
GPU-Based Parallel Solver via Kantorovich Theorem for The Nonlinear Bernstein

Polynomial Systems

Feifei Wei, Jieqing Feng∗, Hongwei Lin

State Key Lab of CAD&CG, Zhejiang University, 310058, China

Abstract

This paper proposes a parallel solver for the nonlinear systems in Bernstein form based on subdivision and the
Newton-Raphson method, where the Kantorovich theorem is employed to identify the existence of a unique root and
guarantee convergence of the Newton-Raphson iterations. Since the Kantorovich theorem accommodates a singular
Jacobian at the root, the proposed algorithm performs well in a multiple root case. Moreover, the solver is designed and
implemented in parallel on Graphics Processing Unit(GPU) with SIMD architecture; thus, efficiency for solving a large
number of systems is improved greatly, an observation validated by our experimental results.

Keywords: nonlinear system, Kantorovich theorem, parallel computing, tensor, tangent root, normal cone

1. Introduction

Root finding of a nonlinear system in terms of B-spline
or Bernstein polynomials is a fundamental problem in var-
ious geometric modeling applications [5]. Analytical solu-
tions only exist for univariate polynomials of degree no
more than 4. When the degree of the polynomial or the
number of constraints increases, an efficient and robust
solver is considered a difficult problem. Many approaches
have been proposed to address this problem, such as Descartes
rules [2, 13], interval arithmetic [14], and resultant the-
ory [12] etc. However, the subdivision-based approach is
more attractive for geometric modeling applications due
to their geometric significance.

The geometric approach fully exploits the inherent con-
vex hull property and the numerical stability of Bernstein
polynomials or B-spline basis functions. The subdivision
method proposed by Lane and Riesenfeld [9] is a pioneer-
ing work that can solve a univariate Bernstein polynomial
equation robustly. The Bézier clipping method proposed
by Nishita et. al. [16] is an improved subdivision method
and is applied to ray-tracing rational parametric surface
patches. The Projected Polyhedron algorithm [21] devel-
oped by Sherbrooke and Patrikalakis is a generalization
of the Bézier clipping method for the multivariate case,
and has been applied to solving many nonlinear problems,
such as surface and surface intersection, offset, medial axis,
and other shape interrogation problems [17]. Instead of bi-
secting the domain directly, the clipping approaches clip
the domain more elaborately according to the convex hull
of control points, exploiting the advantages of the Bern-
stein polynomials. Thus, besides polynomial subdivision

∗Corresponding author, jqfeng@cad.zju.edu.cn

cost, there are additional computational costs of the con-
vex hull and intersection in clipping approaches. For the
case of a single root, each step of the projected polyhe-
dron algorithm can purge away a larger no-root interval
than that of the subdivision method. However, for the
case of many roots, a large number of inefficient clipping
steps at an early stage will pay off benefits at a later
stage [5]. Recently, Mourrain and Pavone [15] proposed
a preconditioned improvement that can reduce the steps
for both subdivision-based and reduction-based (i.e. clip-
ping) methods.

Rather than solving a nonlinear Bernstein polynomial
system directly, if all of the different roots could be isolated
via polynomial subdivision or domain clipping, the roots
could be solved more efficiently by using other numerical
methods, e.g., the Newton-Raphson method, where the
center of a reduced sub-domain containing an isolated root
can be adopted as an initial guess. The concept of the nor-
mal cone was first proposed by Sederberg and Meyers [20]
to identify the existence of loops in a surface and sur-
face intersection. Elber and Kim [5] employed the normal
cone to deduce a subdivision termination criterion that
can isolate all of different roots of a nonlinear Bernstein
polynomial system. Then the quadratically convergent
Newton-Raphson method is adopted to approximate each
isolated root. Furthermore, Hanniel and Elber [6] develop
a computationally tractable approach, namely dual repre-
sentation, to check whether this criterion is met or not.
However, this subdivision termination criterion can not
guarantee convergence of the Newton-Raphson iterations
with the specified initial guess, which is the center of the
isolated sub-domain. According to the normal cone test,
an isolated sub-domain contains a single root at most. If
the multiple root is a tangent case, the subdivisions will

Preprint submitted to Computers & Mathematics with applications May 23, 2011



be performed until sub-domain size reaches the tolerance.
In this paper we adopt Kantorovich theorem to address

the above convergent problem. Given an initial guess in a
domain, in which the Jacobian of system should be Lips-
chitz continuous, the Kantorovich theorem can determine
whether the Newton-Raphson iteration is well-defined. If
conditions are satisfied in the Kantorovich theorem, there
will be two concentric regions surrounding the initial guess:
the large one is the region in which unique zero exists; the
smaller one contains all of the Newton-Raphson iteration
sequences, in which they will converge to the unique zero.
Furthermore, the Kantorovich theorem does not assume
nonsingularity of Jacobian matrix J(x∗) at zero. This is
helpful for solving the multiple root case, since we can
improve the efficiency of root finding by terminating the
subdivision earlier than the normal cone based method.

With the rapid development of GPGPU (General Pur-
pose computing on Graphics Processing Units), graphics
hardware is becoming a new attractive parallel comput-
ing platform. The proposed subdivision-based nonlinear
system solver based on Kantorovich theorem is tailored
for SIMD architecture of contemporary GPUs. Thus, the
significant performance speedup for a large number of non-
linear systems can be gained.

