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Abstract We present a novel approach for real-time rendering Loop subdivision surfaces on modern graphics hardware.
Our algorithm evaluates both positions and normals accurately, thus providing the true Loop subdivision surface. The core
idea is to recursively refine irregular patches using a GPU compute kernel. All generated regular patches are then directly
evaluated and rendered using the hardware tessellation unit. Our approach handles triangular control meshes of arbitrary
topologies and incorporates common subdivision surface features such as semi-sharp creases and hierarchical edits. While
surface rendering is accurate up to machine precision, we also enforce a consistent bitwise evaluation of positions and normals
at patch boundaries. This is particularly useful in the context of displacement mapping which strictly requires matching
surface normals. Furthermore, we incorporate efficient level-of-detail rendering where subdivision depth and tessellation
density can be adjusted on-the-fly. Overall, our algorithm provides high-quality results at real-time frame rates, thus being
ideally suited to interactive rendering applications such as video games or authoring tools.

Keywords real-time rendering, Loop subdivision surface, hardware tessellation

1 Introduction

Catmull and Clark[1] and Doo and Sabin[2] intro-
duced a new era of smooth surface modeling by enabling
arbitrary connectivity on parametric surfaces, i.e., sub-
division surfaces. Loop’s method[3] stands out as a
representative among different subdivision schemes[4]

and is heavily used in industry applications such as
video games or finite element simulations. It is specifi-
cally designed for triangular control meshes of arbitrary
topology, and in contrast with Catmull-Clark subdivi-
sion, Loop subdivision maintains a triangular structure
during the subdivision process.

Traditionally, subdivision surfaces are evaluated by
recursively refining the underlying control mesh accord-
ing to the corresponding subdivision rules. Though
this can be easily implemented on today’s GPUs,
the exponential growth of memory storage and data
transfer severely affects rendering performance. With

the advent of GPU hardware tessellation in DirectX
11①, tessellated geometry can be generated and di-
rectly processed (i.e., rendered) on the GPU stream-
ing multiprocessors[5]. This avoids costly memory I/O
and allows for high-quality surface rendering involving
fine-scale geometric detail. However, surface rendering
using hardware tessellation requires direct per patch
evaluation. While direct evaluation of regular patches
is straightforward, it is non-trivial for irregularities such
as extraordinary vertices, semi-sharp creases, and hier-
archical edits. The milestone work by Stam[6-7] was the
first one that proposed such a direct evaluation scheme
for irregular patches at arbitrary parameter locations.
However, significant computational overhead, e.g., ver-
tex transformations to eigen-space, limits real-time per-
formance. Most recently, Nießner et al.[8] proposed a
combination of recursive refinement at features and di-
rect evaluation of regular regions. This turns out to be
faster than Stam’s direct evaluation approach and also
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handles subdivision surfaces features (e.g., creases).
While this allows for fast and efficient surface rendering
on modern GPUs, it focuses on Catmull-Clark subdivi-
sion surfaces. In this work, we adopt the pipeline of fea-
ture adaptive subdivision by fully exploiting the para-
llelism of modern GPUs and the hardware tessellation
architecture. However, in contrast to the original fea-
ture adaptive approach, we focus on Loop subdivision
surfaces. Therefore, we carefully extend the watertight
evaluation method from bicubic patches to quartic box-
spline patches. Our method also supports the rendering
of semi-sharp creases and hierarchical editing. Further,
we propose a level-of-detail scheme specifically crafted
for triangular Loop meshes by adaptively adjusting the
subdivision depth and tessellation density.

2 Related Work and Preliminary

2.1 Related Work

Traditional evaluation of subdivision surfaces is per-
formed by iterative global refinement following the
Loop subdivision rules. Therefore, Pulli and Segal[9]

proposed packing two triangles into one quadrilateral
to minimize the memory overhead. Shiue et al.[10]

partitioned the control mesh into a set of frag-meshes
and refined them respectively based on a pre-computed
valence-related lookup table. However, due to the
valence-related lookup table, it is not directly appli-
cable to the control meshes of arbitrary topology. In
addition, pre-refinement step is required. Kim and
Peters[11] extended Shiue’s method to Loop subdivision
surfaces. Boubekeur and Schlick[12] decreased the com-
putational complexity by adaptively refining the con-
trol mesh according to pre-computed adaptive patch
refinement patterns. While these methods achieve real-
time rates, the exponential growth in memory severely
affects render performance due to the bandwidth limi-
tations on modern GPUs.

