, 
the constrained fittings for these deformed sub-triangles will lead to unfairness.

4.3.1. Adjustment of the deformed geometry clipped against knot boxes
There is a heuristic solution to this unfairness problem. For each triangle in the original object, the corresponding 

PN-triangle is generated first. If the triangle is subdivided against the knot boxes, the clipped vertices are moved to the 
corresponding positions on the PN-triangle. Then, we apply the constrained fitting approach to the modified sub-triangles. 
As a result, we can obtain a visually plausible smooth and fair deformed geometry. The improved result of the example in 
Fig. 6(a) is shown in Fig. 6(c).

4.3.2. Normal adjustment at the clipped vertex
Intuitively, the normal at the clipped vertex can be calculated via barycentric coordinate interpolation. But it would lead 

to an unfairness problem in the normal field as shown in Fig. 7(a) and 7(b). The normals of V 0 and V 1 are n0 and n1, 
respectively. Both of the normals are horizontally rightward. Thus, the interpolated normal nc of the subdivided vertex V c
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Fig. 7. The normal at the clipped vertex will lead to bumps and the related solution.

Fig. 8. Flowchart of the proposed algorithm.

is also horizontally rightward. There is no artifact when using the normal nc to determine the normal field for rendering. 
However, if it is used to adjust the control points for smoothing the deformed geometry, i.e., the edge control points adjacent 
to V c , it will lead to abnormal bumps on the deformed geometry.

The solution to this problem is to define a reasonable normal at each clipped vertex. The normal at the subdivided 
vertex can take the corresponding normal n∗ on the quadratic triangular Bézier normal field of the PN-triangle (Vlachos 
et al., 2001). After using n∗ in the geometry adjustment scheme, the adjusted geometry for the example in Fig. 7(a) is 
shown in Fig. 7(c), where the abnormal bumps disappear. The adjusted normal field is only for smoothing the deformed 
geometry in Section 4.2, where some edge control points are projected onto the planes or tangent lines determined by 
the normals. The normal field for rendering the deformed object is the normal field constructed in Section 4.1, where the 
normal at the clipped vertex is obtained via barycentric coordinate interpolation.

5. Parallel implementation on the GPU

The proposed algorithm contains a CPU execution component and a GPU execution component. As a data- and 
computing-intensive algorithm, most of the computing overhead is implemented on the GPU. Because the algorithm is 
local, it can fully utilize the parallel computing power of the GPU. The flowchart of the proposed algorithm is shown in 
Fig. 8. The gray boxes indicate the steps that are executed on the CPU. The white boxes are the steps executed on the GPU 
and are the core of the proposed algorithm. NVIDIA CUDA is used to perform the GPU computations.

5.1. Parallel computing sampling normals and points

The first step in the proposed algorithm is to sample normals and points on the deformed object. More specifically, we 
must calculate all elements in QN and Q̄N in Eq. (11) and all elements in QV and Q̄V in Eq. (12), where QN and Q̄N are 
the fitting and constraint normals respectively, and QV and Q̄V are the fitting and constraint points respectively.

QV and Q̄V can be directly obtained via B-spline volume evaluations. Two methods can be used for this: the de Boor 
Cox algorithm and the matrix approach (Farin, 2002). We adopted the latter method because it is less computationally 
burdensome and is more suitable for GPU implementation compared to the former method. The deformation of a sampled 
normal in QN and Q̄N can be evaluated by Eq. (3).

In our implementation, one CUDA thread is used to calculate one sampling point and one sampling normal. Because each 
cubic patch contains the same number of sampling points, the task arrangement is straightforward.
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5.2. Parallel computing constrained fitting patches for the geometry and normal field

Having obtained QV , Q̄V , QN and Q̄N , the next step is to calculate the control points of the normal patches and geometry 
patches, i.e., the matrix PN in Eq. (11) and the matrix PV in Eq. (12), respectively. This can be accomplished by matrix 
multiplication. cuBLAS, which is a library of optimized implementations of BLAS on a GPU, is adopted for these matrix 
multiplications.1 The elements of PN , QN , Q̄N , PV , QV and Q̄V are 3-dimensional points, which are not supported by 
cuBLAS. Thus, Eqs. (11) and (12) should be rewritten and combined as the following feasible form to fully explore the 
parallel computing power of the GPU:

(
PV

x PV
y PV

z PN
x PN

y PN
z

) = Mr

(
QV

x QV
y QV

z QN
x QN

y QN
z

Q̄V
x Q̄V

y Q̄V
z Q̄N

x Q̄N
y Q̄N

z

)
(13)

5.3. Calculating the adjusted normals for the subdivided geometry

As described in Section 4.3.2, each sub-triangle has three adjustment normals, one for each vertex. These vertex normals 
are taken from the corresponding points on the normal field of the PN-triangle of the original triangle. Then, they undergo 
deformation via Eq. (3) for the silhouette adjustment. Here we use one CUDA thread to handle one normal computation.

5.4. Adjusting the edge control points in parallel on the GPU

The first task in this step is finding 1-ring neighbors of the current triangle. A face adjacency table can accomplish 
this task. The topological connectivity of the model remains unchanged during the deformation. Thus, the face adjacency 
table can be constructed once in the pre-processing step and copied from the main memory to the GPU memory. The face 
adjacency table is maintained in GPU via a hash table.

The topological connectivity of the model will be modified after the subdivision against the knot boxes (Step 4 in Fig. 8) 
and the triangulation of sub-polygons (Step 6 in Fig. 8). Thus, the face adjacency table must be reconstructed after subdivi-
sion and triangulation (Step 7 in Fig. 8), copied to the GPU memory, and used by the CUDA kernel.

After obtaining the adjusted normals, control points of the geometry patches, and the face adjacency table, we can adjust 
the edge control points to tone the geometry using the method in Section 4.2 in parallel. Here, one CUDA thread is used to 
adjust one patch.

5.5. GPU tessellations of the geometry and normal surfaces

The triangular Bézier patches for the geometry and normal field have now been obtained. However, current GPUs do not 
support the rendering of triangular Bézier patches directly. Thus, we must tessellate the patches into triangles for rendering. 
Here, we use a uniform tessellation method in Cui and Feng (2014) to calculate the tessellated points and normals to fully 
explore the tremendous computing power of the GPU. Similar to Cui and Feng (2014), we combine the point and normal 
evaluations as in Eq. (13) for efficiency:(

RV
x RV

y RV
z RN

x RN
y RN

z

) = Bq
(
PV

x PV
y PV

z PN
x PN

y PN
z

)
(14)

where Bq is the evaluation matrix of cubic triangular Bézier patches. The result can be rendered using an OpenGL Vertex 
Buffer Object (VBO).

6. Implementation results and comparison

The proposed method is implemented on a PC with an Intel Core i5 760 CPU@2.8GHz, 4 GB of main memory and an 
NVIDIA GeForce GTX 465 GPU. The operating system is Arch Linux x86_64. The CPU and GPU components of our method 
are written using C++ and CUDA, respectively.

We will compare the proposed smooth FFD with a uniform upsampling method and Cui and Feng (2013, 2014) from the 
aspects of rendering result, efficiency and approximation errors, tessellation in the follows.

6.1. Comparison of the rendering results

The deformation results are shown in Figs. 9–12. Each triangular Bézier patch is tessellated into 100 triangles. There are 4 
sub-figures in each of the 4 examples: (a) is the original model; (b) is the result of accurate FFD (Cui and Feng, 2013, 2014); 
(c) is the result of smooth FFD; (d) is the textured shading effect of (c).

These figures illustrate that the results obtained with smooth FFD are superior to those obtained with the other methods. 
The highlight is smooth because the normals that we use are independent of the model geometry. The smooth geometry 
and sharp features benefit from our geometry and normal adjustment method.

1 NVIDIA, cuBLAS, nvidia developer zone. https :/ /developer.nvidia .com /cublas.

https://developer.nvidia.com/cublas
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Fig. 9. Deformation of the Ship model by a 3 × 3 × 3 B-spline volume with 5 × 8 × 5 control points.

Fig. 10. Deformation of the Doll model by a 2 × 2 × 2 B-spline volume with 5 × 5 × 5 control points.

Fig. 11. Deformation of the Rabbit model by a 2 × 2 × 2 B-spline volume with 5 × 8 × 5 control points.

Fig. 12. Deformation of the Chess model by a 2 × 2 × 2 B-spline volume with 5 × 9 × 5 control points.