There are three major contributions in this paper. Firstly,
by using the Kantorovich theorem, we can not only iden-
tify the existence of unique root, but also guarantee the
convergence of the Newton-Raphson iteration with a suit-
able initial guess. Secondly, the multiple root of tangential
case can be solved more efficiently. Thirdly, the proposed
nonlinear solver is designed for the SIMD architecture of
GPUs. Thus, we can gain better performance than the
corresponding single-threaded solver on CPU, especially
for a large number of nonlinear systems.

The paper is organized as follows. In Section 2, ten-
sor representation and operations of Bernstein polynomials
are introduced briefly. In Section 3, the subdivision-based
solver based on Kantorovich theorem is given first, then
its parallel version designed for the SIMD architecture is
introduced, and the process of multiple root case is de-
scribed in detail. In Section 4, numerical examples and
discussions are given. Finally, we provide conclusions.

2. Tensor Preliminaries

Consider a nonlinear system as follows:

F(x) = 0 : Rn → R
n (1)

where F = (F1(x), F2(x), · · · , Fn(x))
T . Its roots are real

points {x∗} in R
n, such that Fi(x∗) = 0, for i = 1, · · · , n.

In this paper, it is assumed that each nonlinear constraint
is a Bernstein polynomial and the number of variables
equals to that of constraints. An under-determined system
can be reduced to the above case by exhaustively sampling
some variables according to subdivision tolerance.

The tensor representation can facilitate arithmetic op-
erations related to Bernstein polynomials on SIMD archi-
tecture GPU [11]. A tensor is a higher dimensional analog
of a matrix, where the number of indices is the rank of
tensor. For example, a planar algebraic curve can be rep-
resented as a rank 2 tensor (or a matrix), and an algebraic
surface in R

3 can be represented as a rank 3 tensor.
There are three operations associated with a rank n

tensor Fe1e2···en of multivariate constraint, i.e., contrac-
tion, transformation, and norm estimation. They are de-
fined as follows:

F(x) = xe1
1 xe2

2 · · ·xen
n Fe1e2···en

T(F ) = F̃f1f2···fn = Te1
f1
Te2

f2
· · ·Ten

fn
Fe1e2···en

Norm(F ) = ‖Fe1e2···en‖
(2)

where tensors(F and F̃) are represented using Einstein in-
dex notation eis and fis, x

ei
i is the vector of d degree Bern-

stein polynomial {Bd
j (xi)}dj=0. Tensor contraction corre-

sponds to evaluation of a multivariate constraint in Equa-
tion (1). Tensor transformation corresponds to a subdivi-
sion operation, which transforms one tensor on a given do-
main to a new one on its sub-domain. Both tensor contrac-
tion and transformation are alternatives of de Casteljau’s
algorithm for Bernstein polynomial. Using tensors is more
suitable for GPU implementation. The two operations are
similar with matrix-vector and matrix-matrix multiplica-
tions, respectively. Norm estimation gives a measurement
of tensor magnitude, which is useful in the Kantorovich
theorem. The norm estimation will be explained in detail
in Section 3.2.

3. Kantorovich Solver

3.1. Normal cones test

For each Bernstein polynomial in Equation (1), if coef-
ficient signs of Fi(x) are all positive or negative, there will
be no root in its domain according to convex hull property
of Bernstein polynomial. The corresponding domain can
be discarded. It is called the Control Coefficients Signs
test, abbreviated as CCS test here. It can be described
as:

Algorithm 1 CCS test

1: Input: {Fi(x)}ni=1, // Bernstein polynomials;
2: For each Fi(x)

cmin
i , cmax

i ⇐ min & max coefficients of Fi(x);
3: if ∃i such that cmin

i cmax
i > 0 then

4: return False; //no root exist
5: else

6: return True

7: end if

The normal cone of a surface can be regarded as a
“bounding box” of surface normal. If all the normal cones
of {Fi(x)}ni=1 have no intersection in a domain, the do-
main will contain at most one connected component of

2



the solution set, i.e., one root [20]. It is called the Normal
Cones test, abbreviated as NC test here. The NC test is
equivalent to the singularity test of the Jacobian matrix
of Equation (1). Otherwise, the domain should be sub-
divided recursively until all of single roots are isolated or
the domain size reaches a prescribed threshold. Then the
quadratically convergent Newton-Raphson method can be
employed to approximate each single root.

In most cases, the Newton-Raphson iteration will con-
verge to the isolated root efficiently if the center of the sub-
domain is chosen as the initial guess. However, this initial
guess, which lies in a sub-domain with non-singularity Ja-
cobian, cannot always guarantee the convergence of the
Newton-Raphson iteration. Figure 1 shows a counterex-
ample, where two planar curves intersect at two points.
Two circular regions indicate the convergent regions, in
which any initial guesses can produce convergent itera-
tion to the intersection points, i.e., the roots. The dash
curve is loci of singular Jacobian, on which the normal
cone test will fail. The rectangular region is a termination
sub-domain that passes the NC test. There is no intersec-
tion between the dash curve and the rectangular region.
Though there is a unique root in this domain, the center
x0 of rectangular domain is not a convergent initial guess.
This counterexample shows that the subdivision termina-
tion criteria via NC test is not a sufficient condition of
the Newton-Raphson iteration convergence. Although ex-
perimental results show that adoptions of both NC and
CCS tests could purge away a lot of potential poor ini-
tial guesses, a rigorous proof of convergent conditions of
the Newton-Raphson iteration by using the specified ini-
tial guess is still absent [5]. Another problem arises from
the multiple root case. Since in a sub-domain containing
a multiple root, the NC test will always fail. The method
will keep on subdividing the domain till the size of sub-
domain is less than the prescribed threshold.