Stam evaluation[6-7] overcomes this limitation by
performing direct evaluation of the subdivision surface.
Therefore, the respective Catmull-Clark or Loop sub-
division surface can be analytically evaluated via eigen
analysis of the corresponding subdivision matrices. Al-
though Stam’s algorithm can be implemented on the
GPU, computational overhead and code branching im-
pede high-performance GPU evaluation. Further, it is
practically infeasible to extend the algorithm to handle
semi-sharp creases and hierarchical editing due to com-
binatoric issues. Rather than evaluating polynomials
for regular patches, Bischoff et al.[13] accelerated Loop
subdivision surface evaluation on GPU via forward dif-
ferences.

In order to speed up rendering, researchers deve-
loped several approximate techniques, however, at the
cost of surface quality and accuracy. The basic idea
of these approaches is to find an approximate closed-
form solution in order to efficiently evaluate irregular
patches. For example, a curved PN-triangle decouples
the geometry and its normal information, i.e., a cu-
bic triangular Bézier surface equipped with a quadratic
normal field[14]. Boubekeur and Schlick[15] proposed
QAS to render Loop subdivision surfaces, where each
patch is approximated by two quadratic triangular
Bézier patches, for geometry and normal field, respec-
tively. Amresh et al.[16] adopted Gregory patches[17]

to approximate Loop subdivision surfaces. Due to
the fact that the Loop subdivision surface is derived
from the definition of quartic box spline, Li et al.[18]

adopted quartic triangular Bézier patches to approxi-
mate the geometry of Loop subdivision surfaces, where
each patch is obtained by interpolating 15 uniformly
sampled points. To remedy the artifacts along the
boundary of irregular patches, the normal field of the
surface is also approximated via two quartic triangular
Bézier patches.

Nießner et al.[8,19] proposed a fast and exact patch-
ing algorithm for rendering Catmull-Clark subdivision
surfaces, which was recently extended to deal more ef-
fectively with semi-sharp creases[20]. First, irregular
patches are refined adaptively by using a table-driven
subdivision approach employing GPU compute kernels.
Then all patches are evaluated and rendered using the
GPU hardware tessellation unit. Furthermore, they
presented a bitwise exact evaluation variant that is par-
ticularly useful for incorporating high-quality displace-
ment mapping[21-22].

Table 1 shows an overview of properties of dif-
ferent Loop subdivision methods, including Shiue’s
approach[10], (uniform) global refinement (based on
subdivision tables[8]) (Global), Stam’s direct evaluation
scheme[7], Li’s approximate patching algorithm[18], and
our method.

Table 1. Comparison of Different Loop Subdivision

Rendering Techniques

Shiue’s Global Stam’s Li’s Ours

Speed + ++ ++ +++ +++

Memory ++ + ++ +++ +++

Accurate Yes Yes Yes No Yes

PreSubd Yes No Yes No No

Features Yes Yes No No Yes

Note: the comparison includes speed, memory efficiency
(Memory), accuracy (Accurate), requirement for an initial
pre-subdivision step (PreSubd), and handling of features
such as semi-sharp creases or hierarchical edits (Features).
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2.2 Loop Subdivision Surfaces

A Loop subdivision surface takes a coarse triangu-
lar control mesh of arbitrary connectivity as input, as
shown in Fig.1(a). In each level of refinement, two
types of vertices are generated: vertex and edge points.
Along with corresponding edges, they represent the re-
fined mesh as shown in Fig.1(b). Both edge and ver-
tex points are defined by linear combinations of ver-
tices of the previous subdivision level. These linear
combinations are referred to as the subdivision rules,
or subdivision masks (each subdivision scheme has a
different set of rules). The rules for Loop subdivision
are depicted in Figs. 2(a) (vertex rule) and 2(b) (edge
rule). Continuing the refinement process will result in
a smooth limit surface that is C2 everywhere except
at extraordinary points where it is C1. Vertex posi-
tions and normals on the limit surface can be directly
obtained by applying the limit stencils as shown by Hal-
stead et al.[23]. To further improve modeling flexibility,
additional rules have been introduced: sharp creases[24],
semi-sharp creases[25], and hierarchical edits[26].