6.2. Comparison of efficiencies

The efficiencies obtained with smooth FFD and Cui and Feng (2013, 2014) are compared in Table 1. The model we use 
is shown in Fig. 13(a); this model has 46,742 faces. As in Section 6.1, each triangular Bézier patch is tessellated into 100 
sub-triangles. The degree of the B-spline volume is 2 × 2 × 2, with 5 × 5 × 5 control points. Table 1 illustrates that the speed 
of our method is lower than that of Cui and Feng (2014) due to additional geometry adjustment, normal field computation 
and adjustment, but higher than that of Cui and Feng (2013). The proposed method is sufficiently fast to handle large 
models in real time.

6.3. Approximation error tests

In the proposed smooth FFD, both the geometry and normal are obtained approximately via constrained fitting. Thus, 
there are approximation errors in the geometry and normal compared with the accurate FFD. Since the smooth parts of a 
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Table 1
Comparison of the efficiencies of our method, (Cui and Feng, 2013, 2014) (ms).

Step Our method (Cui and Feng, 2013) (Cui and Feng, 2014)

Copy control points to the GPU 0.009 0.009 0.009
Calculate the sampling points 8.469 – 6.701
Calculate the constraint points 2.879 – –
Calculate the control points 3.971 11.608 –
Calculate the adjusting normals 1.162 – –
Adjust the control points 2.003 – –
Calculate the tessellation points 4.861 24.33 7.507
Copy the results to the VBO 3.092 – 3.301
Render 10.816 10.709 10.773
Total 37.262 46.656 28.291

Fig. 13. Shading results for smooth FFD and UUS algorithm.

polygonal object can be regarded as a piecewise linear approximation of a potentially smooth shape, which is unknown in 
general, thus it is difficult to evaluate the approximation errors.

Here, we use a Cube model and a Utah teapot model consists of 36 bicubic Bézier patches to test the approximation 
error, because the geometry and normal of both the input objects are defined accurately. Both of the two models are 
normalized into [−1, 1]3. The deformations of the Cube model by Cui and Feng (2013, 2014) are accurate for both the 
geometry and normal. The accurate deformation result of Utah teapot is obtained via original FFD of uniformly sampled 
points and normals. The input of smooth FFD of the Utah teapot is a mesh generated via de Casteljau subdivisions. The 
error test results are shown in Fig. 14, where the first and second columns are the Cube model deformed by a 2 × 2 × 2
and 3 × 3 × 3 B-spline volume, respectively. The third column is the Utah teapot deformed by a 2 × 2 × 2 B-spline volume. 
For clarity, the shading differences are inverted and enhanced by 10 times, as shown in Fig. 14(d).

The statistics of geometry error, normal error and volume error are given in Tables 2–4, respectively. The geometry error 
is the Euclidean distances between the corresponding vertices, and the normal error is the angles between the correspond-
ing normals. The volume error of Utah teapot is not listed here because it’s not a closed model.

According to Fig. 14 and Tables 2–4, the proposed smooth FFD can generate good approximations of accurate FFD from 
the geometry, normal, and volume aspects. Among them, only maximum normal error of the Utah teapot model is a little 
bit large. The maximum errors only occur at the spout end and lip which are high curvature parts. Here the input mesh 
of the Utah teapot is obtained via uniform sampling approach, thus it is not a good polygonal approximation to its original 
smooth model. It leads to the maximum normal approximation error as above. That is to say the maximum error comes 
from the polygonal mesh approximation to the smooth object, which is out of scope of the paper.

6.4. Comparison of smooth FFD and a uniformly upsampling method

Similar deformation results for polygonal objects can be obtained using a modified GPU-based Uniform UpSampling 
method (similar to the UUS method in Cui and Feng (2013)): step 1: using PN-triangles to replace the triangles in the 
original object; step 2: uniformly upsampling the PN-triangles for both the geometry and normal patches; step 3: deform 
all sampled points and normals to obtain the deformation result. Here, the Snail model in Fig. 13(a) is adopted again. The 
deformation results are similar because the Snail model consists of lots of small triangles. The runtime statistics are collected 
in Table 5. The modified GPU-based UUS method is not as efficient as smooth FFD when the number of tessellated triangles 
is relatively large. The rendering times are not considered because they are the same in both algorithms. This comparison 
is consistent with the comparison in Cui and Feng (2013). However, if the triangles of the model is relatively large, we can 
find that the shading of the UUS algorithm is not as good as the proposed algorithm because the former uses a quadratic 
normal field on each PN-triangle (Vlachos et al., 2001), as shown in Fig. 15.