0

Figure 1: The initial guess x0 obtained via CCS test and NC test
cannot always guarantee the convergence of the Newton-Raphson
iteration.

3.2. Kantorovich theorem

Besides root-isolations via NC test or CCS test, there
are also other works to study the local convergence of
the Newton-Raphson iteration. Among them, Kantorovich
theorem is an elegant and powerful one, in that it makes
no assumption about the existence of a zero and nonsin-

gularity of its Jacobian matrix. For the convenience, we
introduce the Kantorovich theorem described in [3].

KANTOROVICH THEOREM Let r > 0, x0 ∈
R

n, F : Rn → R
n and assume that F is continuously dif-

ferentiable in an open neighborhood N(x0, r) of radius r

around x0. For a given vector norm and the induced oper-
ator norm, J ∈ Lipγ(N(x0, r)) and J(x0) is nonsingular,
and there exist constants β, η ≥ 0 such that:

‖J(x0)
−1‖ ≤ β, ‖J(x0)

−1F(x0)‖ ≤ η.

Define α = βγη. If α ≤ 1
2 and r ≥ r0 ≡ 1−

√
1−2α
βγ

, then
sequence xk defined as:

xk+1 = xk − J(xk)
−1F(xk), k = 0, 1, · · ·

is well defined, and converges to x∗. It is a unique zero
of F in the closure of N(x0, r0). If α < 1

2 , then x∗ is the

unique zero of F in N(x0, r1), where r1 ≡ min[r, 1+
√
1−2α
βγ

]
and:

‖xk − x∗‖ ≤ (2α)2
k η

α
, k = 0, 1, · · · .

To meet the conditions of Kantorovich theorem, we
should estimate the norm of the inverse Jacobian matrix
at initial guess β, first iteration step length η and Jaco-
bian Lipschitz continuous constant γ in its neighborhood
for the nonlinear system (1). The constants β and η can
be trivially computed if a vector norm and its induced op-
erator norm of the matrix are defined. The Jacobian Lip-
schitz continuous constant γ indicates a variation rate of
Jacobian matrix under the induced norm. Thus, it can be
estimated via second-order partial derivatives of the sys-
tem, i.e., Hessian. For simplicity, we call the conditions in
Kantorovich theorem KC in the rest of paper.

For the system (1), its Jacobian is a n ∗ n rank 2 func-
tion tensor, and its Hessian is a n ∗ n ∗ n rank 3 function
tensor. Each element of the Hessian function tensor is a
second partial derivative function of Fi, which is also a
Bernstein polynomial. Due to convex hull property, the
maximum absolute value (a scalar) of control coefficients
can be adopted as a norm of the second derivative func-
tion. As a result, we can reduce norm estimation of a
function tensor to a problem of a scalar tensor. However,
the norm of a scalar tensor is still a problem, which can
not be evaluated efficiently yet.

Qi[18] shows that a super-symmetric tensor has similar
properties as a symmetric matrix, such as its trace, eigen-
values, etc., which are invariant under coordinate trans-
formations. Lim[10] adopts a constrained variational ap-
proach to calculate the eigenvalues, eigenvectors, singular
values, and singular vectors of a tensor. Both of two ap-
proaches convert the eigenvalue or singular value compu-
tation problem to the root-finding problem of a non-linear
system. It is still expensive and sometimes not feasible.
In our setting, the Hessian Hi of each Fi in system (1)
is a n ∗ n matrix, which can be evaluated conveniently if
the matrix norm is defined, and we can define the Hes-
sian norm of system (1) as the maximum norm of vector

3



{H1, H2, · · · , Hn}

‖H‖ = max{‖Hi‖∞, 1 ≤ i ≤ n} (3)

as an approximation of Jacobian Lipschitz constant γ in
the Kantorovich theorem. Owing to convex hull property
of Bernstein polynomials and simple norm computations of
matrix and vector, the above estimations require less tem-
poral and spatial computing resources than those in [18]
and [10], but they are conservative to some extent.

Convergent RegionUnique root Region

Domain Newton Iteration

0

1

0

1
*

d

e

Figure 2: Illustration of root distribution according to Kantorovich
theorem. N(x0, r0) and N(x0, r1) are both define in term of infinity
norm. Note that the convergent regions in Figure 1 are defined in
terms of 2-norm.

There are two concentric neighborhoods N(x0, r0) and
N(x0, r1) in the Kantorovich theorem. The outer one
N(x0, r1) is the region in which there is a unique root,
while the inner one N(x0, r0) is the convergent region of
subsequent the Newton-Raphson iterations, in which x0 is
adopted as initial guess. Figure 2 shows an example. Two
planar algebraic curves intersect at one point x∗. The
neighborhoods N(x0, r0), N(x0, r1) and the sub-domain
D are depicted with different colors. If the long edge d

of the sub-domain D satisfies d
2 ≤ 1+

√
1−2α
βγ

= r1, then

the sub-domain D is in the neighborhood N(x0, r1) com-
pletely. Thus there is a unique root in D. In other words,
we can use D to isolate all the zeros as in [5]. Further-
more, if r0 ≤ e

2 , i.e., a half of the short edge length of D,
the neighborhood N(x0, r0) is in D. Thus, the Newton-
Raphson iterations with initial guess x0 would converge to
the unique root x∗, the intersection point in the N(x0, r0).