Fig.1. Loop subdivision of (a) a control mesh, resulting in (b) a

refined mesh with vertex (yellow) and edge (blue) points being

highlighted.

Fig.2. Loop subdivision masks. (a) Vertex point mask of an n-

valence vertex, where αn = 5
8
− ( 3

8
+ 2

8
cos 2π

n
)2. (b) Edge point

mask.

3 Feature-Adaptive Rendering of Loop
Subdivision Surfaces on GPU

Employing the Loop subdivision rules (cf. Subsec-
tion 2.2), a coarse control mesh can be refined as a series

of fine triangular meshes recursively. As mentioned, the
limit surface is composed of quartic box spline patches
and globally C2-continuous, except for the extraordi-
nary points surrounded by an infinite number of quar-
tic box spline patches, as shown in Fig.3(a). Semi-sharp
creases behave similarly (see Fig.3(b)). This suggests
to apply subdivision only where needed, i.e., in irregu-
lar regions which cannot be directly evaluated (regular
patches can be evaluated according to the box spline
definition). Features indicate a type of vertex which 1)
is extraordinary, 2) belongs to a semi-sharp crease, or
3) is defined by a hierarchical edit. A patch is regu-
lar if its three vertices are regular (i.e., valence of 6).
Otherwise, the patch is considered to be irregular.

Fig.3. Arrangements of quartic box spline patches around (a) an

extraordinary vertex and near (b) a semi-sharp crease. Irregular

vertices and patches are colored in red and yellow, respectively.

An overview of our algorithm is shown in Fig.4.
First, we generate subdivision tables for each level,
corresponding to the configuration of the control net
(cf. Fig.3). The tables are used to compute new ver-
tices using a GPU compute shader running in parallel
as described in Subsection 3.1. Then patches are con-
structed in accordance with the configuration of neigh-
bor patches to eliminate T-junctions (see Subsection
3.2). Finally, the surface is rendered using hardware
tessellation as shown in Subsection 3.3. In Subsection
3.4, we introduce a variant of patch tessellation eva-
luation to guarantee watertightness between adjacent
patches. Finally, we propose a view-dependent LOD
scheme in order to optimize for rendering quality and
runtime performance (see Subsection 3.5).

3.1 Subdivision Table Generation and Parallel
Subdivision

In order to apply the subdivision rules, we pre-
compute subdivision tables, similar to Nießner et al.[8]

The tables encode topological information which is re-
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Fig.4. Framework overview of our proposed feature-adaptive rendering algorithm.

quired to evaluate edge and vertex points efficiently
using a GPU compute kernel. In contrast to global
refinement approaches (e.g., Shiue’s algorithm[10]), we
only subdivide adaptively around features. Hence, the
amount of triangles generated near extraordinary ver-
tices is only linear with respect to the subdivision level
(rather than the exponential). This reduces memory
storage and bandwidth significantly, thus enabling a
faster surface evaluation. Since the topology of the con-
trol mesh is typically static during animation, modeling
and rendering, the subdivision tables can be efficiently
pre-computed on the CPU.

Once tables are generated, the GPU kernels em-
ploy the encoded subdivision rules in order to efficiently
compute edge and vertex points of the next correspond-
ing subdivision level. There are two types of kernels,
which are executed for each subdivision level: edge
point kernels and vertex point kernels. The edge point
kernel requires an index buffer containing four indices
per edge, referring to vertices of the two adjacent trian-
gles. The vertex point kernel takes an index buffer with
indices referring to all 1-ring neighbors for each vertex,
as well as a vertex valence buffer. Note that we assign a
single thread for each output vertex per kernel with all
threads running in parallel. An example of subdivision
tables for a pyramid control mesh is shown in Fig.5.
If a patch contains sharp edges, we additionally store
corresponding sharpness values. The subdivision tables
also encode hierarchical surface edits.

