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Abstract

The simulation of the light flux density distribution on a receiver plays an impor-
tant role in energy estimation, design and optimization of a heliostat field and
the focusing strategy for a central receiver system (CRS). However, this simula-
tion is a time-consuming procedure. In this paper, we propose a fast simulation
method that fully exploits the tremendous rendering and parallel computing ca-
pacities of contemporary graphics processing units (GPUs). First, an auxiliary
spatial data structure is employed to organize the heliostats in the field, and a
parallel light beam traversal algorithm is designed and performed on the GPU
to determine the shadowing and blocking heliostats for each reference heliostat.
Then, the flux spot reflected by each heliostat on the receiver is computed us-
ing the HFLCAL model and accumulated for the final flux density distribution.
Both the computing stage and accumulation stage are accomplished via GPU
rendering pipeline. The proposed method is verified by taking the PS10 power
plant as an example. Because this method considers both shadowing and block-
ing effects, the simulation results are consistent with those in the official report.
Due to its high efficiency, the proposed method has potential applications in
CRS design and optimization.

Keywords: Flux Distribution Simulation, Central Receiver System, Heliostat
Field, Rendering Pipeline, DirectCompute, GPGPU

1. Introduction

Solar thermal power plants with central receiver systems (CRSs) (Vant-Hull
and Hildebrandt, 1976) are attracting increasing attention from both the aca-
demic and industrial communities. In this system, hundreds or thousands of
heliostats reflect sunlight and focus this sunlight onto the receiver to heat a
working medium in order to generate electricity. When designing a CRS, many
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stages and factors influence the electrical generation efficiency. Among these
factors, the simulation of the flux distribution on the receiver surface is a fun-
damental problem (Biggs and Vittitoe, 1976).

There are two main types of flux distribution simulation methods, i.e., the
ray tracing approach and the analytical approach. Based on these methods,
many practical simulation tools have been developed and released, including
SolTrace by NREL (Wendelin, 2003), STRAL by DLR (German Aerospace Cen-
ter) (Belhomme et al., 2009), and TieSOL by Tietronix (Izygon et al., 2011).
Among these methods, accuracy and efficiency are always contradictory. The
ray tracing approach computes the flux distribution on a receiver by tracing
millions of rays or more between the heliostat field and receiver. Obviously, its
computational complexity is very high. The analytical approach efficiently eval-
uates the flux using an empirical analytical formula. Shadowing and blocking
effects are difficult to fully take into account, which is one of the reasons that
the analytical approach is less accurate than the ray tracing approach.

In this paper, a fast and accurate analytical simulation approach is proposed,
that considers both shadowing and blocking effects. The main idea is to convert
the computation of the flux spot on the receiver surface contributed by each
heliostat into a rasterization procedure through rendering pipeline on graphics
processing units (GPUs), i.e., ”drawing” the flux spot on the receiver surface,
as shown in Figure 1. The flux accumulation is accomplished via the alpha
blending operation (Wallace, 1981) in the rendering pipeline. Furthermore, the
shadowing and blocking effects are processed in parallel on the GPU. As a
result, the proposed method can accurately simulate the flux density of a field
containing hundreds of heliostats within dozens of milliseconds.
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Figure 1: The flux simulation is performed as a graphics rendering procedure: (a) the receiver
surface is treated as the rendering target, and (b) the flux density distribution on the receiver
surface cast by the parabolic heliostat H2 is shown, where the flux at the corner is eliminated
due to shadowing and blocking effects caused by H3 and H1, respectively.

The rest of the paper is organized as follows: The related work is briefly
introduced in Section 2. Some relevant preliminary knowledge is presented in
Section 3. The proposed fast flux density distribution simulation method using a
GPU is described in detail in Section 4. Validation, experiments and discussion
are given in Section 5. Finally, in Section 6, the conclusions are drawn, and
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future work is proposed.

2. Related Work

2.1. Simulation of Flux Distribution on the Receiver

Basically, two types of flux distribution simulation methods exist: the ray
tracing method and the analytical method. Instead of simulation, the flux map-
ping method measures the flux distribution on the receiver directly; this method
is based on the measurement equipment and the image processing techniques.
Garcia et al. (2008) gave a detailed comparison between the ray tracing ap-
proach and the analytical approach and also provided an overview of relevant
simulation tools. Bode and Gauche (2012), from the South African Solar Ther-
mal Energy Research Institute, gave another survey emphasizing the progress
of the simulation tools.