Otherwise, if d
2 > r1, i.e. D is not in the neighbor-

hood N(x0, r1), there may be more than one root in D;
if e

2 < r0, i.e. N(x0, r0) is not in the sub-domain D,
the Newton-Raphson iteration with initial guess x0 may
not be convergent in the sub-domain D. In these cases, we
should subdivide the sub-domain D further so that we can
delimit the unique root and convergent region. Traditional
bisection method subdivides a domain at the middle point
of long edge. To facilitate the subdivisions in parallel, we
bisect a domain along its all edges simultaneously. Be-
cause the constraints are defined on [0, 1]n, 2n equilateral
sub-domains will be obtained after one subdivision. The

pseudo codes of KC test and the recursive root-finding
algorithms are given in Algorithms 2 and 3, respectively.
Note that if the KC test is passed, its output is adopted
as the initial guess for the subsequent Newton-Raphson it-
eration to find the optimal roots of the nonlinear system.

Algorithm 2 KC test

1: Input: a nonlinear system P =< {Fi}ni ,D >, n

functions of n-variable defined on a domain D =
{(umin

j , umax
j )}nj=1 as in Equation 1;

2: For each function Fi: Compute all second partial

derivative functions { ∂2Fi

∂xs∂xt

}. Let C
(i)
st be the maxi-

mum absolute value of control coefficients of function
∂2Fi

∂xs∂xt

, the Hessian tensor of Fi (n× n matrix) is de-

fined as Hi = {C
(i)
st }

n
s,t=0;

3: γ = max(‖Hi‖∞), i = 0, · · · , n;
4: d ⇐ long edge of domain D;
5: e ⇐ short edge of domain D;

6: x0 = (
umin

1
+umax

1

2 , · · · ,
umin

n−1
+umax

n−1

2 ), center of D

7: β = ‖J−1(x0)‖, η = ‖J(x0)
−1 · F(x0)‖, α = βγη;

8: r0 = (1−
√
1−2α
βγ

), r1 = (1+
√
1−2α
βγ

);

9: if (α < 1
2 )&&(r1 ≥ d

2 )&&(r0 ≤ e
2 ) then

10: return True

11: // x0 can guarantee convergent iterations
12: else

13: return False

14: end if

Compared with the algorithm in [6], Algorithm 3 is
more space and time consuming because of the adoption
of the Hessian. For the system with n constraints and n

variables, both storage and subdivision costs of the Hes-
sians are O(n3), while those of Jacobian in [6] are O(n2).
Because only maximum estimation of each entry of Hes-
sian is necessary in our algorithm, the additional memory
for storage of Hessian is negligible. Meanwhile the costs of
normal cone construction in [1] and their intersection com-
putation via dual hyperplanes representation in [6] can be
avoided. In each subdivision step, the NC test takes just
about the same time as the KC test, according to the
examples in Section 4.

3.3. Kantorovich solver on SIMD architecture

Driven by high performance and high quality 3D graph-
ics applications, the programmable GPU has evolved into
a highly parallel, multithreaded, manycore processor with
tremendous computational horsepower and a very high
memory bandwidth. A modern GPU usually contains hun-
dreds of low cost stream processors. It is becoming an
attractive platform for general-purpose computing.

However, most of state of art GPU programming lan-
guages or application programming interfaces, such as HLSL,
GLSL, OpenCL, DirectX Compute etc., do not support
recursive functions. Even though CUDA v3.0 augments
the support of recursion feature recently, it is still far

4



Algorithm 3 Kantorovich root-finding KanSub(P, τ)

1: Input: a nonlinear system P as in AlgorithmKC test;
τ , tolerance of subdivision resolution

2: if max(umin
j − umax

j ) < τ then

3: return {(
umin

1
+umax

1

2 , · · · ,
umin

n−1
+umax

n−1

2 )};
// As a root under subdivision threshold τ

4: else

5: if (CCS) then
6: if (KC) then

7: return {(u
min

1
+umax

1

2 , · · · ,
umin

n−1
+umax

n−1

2 )}
// As initial guess of the Newton-Raphson it-
eration

8: else

9: subdivide {Fi} into a set of new {F j
i }, j =

1, · · · , 2n at the middle of each direction.

10: return
2n
⋃

j=1

KanSub(< {F j
i }

n
i=1,D

j >, τ)

11: end if

12: end if

13: end if

from being practical for complex geometric applications.
As a result, for inherently recursive algorithms such as
subdivision-based Kantorovich solver, we implement its
iterative version via Breadth-first search tailed for SIMD
architecture. This is described in Algorithm 4. Each itera-
tive step contains two phases: firstly, the constraints Fi(x)
are subdivided and the sub-domains containing no zeros
are discarded via CCS test. Secondly, the Kantorovich
theorem is employed to identify valid initial guesses in the
sub-domains that passed the CCS test, which are sent
to the subsequent Newton-Raphson iterations. The sub-
domains that fail the KC test will be scanned and gath-
ered together for further subdivision. The subdivisions
and CCS and KC tests are performed until there is no
feasible sub-domain.