3.2 Patch Reconstruction

After adaptive subdivision around irregularities, we
end up with a nested set of regular patches. We ren-
der these patches with the GPU hardware tessellation
unit where each patch is defined by 12 control points[7]

(see Fig.6(a)). While the evaluation of regular patches
is straightforward due to their box spline definition,
we must eliminate potential T-junctions between adja-
cent patches of different subdivision levels. In contrast
to the quad-based patching structure of Catmull-Clark
surfaces, our approach must handle triangular Loop

patches. To this end, two types of patches are defined:
plain patches and non-plain patches. Our adaptive sub-
division procedure ensures that two adjacent patches
belong to either the same or the successive subdivision
levels.

Fig.5. Example of partial subdivision tables for a pyramid-shaped

control mesh. Vertex points are marked in green and edge points

in yellow.

3.2.1 Plain Patches

A plain patch has only neighbors of the same or the
next coarser subdivision level (but no neighbors of the
finer level). We further classify plain patches into regu-
lar plain patches (RPPs) and irregular plain patches
(IPPs), as shown in Fig.7. RPPs in each level will be
directly rendered with the GPU tessellation unit, while
IPPs will be refined in parallel until the maximum sub-
division level. Only IPPs of the maximum level will
be rendered. These are directly rendered as triangles
without further tessellation, i.e., the tess factor (short
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for tessellation factor) is set to 1.0. For further details,
see Subsection 3.3.

Fig.6. (a) A regular patch (yellow) with its 12 control points.

(b) 10 control points involved in evaluating the shared edge of

adjacent patches A and B. (c) An illustration of watertightness

between two adjacent patches in different levels of subdivision.

Fig.7. Patching for different subdivision levels: regular plain

patches (RPPs) are marked in yellow, irregular plain patches

(IPPs) in blue, and non-plain patches (NPPs) in pink. (a)

Depth=0. (b) Depth= 1. (c) Depth=2.

3.2.2 Non-Plain Patches

Non-plain patches (NPPs) have at least one neigh-
bor of the next finer subdivision level. By definition, all
NPPs are regular (see above). The goal is to eliminate
T-junctions between NPPs and neighboring patches of
finer levels. A simple solution would be to adopt power-
of-two tessellation factors in order to align tessellation
points between different subdivision levels. However,
that would severely limit level-of-detail possibilities. In
order to allow for arbitrary edge tessellation factors,
we split NPPs into sub-patches according to the con-
figuration of its adjacent patches, as shown in Fig.8.
Each sub-patch will share the same control net with
its parent NPP. However, parametric sub-domains are
different. This splits edges on patch boundaries of dif-

ferent subdivision levels and allows for the assignment
of matching tessellation factors to shared edges. Thus,
we are able to eliminate all T-junctions while not re-
stricting edge tessellation factors.

Fig.8. Three possible patterns to split an NPP into sub-patches:

NPPs are marked in pink, patches of the current level in blue,

and patches of the finer level in green. Note that we can apply

different tessellation strategies for the sub-domains based on the

triangulation patterns of the hardware tessellator (e.g., integer,

fraction.).

3.3 Patch Rendering via Hardware
Tessellation

The sampling density of the final rendered mesh is
controlled by two tessellation parameters, i.e., a global
tessellation factor g tessfactor and a maximum adap-
tive subdivision depth g depth. Since IPPs cannot be
evaluated directly, g depth sets the tessellation density
at features such as extraordinary vertices. In order to
obtain an even mesh tessellation, g depth must corre-
spond to g tessfactor, i.e., g depth = dlog2 g tessfactore,
where dxe is the smallest integer not smaller than x.
Let tessfactor i be the tessellation factor on subdivi-
sion level i, with tessfactor i+1 = 0.5 × tessfactor i and
tessfactor0 = g tessfactor . For a given g tessfactor , we
then perform g depth = dlog2 g tessfactore refinement
steps, thus enforcing tessfactorg depth = 1.0. Hence,
IPPs at the maximum subdivision level are only evalu-
ated at corner points, allowing for accurate evaluation
by applying the subdivision limit stencils[24]. Resulting
IPP limit points are then simply rendered as standard
triangles.

In order to evaluate regular patches (RPPs and
NPPs), we adopt Stam’s formulae[7]. That is, we use
the implicit quartic box spline representation which al-
lows for direct patch evaluation at arbitrary domain
locations. Thus, regular patches can be efficiently pro-
cessed by the GPU hardware tessellation unit, conse-
quently, achieving high frame rates for surface render-
ing. We would also like to point out alternative evalua-
tion strategies for regular patches[18,27].