Ray Tracing Method Ray tracing is an image synthesis algorithm in
computer graphics that simulates the light reflection, refraction and scatter-
ing among a light source, objects, and a viewer (Glassner, 1989). This method
can naturally take shadowing and blocking effects into account for the flux
simulation on the receiver and can be further classified into three categories
according to where the rays are generated: the forward ray tracing method, the
bidirectional ray tracing method, and the reverse ray tracing method.

Wendelin (2003) developed a forward ray tracing simulation tool based on
Monte Carlo method named SolTrace. This tool is capable of modeling general
geometries of optical systems with the normal distribution captured via the
Video Scanning Hartmann Test (VSHOT). However, as the author indicated,
the simulation speed needs to be improved.

Belhomme et al. (2009) generated the rays directly on the reflective surface of
the heliostat and accelerated the bidirectional ray tracing process by exploiting
SIMD architecture on a multi-core CPU. Later, they achieved ray tracing speed
of more than 60 million rays per second on an 8 core PC(Ahlbrink et al., 2012).
It is worth mentioning that they employed two methods to model the surface
errors of a heliostat mirror, i.e., the common statistical approach based on the
Gaussian distribution of surface normal vectors (Belhomme et al., 2009), and
the approach using measured surface normal vectors of high resolution (Ulmer
et al., 2011). Izygon et al. (2011) achieved state-of-the-art ray tracing simulation
speed by taking advantage of the parallel computing capacities of contemporary
GPUs. Tracing 100 million rays took approximately 887 ms using 3 GTX 570
GPUs.

In the reverse ray tracing method (Chiesi et al., 2013; Pancotti, 2007), rays
are emitted from the receiver surface rather than the energy source. They are
traced from the receiver to the heliostat and finally to the sun. The flux density
is obtained by integrating over the corresponding area of the sun model, which
is modeled as a Lambertian surface. Chiesi et al. (2013) achieved 52 times faster
speed with heterogeneous systems (8 CPUs and two NVIDIA GTX 570 and one
GTX 480 graphics cards) compared to multi-core CPUs.
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Analytical Method In a mathematical sense, the analytical method is the
convolution of the sun brightness profile with the reflective surface slope errors
(Dellin, 1979; Walzel et al., 1977). An analytical solution to this problem is not
known so far; instead, numerical approximation approaches (Biggs and Vitti-
toe, 1976; Vittitoe and Biggs, 1981) have been proposed. The HFLCAL model
is a simplification of the convolution approach, and was initially designed to
model the flux distribution on the receiver surface with a circular normal dis-
tribution (Schwarzbözl et al., 2009). Many researchers have used this model for
comparisons with measured data (Collado, 2010) and heliostat aiming strategies
(Besarati and Goswami, 2014; Salomé et al., 2013).

Garćıa et al. (2015) revised the HFLCAL model by modeling the flux distri-
bution on the heliostat reflecting surface rather than on the receiver and then
mapping the two-dimensional Gaussian distribution to the receiver through ho-
mography transformation (Garćıa et al., 2015). As a result, the revised model
gives a more precise representation of the actual flux spot on the receiver.Huang
and Xu (2014) employed the Gauss-Legendre integration method to calculate
the intercept factor of each heliostat on the receiver surface, thus obtaining a
coarse numerical estimation of the received energy.

Flux Mapping Method The flux mapping method is not a simulation
method but is instead a measurement method. First, it calibrates the photo-
graphic image data of the receiver surface and then establishes a look-up table
between the pixel value of the image and the flux intensity. Finally, it obtains
the flux distribution map on the receiver panel. This method can be further
classified into two types, namely, the direct measurement based method (Black-
mon, 1985) and the indirect evaluation based method (Saade et al., 2014; Ulmer
et al., 2002). The coverage range and precision are two problems of these meth-
ods (Ho and Khalsa, 2012). Obviously, the flux mapping method is not suitable
for energy forecasting because it requires an online image capture of the receiver
surface.