To exploit parallelism of GPUs, each Fi of n variables is
subdivided uniformly into T = mn ones, instead of bisec-
tion (2n) in Algorithm 3. Obviously, a more dense subdivi-
sion could result in a smaller subdivision depth. However,
limited resources in GPU will pay back the benefits of in-
creased parallelism. According to capacity of state of art
GPU, T can be set as a constant 64 for two and three di-
mensional cases, i.e., m = 8, 4 for n = 2, 3 respectively. If
tolerance of sub-domain size τ is set to 1.0e− 6 for single
precision floating-point arithmetic in GPU, the maximum
subdivision depth will be 7 and 10 for n = 2 and 3 respec-
tively in worst case in our algorithm, while the maximum
depth are 20 in bisection approaches.

The most time-consuming step in our algorithm is the
subdivision of the constraints. The classical de Castel-
jau’s algorithm is more suitable for bisection, while the
blossoming algorithm [19] can be applied to an arbitrary
subdivision with more loops. Although the blossoming al-
gorithm is numerically stable, it will introduce many deep

Algorithm 4 Kantorovich root-finding in Parallel

1: Input: a set of nonlinear systems {P};
τ , tolerance of subdivision resolution

2: while {P} 6= ∅ do

3: if max(umin
j − umax

j ) < τ for each P then

4: return {(
umin

1
+umax

1

2 , · · · ,
umin

n−1
+umax

n−1

2 )}
// As a root under subdivision threshold τ

5: else

6: subdivide {Fi} into T sub-functions for each P,
label ones that pass CCS test;

7: scan sub-function been labeled, obtain new {P};
8: if {P} = ∅ then

9: return

10: end if

11: construct Hi and perform KC test for each sub-
function Fi, accept subdomain centers pass the
KC test, label failed ones;

12: scan subdomains been labeled, obtain new {P};
13: if {P} = ∅ then

14: return

15: end if

16: end if

17: end while

loop instructions, which will lead to a significant perfor-
mance drop of instruction throughputs on GPU.

As an alternative approach, a multivariate Bernstein
polynomial is represented in tensor form. The control
coefficients tensor is associated with two operations, i.e.
contraction and transformation, as described in Section 2.
The contraction operation corresponds to an evaluation of
a Bernstein polynomial, which is implemented as a matrix-
vector multiplication. The transformation operation corre-
sponds to a subdivision of a Bernstein polynomial, which
can be understood as a “matrix-matrix” multiplication.
The control coefficients of a tensor on a sub-domain can be
obtained by sequential tensor transformations of the entire
domain along each direction. If we subdivide a Bernstein
polynomial of degree d into m ones uniformly, the k-th
transformation tensor Tei

fi
in Equation (2) can be obtained

via the following formula:

Tei
fi

=







a+b=j
∑

0≤a,b≤j

Bd−i
a

(

k

m

)

∗Bi
b

(

k + 1

m

)

|0 ≤ i, j ≤ d







where B(x) is Bernstein basis function. If the system
in (1) is uniformly subdivided into mn ones, we will com-
pute n ∗ m transformation tensors totally. For 2D case,
we will compute 2 ∗ 8 rank 2 transformation tensors for
T = 82 = 64 in our setting. Since these transforma-
tion tensors are shared by all T polynomials on the sub-
domains for each iteration step, we can replace the expen-
sive blossoming computation with pre-computation and
fast runtime texture fetches on GPUs.

The scan operations of lines 7 and 12 in Algorithm 4

5



are to collect the sub-domains that pass CCS and KC

tests. Implementing a sequential scan operation in single
thread on a CPU is trivial. Harris et. al. [8] proposed a
parallel version of scan operation on GPU that has same
complexity with that of CPU one. The parallel versions
of other operations such as reduce and compact have
been proposed and exposed in [7]. The scan operation
allows us to compact the intermediate sub-domains gen-
erated in each subdivision step. Otherwise, the number
of sub-domains will increase exponentially. As the result
of the scan operation, the number of sub-domains to be
checked viaKC test in each step will approach the number
of roots, which saves considerable storage space.

3.4. Tangent Root (A Case of Multiple root)

If a domain contains a multiple root, the nonlinear sys-
tem will always fail the NC test. Thus, the subdivision-
based methods like [5] will keep on subdividing the domain
until the size of sub-domain is less than the threshold. In
this case, a large number of subdivisions will seriously af-
fect the efficiency of algorithm, even if there is a good
initial guess in the sub-domain. Algorithm 3 and 4 would
behave the same way, when the center of domain, i.e. the
selected initial guess, can not pass the KC test. However,
the Kantorovich theorem considers both the domain and
the initial guess simultaneously, rather than the domain
separately, it is still possible for us to find a good guess
from different alternatives.

Here, we propose a solution to this problem. The main
idea is to consider as many as possible initial guesses other
than just the center in the KC test, so that we can choose
those well-defined guesses. The local distribution of the
root around these initial guesses can give us more infor-
mation to purge away useless regions according to the Kan-
torovich theorem. First, we sample T(= mn) points uni-
formly in the current domain, which are also the centers
of T sub-domains in next subdivision step. For each sub-
domain in the next subdivision step, if its unique root
region N(x0, r1), obtained via KC test, does not con-
tain the sub-domain, the sub-domain needs to be subdi-
vided further; otherwise, there is exactly one root in the
sub-domain; furthermore, if N(x0, r1) covers the neighbor-
ing sub-domains completely, the covered neighboring sub-
domains can be purged away since there is just one root
in N(x0, r1). Finally, we obtained a set of unique root
sub-domains N(x0, r1). Then we choose x0 as an initial
guess in each sub-domains so that the Newton-Raphson
iterations are convergent in it. This is trivial work.