3.4 Watertightness

In Subsection 3.2, we introduced a patching algo-
rithm that enforces sampling points on shared edges to
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match on corresponding parameter locations. Thus, T-
junctions between different subdivision levels are elimi-
nated. In theory, that prevents cracks due to the un-
derlying mathematical surface definition. However, in
practice, floating point imprecisions may cause incon-
sistencies along patch boundaries. In particular, when
adding surface displacements, mismatching surface nor-
mals cause problematic rendering artifacts. We now ex-
tend our algorithm, in order to overcome floating point
limitations, and provide for bitwise matching vertex
and normal evaluations along shared edges. We refer
to this as watertight surface evaluation.

Following Nießner et al.[8], the key idea is to refor-
mulate surface evaluations as reversal-invariant. That
is, evaluations along a shared edge with domains u and
1− u, respectively, must be identical. Therefore, float-
ing point operations need to be commutative, which
can be ensured by enabling IEEE floating point strict-
ness when compiling shader programs. In the following,
we first present a watertight evaluation procedure for
patches that share the same subdivision level. We then
introduce a method that handles patches with shared
edges belonging to different subdivision levels.

3.4.1 Same Subdivision Level

In order to ensure watertight patch evaluation,
we must guarantee bitwise-identical vertex positions,
partial derivatives, and surface normal along shared
boundaries. As described earlier, we evaluate regular
patches employing the quartic box spline definition:

S(u, v) = STS(u, v), (u, v) ∈ Ω ,

∂S

∂u
(u, v) = P T dS

du
(u, v),

∂S

∂v
(u, v) = P T dS

dv
(u, v),

where P are the 12 control points of the quartic box
spline patch S(u, v) as shown in Fig.6(a), and S(u, v)
denotes 12 basis functions. The parameter domain is
a “unit triangle” defined as Ω = {(u, v)|u ∈ [0, 1], v ∈
[0, 1− u]}.

Cracks may occur along the shared boundary curve
between two adjacent patches or at the shared cor-
ner, where the adjacent patches are evaluated indepen-
dently. We differentiate between the boundary case and
the corner case.

Boundary Case. Let A and B be the two adjacent
patches, as shown in Fig.6(b). Without loss of genera-
lity, the shared boundary curves are the parameter line
u = 0 for both A and B. However, their parametric di-
rections v are opposite. To resolve this crack problem,
a bitwise-identical evaluation approach is designed by
employing the symmetry of basis functions B(u, v)[7]

and the commutativity of floating point addition and
multiplication. Thus, the shared boundaries of A and
B are evaluated independently as follows:

SA(0, v) =
11∑

i=2

pA
i × bi(0, v),

SB(0, v) =
11∑

i=2

pB
i × bi(0, v),

where {pA
i } and {pB

i } are the control points of the
patches A and B, respectively, and bi(u, v) is the i-
th basis function of the quartic box spline. Note that
b0(0, v) and b1(0, v) are both zero along the boundary
curve. This leaves us with

SX(0, v) = pX
2 b2(0, v) + pX

3 b3(0, v) + pX
4 b4(0, v)+

pX
5 b5(0, v) + pX

6 b6(0, v) + pX
7 b7(0, v)+

pX
8 b8(0, v) + pX

9 b9(0, v) + pX
10b10(0, v)+

pX
11b11(0, v),

X = A,B.

Due to the symmetry of the basis functions, we
obtain bi(0, v) = b13−i(0, 1 − v), and pB

i = pA
13−i,

i = 2, 3, . . . , 11. In order to enforce bitwise-identical
results, we reformulate the evaluation order:

S(0, v) = [[p2b2(0, v) + p11b11(0, v)]+

[p3b3(0, v) + p10b10(0, v)]] + [[p4b4(0, v)+

p9b9(0, v)] + [p5b5(0, v) + p8b8(0, v)]]+

[p6b6(0, v) + p7b7(0, v)].

Consequently, SA(0, v) = SB(0, 1 − v), irrespective of
the evaluation directly. Partial derivatives are pro-
cessed similarly.