2.2. Shadowing and Blocking Effects

In a heliostat field, the shadowing effect refers to the incoming sunlight
occluded by adjacent heliostats, while the blocking effect refers to reflected sun-
light that is lost on the way to the receiver, as shown in Figure 1(b). These are
important factors for precisely evaluating the flux distribution on the receiver,
especially for a large-scale heliostat field. In the past few decades, many elabo-
rate methods have been proposed to accelerate the processing of these effects.

Belhomme et al. (2009) employed a hierarchical spatial structure and the
separating axis theorem (SAT) to organize the heliostats, thus accelerating the
shadowing and blocking heliostat identification. As a simple solution, Izygon
et al. (2011) suggested keeping two lists of potential shadowing and blocking
heliostats for each heliostat. Each list has a fixed number of heliostats, which
are identified from the neighboring heliostats. Obviously, the estimation is not
accurate, especially when the sun angle is small, i.e., during early morning or
late afternoon. Based on the observation that a heliostat will not cast a shadow
to those heliostats ahead of it relative to the sun, Besarati and Goswami (2014)
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proposed partitioning the neighbors of the current heliostat into two parts and
considering only the front part in relation to the sun or the receiver. Obviously,
this is still a conservative estimation that takes many irrelevant heliostats into
account.

From the perspective of computer graphics, both the shadowing effect and
the blocking effect can be regarded as a hidden surface removal problem (Suther-
land et al., 1974), which has been a fundamental but well-investigated problem
in computer graphics over the past few decades, e.g., in the hierarchical z-buffer
algorithm (Greene et al., 1993). The idea of decreasing computational com-
plexity is to exploit spatial coherence in the scene. Accordingly, there are two
main spatial partition approaches: the adaptive approach represented by octree
(Glassner, 1984) and the uniform grid partition (Fujimoto et al., 1986). The
former is top-down, which suits scenes where the objects are irregularly dis-
tributed. Conversely, the latter suits scenes in which the objects are uniformly
distributed. The accompanying ray traversal algorithm was elaborately designed
to efficiently find potential hitting objects (Amanatides and Woo, 1987).

2.3. Atmospheric Attenuation Model

Some empirical atmospheric attenuation models have been proposed that
describe energy attenuation travelling from each heliostat to the receiver. The
model proposed by Leary et al. (1979) is adopted in our method:

ηaa =

{
0.99331− 0.0001176 ∗ d+ 1.97 ∗ 10−8 ∗ d2 d ≤ 1000m

exp(−0.0001106 ∗ d) d ≥ 1000m
(1)

where d is measured in meters. Noone et al. (2012) noted that the difference
among atmospheric attenuation models is small and not as sensitive as other
effects, e.g., shadowing effect, blocking effect, cosine loss and spillage loss. If
possible, we strongly recommend that the local atmospheric attenuation model
regressed by measured data be adopted.

3. Preliminary Knowledge

In this section, we briefly introduce some preliminary knowledge underlying
our modeling.

3.1. The Coordinate Systems

In the proposed simulation, three Cartesian coordinate systems are defined
to describe a CRS hierarchically. The global coordinate system XYZ is used for
the heliostat field, the local heliostat coordinate system UNV for each heliostat,
and the local planar coordinate system {SiTi} (i=0,1,2,...n-1, where n is the
panel count of the receiver surface) for the receiver surface, as shown in Figure 2.
All the coordinate systems are left-handed to match the Direct3D’s convention
(Coordinate Systems (Direct3D)).
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Figure 2: Three coordinate systems: (a) global coordinate system for the heliostat field, (b)
local coordinate system for each heliostat and (c) local coordinate system for the receiver
panel.

3.2. Energy Model

The revised HFLCAL model (Garćıa et al., 2015) is adopted in our method
to describe the flux spot reflected by each heliostat. The flux density on the
receiver surface is modelled in two steps.