We implement this scheme by slightly modifying the
Algorithms 4. Since we perform T KC tests rather than
just the center in each step, it is necessary to minimize the
costs of extra KC tests by reusing γ. Firstly, we store the
estimations of γ in k-th step, k = 0, 1, · · · . Then we calcu-
late β and η just after the subdivision of Fi and CCS test
in 6th line of (k + 1)-th step of Algorithm 4. As a result,
the KC test is performed at that moment while adopting
the γ on the entire domain stored in previous step. This

Algorithm 5 Additional KC test for multiple root. This
test is called just after the 6th line of Algorithm 4. Note
the difference between γP and γ in Algorithm 2.

1: Input: a set of systems {P} and their Hessian norms
{γP};

2: for each system P do

3: for each subdomain that pass CCS test do
4: Calculate β, η, x0, d as KC test ;
5: α = γPβη;

6: r1 = (1+
√
1−2α

βγP

);

7: if (α < 1
2 )&&(r1 ≥ d

2 ) then
8: Discard neighbors completely covered

by N(x0, r1), return unique-root region
N(x0, r1);

9: end if

10: end for

11: end for

additional KC test makes the choice of an initial guess
more flexible, since we have T candidates at most. An-
other benefit of moving the evaluations of β and η forward
results from the reduction of estimation costs of Hessian in
11th line of Algorithm 4, since norm computation of His
is costly and the registers available for the parallel threads
are limited. Simultaneous evaluations of β and η with γ

would affect the parallelism of GPUs. Alternatively, the
storage and transfer of β, η and γ are trivial. Therefore,
although this modification creates a little overhead, we be-
lieve it is worthwhile.

4. Implementation and Discussion

We have implemented the proposed algorithm on a PC
with an Intel Core 2 Quad 2.83GHz CPU and an NVIDIA
GTX280 GPU. The parallel solver on GPU is written in
CUDA v2.5, a general-purpose C language interface for
general purpose computing. For state of art GPU, the
single precision floating-point arithmetic is more efficient
than the double one, while for CPU, their efficiencies are
the same. Thus, we only implement a single precision
floating-point solver on GPU. In our implementations, the
sub-domain size tolerance is 1.0e − 6 for both CPU and
GPU ones, which is small enough for root isolation. The
convergent tolerances of the Newton-Raphson iteration are
1.0e− 15 and 1.0e− 6 for CPU and GPU, respectively.

The first example is to compute intersections of two bi-
cubic planar algebraic curves in terms of Bernstein poly-

6



0.25 0.3 0.35 0.4 0.45 0.5

0.25

0.3

0.35

0.4

0.45

0.5

Accept in 3rd step

Reject in 3rd step

Accept in 2nd step

Reject in 4th step

Figure 3: (a): the subdivision tree of root-finding of two implicit bi-cubics from [6]. (b) shows a room-in over the region near the center of
(a).

nomials, which is presented in [6]. They are:

F1(x, y) =

3
∑

i=0

3
∑

j=0

PijBi(x)Bj(y) = 0

[Pij ] =









0 2.2 1.1 1.1
−1 −1 −1 1
−1 1 1 1
−1 −1 −2 0









(4)

and F2(x, y) = F1(y, x). There are five single roots in the
unit square [0, 1] × [0, 1]. As described in Section 3.3, a
domain is subdivided into 64 sub-domains uniformly for
2D case. The first two subdivisions of unit square and
its zoom-in are illustrated in Figure 3(a) and Figure 3(b),
respectively. After the second subdivision, the yellow tiny
square pass the KC test and their centers can be adopted
as convergent initial guesses. The smaller squares in the
green tiny squares are accepted as convergent regions in
the third subdivision, while the red ones are rejected at
the same time. The purple ones are rejected via CCS test
after the fourth subdivision.

The system is solved on CPU and GPU in 2.63 ms

and 0.47 ms with Algorithm 3 and 4, respectively. As a
comparison, it takes the IRIT [4] 0.94 ms CPU time to
solve it, in which the algorithm [6] has been integrated.
The runtime difference between two CPU solvers can be
explained as in Section 3.2. According to the experimental
result, the NC test takes just about the same time as
the KC test. Because the Kantorovich theorem provides
a more strict conditions about domain and initial guess
than those of the NC test, the proposed Algorithm 3 will
takes about one more depth subdivision than the NC test
approach. Thus, we can draw that the NC test approach
is superior to our CPU implementation for the single root
case.

However, for the example in Equation (4), we noticed
that most of the GPU stream-processors are on idle due
to the shortage of input, especially in the Hessian compu-
tations in the KC test, which is the most time consuming
procedure. If the number of nonlinear systems increases,
much more speed up via parallel processing can be gained.
Figure 4 shows two synthetic examples of a large number
of nonlinear systems. Figure 4(a) shows the intersections
between level sets of two algebraic curves, and Figure 4(b)
shows the intersections of two bi-cubic algebraic curves in
term of B-spline basis, where the B-spline functions are
converted into piecewise Bernstein polynomials via knot
insertion algorithm. Both of the examples consist of a
large number of nonlinear systems. Figure 5 shows the
scalability and speedup of our parallel solver on GPU for
a different number of nonlinear systems in Figure 4(b). T2
is the number of parallel threads working in batch in the
11th line of Algorithm 4. The speedup times are almost
linear with regard to the number of working threads, until
the peak value is arrived at T2 = 32, 64 for 512, 1024 non-
linear systems, respectively. After that, the speedup time
remains unchanged since all of stream-processors work at
their full capacity. It is the same for different numbers of
subdivision T in 6th line in Algorithm 4. However, the tun-
ing of number of parallel threads is subject to the comput-
ing architecture of CUDA. The multi-processor units cre-
ate, schedule, and execute threads in groups of 32. Thus,
we should set the number of threads per block as times
of warp size. Another restriction in our parallel solver is
available register number in one thread block since the
register is limited resource in state of art GPU. We use
the difference of Fi to construct Hessian function, which
hardly increases the allocation of the register. As a result,
for T2 = T = 64, our GPU allows one bi-14 degree or
tri-quartic constraints for each thread at most.