Bitwise-consistent normal evaluation along shared
edges extends to three different edge configurations:

N(u, v) =





∂S

∂u
(u, v)× ∂S

∂v
(u, v), if u = 0,

∂S

∂v
(u, v)× ∂S

∂w
(u, v), if v = 0,

∂S

∂w
(u, v)× ∂S

∂u
(u, v), if 1− u− v = 0.

Corner Case. A corner vertex (u = 1, or v = 1, or
u = v = 0) is evaluated according to its 1-ring neighbor
vertices[24]. In order to achieve bitwise-identical corner
evaluations, we enforce a consistent evaluation order.
For each extraordinary vertex, we pick the neighbor
with the smallest vertex ID. We then sum contributing
terms of the linear combination of the limit stencils[23]

by starting with term corresponding to the chosen ver-
tex. Since this information is shared among all adjacent
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patches, we obtain the same evaluation order and thus
bitwise-exact matches.

3.4.2 Different Subdivision Levels

Special attention must be paid to handle shared
edges whose adjacent patches belong to different subdi-
vision levels. As shown in Fig.6(c), B0 and B1 are child
patches of B of the next finer level. A0 and A1 are two
sub-patches of A (same subdivision level), as described
in Subsections 3.2. The sample points on the shared
edge of B0 and A may not be bitwise-identical (the in-
put control points are different), therefore we evaluate
these patches with the (exact same) control points of A
and B0. Therefore, when evaluating B0, we use the 12
control points of B0 for the interior and the 10 control
points of A for boundary curve of B0 (these belong to
the coarser subdivision level). Note that B is irregular;
thus, we cannot use its own control points. As a result,
the boundary curves on B0 and A are both evaluated
with the same control points of A. When following the
same evaluation rules as introduced in Subsection 3.4.1,
the rendered surface is watertight.

While watertight surface evaluation provides high-
quality tessellation results, it introduces code branch-
ing and requires additional adjacency information. This
leads to an increase of render time as discussed in Sub-
section 4.6.

3.5 View-Dependent Level-of-Detail
Rendering

As introduced in Subsection 3.3, g tessfactor is
set in order to specify the tessellation density. The
maximum subdivision level g depth follows accordingly:
dlog2 g tessfactore. Similar to the view-dependent ren-
dering by Nießner et al.[8], we introduce a level-of-detail
scheme for Loop subdivision surfaces.

Adaptive Tessellation Factors. We determine tess
factors on-the-fly by employing different metrics for
adaptive surface tessellations[28]. One way is to as-
sign a global g tessfactor for the entire surface. As
the implemented result in Fig.9 shows, we simply use
the model’s centroid and set g tessfactor according to
the distance to the camera. Alternatively, we compute
local tess factors, based on screen space edge length
measures. That is, we assign separate tess factors to
each patch edge, thus allowing for optimal tessellations.
Note that in this way, shared edges receive matching
tess factors, which is a necessity for crack-free surface
rendering. While this provides good results in practice,
more elaborate LOD metrics are feasible at the cost of
additional computations[29].

Fig.9. Level-of-detail rendering: colors identify different subdivi-

sion levels as stated in the top left corner.

Adaptive Maximum Subdivision Depth. By de-
fault, the maximum subdivision depth is set to
dlog2 g tessfactore. However, when enabling adaptive
tessellation, we also dynamically determine the subdi-
vision depth. In order to prevent irregular patches at
the finest level from having tess factors greater than 1.0,
we enforce g tessfactor to be smaller than or equal to
2g depth . Since we can easily compute a good estimate
for g depth, this imposes no limitations.

4 Results and Applications

We have implemented our approach using Direct-
Compute for the GPU subdivision kernels and Direct3D
11② to access the hardware tessellator. All GPU code
is written in HLSL. For our experiments, we use a
PC with a 2.80GHz Intel Core i5-2300 CPU and an
NVIDIA GeForce GTX 570 GPU running Windows 7.

In this section we show examples and results of our
approach of handling features of Loop subdivision sur-
faces, such as semi-sharp creases, displacement map-
ping, and hierarchical editing. Extraordinary vertices
are also considered to be features since adjacent patches
cannot be directly evaluated. Rendering results gene-
rated by our algorithm are shown in Fig.10. Corre-
sponding performance measurements are listed in Ta-
ble 2. All timings are provided in milliseconds and ac-
count for all runtime overhead, including GPU subdi-
visions with compute shader and final rendering with
the hardware tessellator. Memory requirements for our
test models are shown in Fig.11(a).