First, a circular Gaussian distribution is used to model the flux density in
w/m2 at point P (u, v) on the heliostat, which is described in the heliostat local
coordinate system

F(u, v) =
Ph

2πσHF
2
e
− (u2+v2)

2σHF
2 (2)

where Ph is the total energy reflected by the heliostat. Ph is determined by
solar DNI (ID) at the moment,heliostat surface area (SH), heliostat reflectivity
(ρ) and heliostat surface cosine loss (cosw) as follows:

Ph = ID ∗ (SH ∗ cosw) ∗ ρ (3)

For a parabolic reflection surface, the cosine loss can be approximated by
taking the cosw value at the heliostat center. σHF is the effective deviation of
the Gaussian model, which approximates the flux spreading effect contributed
by four factors, i.e., the sun shape, the mirror slope error, the astigmatic error
and the tracking error (Besarati et al., 2014; Schwarzbözl et al., 2009).

Second, the two dimensional Gaussian distribution is projected to the re-
ceiver surface through homography transformation. Supposing the point P (u, v)
is mapped to P ′(s, t) of the receiver surface, the flux density F ′(s, t) at P ′ is
calculated as:

F ′(s, t) = F (u, v) ∗ ηaa ∗ Pabs (4)

where ηaa is the atmospheric attenuation effect, and Pabs is receiver surface
absorptivity factor. Pabs is assigned to be 0.9 according to Izygon et al. (2011).

3.3. Rendering Pipeline and DirectCompute on GPU

The rendering pipeline (Graphics Pipeline) refers to a sequence of procedures
used to create a 2D image representation of a 3D scene. Many algorithms are
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involved in achieving this goal, including the z-buffering algorithm and the alpha
blending algorithm and are currently implemented on special hardware, i.e.,
GPUs.

The z-buffering algorithm for hidden surface removal (Sutherland et al.,
1974) and the alpha blending operation (Wallace, 1981) for accumulation are
two hardware-supported procedures in rendering APIs, e.g., DirectX. They are
executed sequentially as follows: The value of a pixel is added to the accumu-
lation buffer via alpha blending if and only if it passes the depth test, which
means that it is closer to the viewpoint than the corresponding pixel in the
accumulation buffer. We exploit this mechanism to efficiently eliminate shad-
owing and blocking effects and simultaneously achieve energy accumulation for
all of the heliostats in a single rendering pass.

Initially, GPUs were designed as special-purpose hardware to efficiently
perform a graphics rendering pipeline. Gradually, they evolved to become a
general-purpose hardware (GPGPU) that performs not only graphics task but
also parallel computing tasks. DirectCompute (ComputeShader Overview) is an
application programming interface for parallel computing on GPUs. In our sim-
ulation, this technique is employed to detect shadowing and blocking heliostats
for each heliostat in parallel.

4. GPU-based Simulation of Flux Density Distribution on Receiver

The simulation process contains three steps, as shown in Figure 3. First,
for a given time, each heliostat is adjusted to redirect the incident sunlight
to the target according to various parameters, such as sun direction, heliostat
location, and target position. Second, uniform spatial grid encapsulating the he-
liostat field is built. A light beam traversal algorithm for spatial uniform grid is
designed and performed in parallel to efficiently detect the potential shadowing
and blocking heliostats for each heliostat. Finally, the flux spot on each panel
of the receiver surface contributed by each heliostat is obtained through raster-
ization and z-buffering algorithms, taking the shadowing and blocking effects
into account, and is then accumulated through the alpha blending operation.

Step 2
Potential shadowing and

blocking heliostat detection

DirectCompute Rendering Pipeline

Step 1
Heliostat aiming adjustment

Step 3
Flux density distribution

computation and accumulation

Figure 3: The three steps of the simulation process.

The first two steps are performed in parallel through DirectCompute on the
GPU, with one thread taking charge of one heliostat. The last step fully ex-
ploits the tremendous parallel computing capacities of GPU rendering pipeline.
The intermediate data transfer among different steps always resides in the GPU
structured buffer during the simulation process. Thus, data IO overhead be-
tween the CPU and GPU is avoided.
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4.1. Heliostat Aiming Adjustment

The purpose of the aiming adjustment is to track the sunlight so that the
heliostat always reflects the incident sunlight to the receiver target, which is
generally the center of receiving surface. In the initial state, the local coordinate
system UNV of each heliostat is consistent with the global coordinate system
XYZ other than a translation of their origins. In this paper, we will not address
the aiming strategy problem due to the length of the paper. Moreover, tracking
error can be easily added by imposing a normal disturbance on the theoretical
heliostat normal (Izygon et al., 2011).