7



Figure 4: (a) shows the intersections of the iso-curve set of two algebraic curves. (b) shows the intersections of two bi-cubic algebraic curves
in term of B-spline basis.

Figure 6: Bisector surface between an biquadratic surface S1(u, v) and a planar S2(s, t). It is a under-determined problem with 4 variables
and solution space of 2-manifold. (a) and (b) enumerate u, v with resolution of 80 × 80 and 5 × 100, respectively. (c) is the result of IRIT
under same subdivision resolution as (a). (a) takes 54.26 ms, while (c) takes 24859 ms.

The proposed algorithm is also suitable to solve under-
determined systems. Before solving the system, the sys-
tem is converted into a well-defined system by exhaustively
sampling the additional variables according to given subdi-
vision tolerance. Figure 6 shows the bisector surface [5] be-
tween a biquadratic surface S1(u, v) and a planar S2(s, t).
Since the bisector surface between two surfaces can be re-
duced to an four variables (u, v, s, t) under-determined sys-
tem of two constraints. The degrees of two constraints are
(7, 7, 3, 2) and (7, 7, 2, 3), respectively. To solve the system
efficiently, two variables of higher degree, i.e., u and v, are
sampled uniformly in their domains. Here the sampling
solution is 80 × 80. In this way, the system is converted
into 80 × 80 well-defined systems. Each system contains
two constraints of two variables, whose degrees are (3, 2)
and (2, 3), respectively. It takes our parallel solver total
54.26 ms GPU and CPU times to solve the well-defined
systems, while it takes IRIT 24859 ms CPU times to solve

it. The results are shown in Figures 6(a) and 6(c). Fig-
ure 6(b) shows another solution under sampling solution
5 × 100. It can draw that our parallel solver can gain
much better speed-up than the solver in IRIT. We believe
that by using the same scheme of variable reduction, IRIT
could achieve better performance. Still, our algorithm pro-
vides a significant speedup. As we know, there are many
under-determined systems in geometric modeling applica-
tions [5] and their solution space may be 1, 2 or 3-manifold.
The proposed parallel solver can exploit the advantages of
SIMD architecture of GPU or multicore CPU, which ad-
mits high throughput of lightweight computing.

Figure 7 show a double root case, where two planar
algebraic curves, i.e. circles g = 0 and f = 0, are tangent
at one point. There are three sub-domains, the hatched
grid, which can pass theCCS test in first subdivision step.
The center of middle sub-domain is more close to the dou-
ble root than those of other two sub-domains. Against

8



Number of Systems

ti
m

e
 (

m
s)

Parallel threads working in batch

p
ar

al
le

l 
sp

ee
d
u

p

1 2

8 32

128 512

2048 8192

Number of systems

Figure 5: The run time and speedups comparison with IRIT for
different numbers of nonlinear systems.

our expectations, the middle initial guess can not meet
the convergent conditions of Kantorovich theorem, while
the other ones can pass the KC test. The convergent re-
gion and unique root region are depicted as concentric cir-
cles. However, if we apply the Algorithm 4 to this example
straightforwardly, the subsequent iterations will reject the
top and bottom sub-domains. It will subdivide the mid-
dle one till the tolerance resolution is achieved. By using
the revised scheme in Algorithm 5, the top and bottom
sub-domains will be accepted and the middle one will be
purged away, since the middle one lies in the unique root
regions of other two sub-domains. In this example, our
solver will terminates just after the additional KC test of
Algorithm 5 in the first subdivision step, and obtain two
convergent initial guesses.

5. Conclusion

In this paper, we propose a subdivision-based nonlinear
Bernstein polynomial system parallel solver that is suit-
able for the SIMD architecture of state of art GPU. The
solver is based on the Kantorovich theorem, which gives
the conditions to determine a convergent initial guess for
the Newton-Raphson iteration. By exploiting the paral-
lelism of GPU, our algorithm can achieve over 100 times
speedup for a large number of systems, compared with

0f0g

Accept Region Reject Region

r1

r0

r1

r0

Figure 7: Local root distribution estimation of three initial guess.
r0,r1 are same as in Figure 2. Note that the convergent region may
not contain the unique root for using norms.

the CPU solver. The proposed solver can also dealt with
under-determined system and multiple root case. This
work can also be adapted to other SIMD architecture pro-
cesses, such as multicore CPU.

Currently the proposed parallel solver is designed for
GPU, which has no flexible memory management. Thus,
the scalability is subject to hardware specification. Stream
processors in the contemporary GPU are designed for pro-
cessing single precision floating point arithmetic, while
double precision floating point one is just added to ad-
dress scientific and high-performance computing applica-
tions lately. The performance of double precision arith-
metic is still much slower than the single ones. However,
we believe that rapid development of GPU can overcome
the restriction.