6.5. Comparison of smooth FFD and an adaptive tessellation shader method

Tessellation shader which has been added to OpenGL since version 4.0 is a suitable tool to tessellate the generated 
cubic triangular Bézier surface patches. So, we also implemented an adaptive tessellation of cubic triangular patches using 
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Fig. 14. Error testing.

Table 2
Geometry approximation errors.

Average error Maximum error

Column 1 in Fig. 14 0.00448184 0.0274765
Column 2 in Fig. 14 0.00297672 0.0261029
Column 3 in Fig. 14 0.000906093 0.00710446

tessellation shader. The tessellation factors of three edges of a patch are proportional to their lengths. This adaptive approach 
shares the same steps with smooth FFD until the control points of all cubic triangular Bézier patches are obtained. After 
that, the adaptive tessellation shader method is performed to render these patches directly, while the smooth FFD will 
calculate the tessellation points by cuBLAS first, then copy the result to OpenGL VBO, and render the sub-triangles finally.
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Table 3
Normal approximation errors.

Average error Maximum error

Column 1 in Fig. 14 0.394331◦ 4.17587◦
Column 2 in Fig. 14 0.387851◦ 5.23632◦
Column 3 in Fig. 14 0.566609◦ 23.3726◦

Table 4
Volume approximation errors.

Degree of the 
B-spline volume

Model volume after 
smooth FFD(v ′)

Accurate volume(v)
∣∣v ′ − v

∣∣/v

cube
2 × 2 × 2 16.641 16.6449 0.023107%
3 × 3 × 3 11.7615 11.7651 0.0304927%

Table 5
Runtime comparison between smooth FFD and modified GPU-based UUS (ms).

Number of sub-triangles 
in each patch

Smooth FFD UUS Smooth FFD/UUS

100 26.418 18.120 1.457947
121 27.251 21.357 1.275975
144 28.954 24.859 1.164729
169 30.894 30.383 1.016819
196 31.786 34.636 0.917716
225 32.773 39.224 0.835534
256 36.183 44.120 0.820104

Fig. 15. Shading results for smooth FFD (a) and UUS algorithm (b). Each Bézier patch is tessellated into 100 sub-triangles.

Fig. 16. Comparison of tessellation granularity.

The Vase model shown in Fig. 1 is adopted as the test example. The tessellation granularities of two methods are shown 
in Fig. 16. In the tessellation shader method, the longest edge are tessellated into 27 segments. For fair comparison, in the 
smooth FFD, all the edges are tessellated uniformly into 27 segments. The time comparison of them is shown in Table 6. As 
we can see, the efficiency of the tessellation shader method is not as efficient as that of the smooth FFD. The main reason 
is that the smooth FFD is a perfect SIMD task, it can make full use of the GPU streaming processors. Of course, if the object 
is composed of tiny, slim and large triangles, it is possible that the adaptive tessellation approach may perform better than 
the uniform tessellation.
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Table 6
Comparison of the times for the smooth FFD and adaptive tessellation 
shader method (ms).

Smooth FFD Tess shader method

Calculate the tess points 0.456 –
Copy results to the VBO 0.576 –
Render 3.031 6.082
Total 4.063 6.082

7. Conclusion and future work

In this paper, we proposed a GPU-based smooth FFD with sharp features awareness that addresses the unsmoothness 
of the normal field and the geometry artifact problems in the framework of accurate FFD. The algorithm can produce a 
high-quality deformation result. It is a highly parallelizable GPU algorithm and is able to deform a relatively large-scale 
model in real time. The algorithm is intuitive and can be implemented easily. It can handle relatively coarse meshes and 
generate smooth deformation results.

The approach can still be improved in several aspects. First, the uniform tessellation of the cubic triangular Bézier patches 
will generate many unnecessary small triangles. An efficient adaptive tessellation algorithm via GPGPU is an alternative to 
our method. Second, the approximation error of the smooth FFD for polygonal object is worth to be analyzed in theory. 
A feasible error bound is useful to guide the discretization of a smooth object, which is essential for generating high-quality 
deformation result.
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