Currently, there are two main types of sun tracking models, namely, spinning-
elevation type and azimuth-elevation type (Chen et al., 2004), which are suitable
for a moving target (e.g., parabolic dish) and a fixed target (e.g., CRS), respec-
tively. Therefore, the azimuth-elevation heliostat tracking model is adopted in
our simulation. Each heliostat has two degrees of freedom in this tracking model,
i.e., azimuth rotation and elevation rotation, as shown in Figure 4. Let U′N′V′

be the local heliostat coordinate system for a heliostat after adjustment.
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Figure 4: Rotations of a tracking heliostat: (a) initial state, (b) azimuth rotation, and (c)
elevation rotation.

The normal N′ of the adjusted heliostat can be deduced by the law of re-
flection using the following formula:

N′ =
s + r

‖s + r‖ (5)

where s and r are normalized vectors of incident light and reflection light re-
spectively, and s can be determined by the underlying geographical coordinates
and solar time (Duffie et al., 2013). Then, the axis U′ is determined by:

U′ = N′ ×N (6)

Finally the V′ axis is determined so that U′N′V′ forms a left-handed coor-
dinate system.

4.2. Detection of Shadow and Block

To accelerate detection, the spatial coherence of the heliostats in the field
should be exploited, which can be expressed via an auxiliary data structure,
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i.e., a uniform spatial grid. Further, a light beam traversal algorithm is de-
signed based on the uniform spatial grid structure, that can efficiently search
the potential shadowing and blocking heliostats in parallel on GPU. To pro-
cess the shadowing and blocking effects uniformly, each shadowing heliostat is
converted into an equivalent virtual blocking heliostat.

4.2.1. Uniform Spatial Grid Construction

A uniform spatial grid encapsulating the heliostat field is constructed offline
following two steps. First, an axis-aligned bounding box (AABB) is built for
each heliostat in the global coordinate system. The size of the AABB edge
equals the length of the heliostat diagonal, as shown in Figure 5(a). Thus, a
heliostat at any time will be contained within its conservative AABB. Second,
an axis-aligned bounding box for the heliostat field in the global coordinate
system is uniformly subdivided along the x- and z-directions. A uniform spatial
grid is generated, where the size of each grid cell is determined tactically, as
shown in Figure 5(b). The purpose of using an auxiliary data structure is to
exploit the spatial coherence of heliostats in the field. Each cell of the grid can
be regarded as a proxy or index of a heliostat. Thus, a grid cell that contains
a heliostat is theoretically better (few heliostats straddle the boundary of two
or more grid cells). For a uniformly distributed rectangular heliostat field, the
above assertion can be achieved straightforwardly. Otherwise, the grid cell’s
size will be empirically determined by the user. For example, in PS10, as shown
in Figure 6(a), which is a radially staggered distributed field, the dimensions of
the cells are set as the heliostat diagonal in our test. Under this condition, a
grid cell will be the index or proxy of several heliostats, whose AABBs intersect
with the cell.

HM

WM

H

One grid cell

H1
H2

H3

H4
H5MaxP

MinP
O X

Y Z

(a) (b)

1 2

3 4

Light Beam of Heliostat H4

z∆

x∆

Figure 5: The auxiliary grid data structure and modeling of the light beam received or reflected
by one heliostat: (a) axis-aligned bounding box (red) of a heliostat and (b) uniform spatial
grid of the heliostat field. The light beam of the heliostat is modeled as a parallelepiped.

Figure 6 shows two types of heliostat field layout and their uniform spatial
grid. One is the famous PS10 heliostat field. Because the heliostats are installed
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on a slope, the uniform grid consists of two layers along the vertical direction.
The other is a uniformly distributed rectangular field containing 1800 heliostats.

(b)(a)

(c) (d)

Figure 6: Two popular types of heliostat field layouts and their uniform spatial partition
grids, visualized in the form of wireframes: (a) PS10, a radially staggered distributed field,
(b) zoom-in of the PS10 field and the related grid cells, (c) a uniformly distributed rectangular
field, and (d) the spatial partition grid of the field.