②http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx, Sept. 2014.
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Fig.10. Rendering the true loop subdivision surface with our method. (a) Color table indicating the different subdivision levels. (b)

Tree. (c) Pig. (d) Monster Frog. (e) Big Guy. (f) Duck. In these examples, we use a global tess factor of 32.

Table 2. Rendering Performance for Our Test Models

Using Different Tessellation Densities

Model Number of Tessellation Subdivision Performance

Triangles (k) Factor Depth (ms)

Tree 0.5 1 0 0.01

2 1 0.12

4 2 0.22

8 3 0.40

16 4 1.00

32 5 3.59

Pig 1.2 1 0 0.03

2 1 0.12

4 2 0.24

8 3 0.45

16 4 1.08

32 5 3.45

MF 1.2 1 0 0.03

2 1 0.16

4 2 0.33

8 3 0.71

16 4 2.13

32 5 8.19

BG 2.9 1 0 0.04

2 1 0.17

4 2 0.33

8 3 0.73

16 4 2.11

32 5 8.15

Duck 4.2 1 0 0.05

2 1 0.22

4 2 0.66

8 3 1.39

16 4 3.61

32 5 12.66

Note: The adaptive subdivision depth corresponds
to the respective tessellation factors (i.e., g depth =
dlog2 g tessfactore). MF: Monster Frog, BG: Big Guy.

We also list the number for IPPs, RPPs, and NPPs
in Table 3. The amount of sub-patches can be deduced
from the number of irregular vertices and the subdivi-
sion depth. Note that since we only adaptively subdi-
vide, patch growth is linear rather than exponential.

Fig.11. (a) Memory consumption without watertight rendering.

(b) Memory consumption with watertight rendering.

4.1 Semi-Sharp Creases

Our algorithm efficiently handles semi-sharp crea-
ses, which are widely used in character modeling
applications[25]. Therefore, the subdivision tables en-
code additional sharpness attributes. These are used
by the subdivision kernels to apply the sharp subdi-
vision rules[24] if necessary. Examples of models with
semi-sharp creases of varying sharpness parameters are
shown in Fig.12.

Fig.12. (a) Input control mesh with semi-sharp creases marked

in red. (b) Semi-sharp edges are assigned a sharpness of 3.5. (c)

Semi-sharp edges are assigned a sharpness of 10.
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Table 3. Patch Count by Sub-Patch Types for Our

Test Models Big Guy (BG) and Monster

Frog (MF) at Each Subdivision Level

Model Sub-Path Tessellation Subdivision Patch

Type Factor Depth Count (k)

BG IPP 1 0 1.2

2 1 1.8

4 2 1.8

8 3 1.8

16 4 1.8

32 5 1.8

RPP 1 0 1.1

2 1 3.0

4 2 6.7

8 3 10.0

16 4 14.0

32 5 17.0

NPP 1 0 0.5

2 1 1.7

4 2 3.6

8 3 5.4

16 4 7.3

32 5 9.2

MF IPP 1 0 1.4

2 1 2.0

4 2 2.0

8 3 2.0

16 4 2.0

32 5 2.0

RPP 1 0 0.6

2 1 2.9

4 2 6.9

8 3 11.0

16 4 15.0

32 5 19.0

NPP 1 0 0.4

2 1 1.9

4 2 3.9

8 3 5.9

16 4 7.9

32 5 9.9

4.2 Displacement Mapping

Displacement mapping[21-22] is an efficient technique
to add fine-scale geometric detail to a coarse base sur-
face. In particular, scalar-valued displacements are
widely used in order to minimize storage and memory
bandwidth. We apply displacements to a Loop subdivi-
sion surface, which can be efficiently rendered using our
feature-adaptive approach. Fig.13 shows an example of
the displaced Monster Frog model.

4.3 Hierarchical Editing

Hierarchical surface edits[26] are used to add local
surface detail by modifying vertex positions on specific

subdivision levels. Our approach can efficiently handle
hierarchical edits by adaptive subdivision. That is, we
tag vertices with hierarchical edits as irregular and en-
code the edits in the subdivision tables. An example
with hierarchical surface edits is shown in Fig.14. Note
that once the locations of edits are specified, we can
dynamically change their values at runtime.