The Newton-Raphson iteration adopts Jacobian ma-
trix to approximate the zeros. We have shown that the
Kantorovich theorem can provide a convergent initial guess
even for the singular Jacobian case, i.e. a tangent root
case. However it is not hold for more complex multiple
root case, as shown in Figure 8: a self-intersection curve
intersects with a ellipse at the self-intersection point. The
self-intersection point is a singular point, i.e., F, Fx and
Fy all vanish. We implemented the Newton-Raphson iter-
ations by adopting initial guesses near it. The color maps
of the convergent steps are shown in Figure 8, in which
the red and brown colors indicate the convergent guesses
with convergent iterations, while the blue color shows the
divergence ones. We also notice that when the Newton-
Raphson steps are more than 10, the iterations could go
beyond the sub-domain, where the initial guesses belong.
However, the condition of α < 0.5 in Kantorovich theo-
rem cannot be satisfied for all the initial guesses even for
convergent ones. The example illustrates that the actually
convergent region of initial guess for the Newton-Raphson
iteration may be much greater than the one estimated by
Kantorovich theorem. This may be the price that we pay

9



for conservative norm estimation in our algorithm.

Divergent

4

12

16

8

Newton-Raphson

iteration

Figure 8: The points in colored girds can not satisfy the Kantorovich
theorem. However, there are many convergent regions by adopting
the Newton-Raphson method, except the blue-colored ones. The
color maps show the number of the Newton-Raphson steps.

6. Acknowledgements

The authors are grateful to Gershon Elber who pro-
vided the open source of the IRIT. We also thank the
anonymous referee for useful comments and improvements.

References

[1] G. Barequet, G. Elber, Optimal bounding cones of vectors in
three dimensions, Information Processing Letters 93 (2005) 83
– 89.

[2] G.E. Collins, R. Loos, Real zeroes of polynomials, Computer
algebra: symbolic and algebraic computation (2nd ed.) (1983)
83–94.

[3] J. Dennis, R.B. Schnabel, Numerical methods for unconstrained
optimization and nonlinear equations, Prentice-Hall Englewood
Cliffs, N.J., 1983.

[4] G. Elber, Irit homepage (2010). http://www.cs.technion.ac.
il/~irit/.

[5] G. Elber, M.S. Kim, Geometric constraint solver using multi-
variate rational spline functions, in: SMA ’01: Proceedings of
the sixth ACM symposium on Solid modeling and applications,
ACM, New York, NY, USA, 2001, pp. 1–10.

[6] I. Hanniel, G. Elber, Subdivision termination criteria in subdivi-
sion multivariate solvers using dual hyperplanes representations,
Comput. Aided Des. 39 (2007) 369–378.

[7] M. Harris, J. Owens, S. Sengupta, Y. Zhang, A. Davidson,
Cudpp homepage (2007). http://www.gpgpu.org/developer/

cudpp/.
[8] M. Harris, S. Sengupta, J.D. Owens, Parallel prefix sum (scan)

with cuda, in: H. Nguyen (Ed.), GPU Gems 3, Addison Wesley,
2007.

[9] J.M. Lane, R.F. Riesenfeld, Bounds on a polynomial, BIT Nu-
merical Mathematics 21 (1981) 112–117.

[10] L.H. Lim, Singular values and eigenvalues of tensors: A varia-
tional approach, PROCEEDINGS OF THE IEEE INTERNA-
TIONAL WORKSHOP ON COMPUTATIONAL 1 (2005) 129.

[11] C. Loop, J. Blinn, Real-time gpu rendering of piecewise alge-
braic surfaces, in: SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, ACM, New York, NY, USA, 2006, pp. 664–670.

[12] D. Manocha, J. Demmel, Algorithms for intersecting parametric
and algebraic curves i: simple intersections, ACM Trans. Graph.
13 (1994) 73–100.

[13] K. Mehlhorn, M. Sagraloff, Isolating real roots of real polynomi-
als., in: J. Johnson, H. Park, E. Kaltofen (Eds.), ISSAC, ACM,
2009, pp. 247–254.

[14] R.E. Moore, F. Bierbaum, Methods and Applications of Inter-
val Analysis (SIAM Studies in Applied and Numerical Math-
ematics) (Siam Studies in Applied Mathematics, 2.), Soc for
Industrial & Applied Math, 1979.

[15] B. Mourrain, J.P. Pavone, Subdivision methods for solving poly-
nomial equations, J. Symb. Comput. 44 (2009) 292–306.

[16] T. Nishita, T.W. Sederberg, M. Kakimoto, Ray tracing trimmed
rational surface patches, in: SIGGRAPH ’90: Proceedings of
the 17th annual conference on Computer graphics and interac-
tive techniques, ACM, New York, NY, USA, 1990, pp. 337–345.

[17] N.M. Patrikalakis, T. Maekawa, Shape Interrogation for Com-
puter Aided Design and Manufacturing, Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[18] L. Qi, Eigenvalues and invariants of tensors, Journal of Mathe-
matical Analysis and Applications 325 (2007) 1363 – 1377.

[19] L. Ramshaw, Blossoms are polar forms, Comput. Aided Geom.
Des. 6 (1989) 323–358.

[20] T.W. Sederberg, R.J. Meyers, Loop detection in surface patch
intersections, Comput. Aided Geom. Des. 5 (1988) 161–171.

[21] E.C. Sherbrooke, N.M. Patrikalakis, Computation of the solu-
tions of nonlinear polynomial systems, Computer Aided Geo-
metric Design 10 (1993) 379 – 405.

10