4.2.2. Light Beam Traversal Algorithm

Inspired by the incremental grid traversal algorithm for ray tracing (known
as the 3DDDA Algorithm) (Amanatides and Woo, 1987; Fujimoto et al., 1986),
we develop a robust light beam traversal algorithm to search the grid cells
intersected by incident light beams or reflected light beams and then determine
the potential shadowing or blocking heliostats.
Fast Beam-Grid Cell Intersection Test. A light beam can be represented as
a parallelepiped consisting of five planes (the heliostat reflecting surface plus four
side planes), which encompass the volume translated by the heliostat surface
along light beam direction r to the infinity, as shown in Figure 5(b). Without
loss of generality, we assume that the face normals of the five planes point to
the inside of the light beam volume, as shown in Figure 7

Face Normal

p-vertex

Face of light beam

Grid Cell 2

p-vertex

Grid Cell 1 A B

CD

E F

GH Beam direction

N

Figure 7: The face normals of the five planes of the light beam point to the inside of the light
beam volume. The p-vertex of grid cell 1 is on the back side of one beam plane (ABFE), so
it will be rejected by the beam.

10



Inspired by the view frustum culling algorithm for bounding boxes (Assars-
son and Mller, 2000), the idea of the proposed fast beam-grid cell intersection
test is to reject the cells by each face of the light beam as early as possible,
where the light beam can be regarded as the view frustum. For each face plane
of the beam, a cell vertex is identified, namely, a p-vertex, the one vertex among
the eight vertices of the grid cell that has the greatest signed distance from the
considered plane. Then, the cell can be safely rejected by the beam if the p-
vertex is on the back side of the plane, such as Grid Cell 1 in Figure 7. If a
cell cannot be rejected by the five face planes of a beam, then the beam will
intersect with the cell. Because the beams are independent with each other,
the proposed beam-grid cell intersection algorithm is well adapted to the SIMD
architecture of GPU and can be implemented in parallel.
Beam Traversal in the Uniform Grid. A traversal algorithm is designed to
efficiently find the grid cells intersecting with a light beam, using the beam-grid
cell intersection test algorithm above. The basic idea of the algorithm is to scan
the grid cells layer by layer, then row by row, starting at the first cell where the
beam is emitted, as shown in Figure 8. If a heliostat crosses several grid cells,
the first cell along the counter light beam direction is chosen as the first one to
be scanned. The scanning for the current layer terminates if the intersected cells
are all surrounded by non-intersected cells along the beam’s heading direction,
as shown in Figure 8(g).

a b c

d e f

g

X +Y +

Z -

Figure 8: Illustration of light beam traversal algorithm in the uniform grid. The red and
yellow grid cells indicate intersecting and non-intersecting cells, respectively.

Beam-Heliostat Intersection Test. After the intersected grid cells are deter-
mined via the above beam traversal algorithm, the heliostats in the intersected
cells are checked to determine whether they are intersected by the light beam.
The intersection test is accomplished by checking the four corners of the helio-
stat against the five faces of the beam, which is similar to the beam-grid cell
intersection test above. If all the corners of the heliostat are on the backside
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of one beam face, the heliostat is separated from the beam. Otherwise, the
heliostat intersects the beam, which will cause a shadowing or blocking effect.

4.2.3. Implementation Details on GPU

To implement the beam grid traversal algorithm on GPU with DirectCom-
pute API, some data structures are elaborately designed, i.e., the uniform grid
cells containing heliostat partition information are first mapped to the GPU
memory. To this end, the parameters of the uniform grid structure, such as
cells’ dimensions, are packed and passed to the GPU through a constant buffer.
The heliostat index information of each cell is organized serially as a heliostat
index array. The index of each grid cell ends with -1. Another array keeps the
starting index of each cell in the heliostat index array in sequence. Addressing
the heliostat list information of a specific cell consists of two steps: first, fetching
the starting heliostat index location of the cell and second, reading the index
continuously in the heliostat index array until -1 is met. These two arrays can
be perfectly mapped to the GPU memory through structure buffers (Figure 9).

Cell 0 Cell 1

Cell 5 Cell 6 Cell 7 Cell 8 Cell 9

H0, H1 H2 H2,H3

Heliostat index
array

H4,H5

0 1 -1 2 -1 2 3 -1 -1 4 5 -1 …

0 3 5 8 9 …….