Fig.13. Applying displacement mapping using our algorithm on

the Monster Frog model.

Fig.14. Test model with hierarchical surface edits rendered with

our approach.

4.4 Comparison with Global Refinement
Approaches

Global refinement methods have been proposed be-
fore the introduction of the GPU hardware tessella-
tor. These approaches require mesh vertices to be
streamed to and from multiprocessors every subdivi-
sion step, thus causing a large amount of memory I/O.
Our method avoids this limitation, by only subdivid-
ing a minimal amount of patches and evaluating the
vast majority of patches with the hardware tessellation
on-chip.

We compare our approach (w/ and w/o waterti-
ghtness) to two global refinement approaches. One is a
DirectCompute version of Shiue’s method[10]; the other
is a straightforward global refinement method based
on subdivision tables (see Subsection 3.1). Note that
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Shiue’s method requires one level of pre-refinement. As
shown in Figs. 15 and 16, our method (without water-
tightness) is over 3 times faster and consumes 80% less
memory than Shiue’s algorithm, and is 1.3 times faster
and consumes 50% less memory than the straightfor-
ward approach.

Fig.15. Rendering time for Shiue’s method, the straightforward

method, and ours without and with watertightness (WT). (a) Big

Guy model. (b) Monster Frog model.

Fig.16. Comparisons of GPU memory requirement between

Shiue’s method, the straightforward global refinement method,

and ours without and with watertightness (WT). (a) Big Guy

model. (b) Monster Frog model.

4.5 Comparisons with Approximate Patching
and Stam Evaluation

As mentioned in Section 2, approximate patching
algorithms can be used to adopt hardware tessellation
in order to render subdivision surfaces. They achieve
high render performance, however, at the cost of ren-

dering quality. First, we compare our method against
Li’s, as shown in Fig.17. While our method renders the
globally smooth Loop limit surface, the approximation
introduces surface discontinuities, which cause clearly
visible rendering artifacts.

Fig.17. Qualitative comparison between (a) Li’s approximate

patching algorithm and (b) ours on the Head model.

Since Stam’s algorithm requires extraordinary ver-
tices to be isolated, one level of pre-refinements must
be applied. Note that our approach does not have this
limitation. Further, a GPU implementation of Stam’s
algorithm involves a significant amount of floating point
operations and code branching, which affects the overall
render performance. Fig.18 shows a comparison among
our method, Li’s and Stam evaluation. Our algorithm
is the most efficient. It is even faster than the approxi-
mate method by Li. We attribute this to additional
patch setup costs of Li’s algorithm that particularly
slow down hull shader execution.

Fig.18. Rendering comparisons among Stam evaluation, Li’s

method, and ours. (a) Big Guy model. (b) Monster Frog model.

4.6 Watertight Rendering

In this subsection, we provide a comparison between
the watertight (see Subsection 3.4) and the default va-
riant of our method.
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In general, watertight evaluations consume more
memory, since adjacency information is required. Eva-
luations are also more expensive since additional code
branching is introduced. In order to confirm bitwise
watertightness, we stream the tessellated geometry to
the CPU where we verify the results.

Rendering time and memory requirements of both
variants are shown in Fig.15 and Fig.11. Overall, the
watertight version of our algorithm is approximately
80% slower and consumes 50% more memory than the
native approach.

5 Conclusions

In this paper, we presented a novel approach to ac-
curately render Loop subdivision surfaces. Our algo-
rithm design fully exploits the power of modern GPUs,
thus achieving real-time frame rates. Since we only re-
fine patches at irregularities, memory consumption and
bandwidth is kept at a minimum. In contrast to many
other approaches, we do not require any pre-refinement,
meaning that our method can directly process triangu-
lar meshes of arbitrary connectivity. In addition, we
presented a (bitwise) watertight evaluation approach,
allowing for crack-free rendering even with displace-
ments. We also efficiently handle Loop subdivision fea-
tures, e.g., semi-sharp creases and hierarchical edits.
To conclude, results show that our algorithm facilitates
both time- and memory-efficient rendering. This makes
our method ideally suited to real-time applications such
as video games and interactive authoring tools.
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