Cell 2 Cell 3 Cell 4

Cell 0 Cell 1 Cell 2 Cell 3 Cell 4

Heliostat starting
index array

Cell 0 Cell 1 Cell 2 Cell 4Cell 3

Spatial partition grid
and heliostats

Figure 9: The data of the uniform grid cells are organized contiguously and passed to the
GPU memory through structure buffers.

4.3. Shadow to Block

In general, the shadowing and blocking effects are processed separately in
the flux density distribution simulation. The net results of flux loss on the
receiver caused by shadowing effects or blocking effects are the same. That is
to say, we cannot distinguish between the two effects in the final result. This
observation means that the two effects can be processed uniformly by converting
the shadowing effect into an equivalent imaginary blocking effect, as shown in
Figure 10. In this way, the shadowing heliostats can be converted into blocking
heliostats so that the two flux loss effects can be processed uniformly. A blocking
or imaginary blocking heliostat is generally refer to as an occluder.

4.4. Flux Simulation

In this section, we will introduce the proposed flux simulation method based
on GPU rendering pipeline in detail. At the beginning, parameters of all of the
heliostats (i.e., position, orientation, geometry, reflectivity, etc.) are packed and
streamed into the rendering pipeline at the input-assembler stage. First, the
flux density distribution on the receiver surface contributed by each heliostat
is computed through a rasterization procedure based on the revised HFLCAL
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Figure 10: Conversion of shadowing heliostat H3 into imaginary blocking heliostat H3”. H3”
is obtained by offsetting the shadow silhouette along the reflective ray direction. The distance
between H2 and H3 equals that between H2 and H3”.

model. Then, all of the flux density distributions are accumulated through an
alpha-blending operation, and the blocking effects are eliminated through z-
buffering algorithm. The flux accumulation and blocking elimination process
for all of the heliostats are accomplished in a single rendering pass, which is
therefore extremely efficient.

4.4.1. Render Target Mapping

In our simulation, the receiver is regarded as the rendering target, i.e., a
frame buffer, and the flux spot is the synthesized image on the rendering tar-
get, where the pixel value is the flux density. Each pixel in the frame buffer
corresponds to a physical area on the receiver surface, and vice versa. If the
receiver contains several physical panels, each panel will correspond to a render-
ing target. The correspondence between each receiver panel and the rendering
target can be established using a 2D affine transformation. For example, if the
size of the receiving panel is w × h (m2), the resolution of the frame buffer can
be set as pw × ph. The unit of p is pixel width/m, representing the resolution
parameter from the receiver panel to the render target. In theory, the larger
p is, the higher the simulation accuracy is, and the more time the simulation
procedure needs.

4.4.2. Flux Density Distribution on the Receiver via Flux Mapping

If the receiver contains several panels, the following procedures will be per-
formed for each panel. The heliostat is projected onto the panel of the receiver
surface along reflection direction, as shown in Figure 11. Based on the projected
heliostat corners, a mapping between the projected heliostat and the heliostat
local coordinate system is deduced. Then, the flux density of each pixel on the
render target is calculated according to the process described in section 3.2.
This procedure is performed in parallel via pixel shader. We call this process
flux mapping.

If the heliostat has some occluders, these occluders should also be projected
onto the receiver panel. Intuitively, the projection areas on the receiver panel

13



Receiver

Heliostat

T

S

Occluder

Occluder

Reflected beam

Rendering frame buffer

Occluder

Occluder

Figure 11: The heliostat and its occluders are projected onto the receiver along the reflection
direction, and then assigned using the flux mapping procedure.

will receive no flux spot. However, the flux density on the receiver along the
silhouette of the blocked area should be smooth transition from lightness to
darkness , rather than sharp excisions, which is essentially due to the projection
of the sunshape. The problem can be solved by improving the energy model
and is out of the range of our problem. In our solution to the blocking effects,
the projection area of occluder is simply assigned as 0, i.e., no flux contribution.
Thus, this process and the following rasterization can also be implemented in
the rendering pipeline in parallel.

4.4.3. Streaming Data in the Rendering Pipeline

To achieve the flux accumulation and blocking effects elimination in one
rendering pass, the depth values of the projection of the occluders and heliostats
are elaborately assigned according to the following rules:

dp =

{
1.0− 2∗ID+2

2∗N+1 , the occluders of the heliostat indexed ID

1.0− 2∗ID+1
2∗N+1 the heliostat indexed ID

(7)

where N is the number of heliostats in the field, ID is the heliostat index
and 0 ≤ ID ≤ N − 1. In the z-buffering algorithm, the smaller the depth is,
the closer it is to the render target. Thus, in this setting, the occluders are
always in front of the corresponding heliostat. Furthermore, the heliostat and
its occluders are strictly organized in the pipeline as shown in Figure 12.

4.4.4. Block Elimination and Flux Accumulation

Blocking effect elimination and flux accumulation are realized using the z-
buffering and alpha blending functions in the rendering pipeline. First, the
depth map is initialized by assigning the maximum depth value of 1.0. The flux
spots and their occluders in terms of stream data are rendered to the frame
buffer, which successively undergo the depth test and alpha blending. Once
a fragment passes the depth test, its flux density value is directly added to
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Figure 12: Process of flux accumulation and blocking effects elimination regarding the steam-
ing data. The depth buffer keeps the closest depth value per pixel, while the frame buffer
records the accumulated flux density.

the frame buffer via alpha blending; otherwise, it will be discarded. In this
way, the fragment of flux spot in the blocking area are automatically eliminated
before accumulation. Since the flux density value of the occluders equals zero,
the frame buffer remains unchanged when they are accumulated to the frame
buffer. The evolution of the frame buffer and the attached depth buffer during
this process is illustrated in Figure 12. The frame buffer keeps the accumulating
result, while the depth map records the nearest depth value (the darker the map
is, the smaller the depth value is).

4.5. Total Energy

When the rendering procedure terminates, the accumulated flux density dis-
tribution on the receiver is obtained. Each pixel in the frame buffer represents
the solar energy density on the receiver surface in W/m2. The total flux on the
receiver surface can be computed through integration over the frame buffers.

Etotal =
∑

NP
Ei ∗ Spixel (8)

where NP is the number of pixels in all frame buffers and Spixel equals the
receiver surface area per pixel (m2/pixel).

5. Validation, Experiments and Discussions

5.1. Validation of Simulation Method for PS10

The proposed simulation method has been implemented on a desktop PC
with an Intel Core (TM) i5-3450 @3.10 GHz CPU and an NVIDIA GeForce
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GTX 670 GPU. The OS is Windows 10, and the graphics API is Direct3D
11.0. We tested the proposed method for PS10, which is a famous commercial
solar power tower plant that has some measured results published in an official
technical report (Osuna et al., 2004). We constructed the PS10 heliostat field,
receiver panels and its surrounding terrain via reverse engineering according to
the information in that technical report, where 624 curved heliostats of 121 m2

each are arranged with a radially staggered pattern, as shown in Figure 6(a).
The PS10 has a cavity receiver consisting of four panels (Figure 2(c)). Each

panel is 5.36 m × 12.0 m. These panels are arranged in a semi-cylinder with a
radius of 7.0 m. All of the heliostats aim at the center of the aperture, which is
approximately 100.5 m above the ground.

The simulation was performed using the revised HFLCAL model and the
atmospheric attenuation model in Equation 1. The HFLCAL model is perfectly
suitable for PS10 because the heliostat in PS10 has a parabolic reflecting sur-
face. σHF in Equation 2 was set as 1.80 according to our experiments. Other
environmental parameters such DNI and the sunlight direction were specified
according to the technical report.

Figure 13 shows the graphical comparison between our flux simulation results
and the official results in the technical report at two times. The numerical
comparison among the official data, the results by Chiesi et al. (2013) and our
results is given in Table 1. These results show that the proposed simulation is
very consistent with the ground truth. Furthermore, the simulation time for
the PS10 heliostat field with the resolution parameter of p=40 pixels width/m
is approximately 39.2 milliseconds. The energy loss due to the shadowing and
blocking effects at 12:00 on March 21st is 565 kW, accounting for as much as
one percent of the total energy received.

12:00  21-March 16:00  21-June

Figure 13: Graphical comparisons between the simulated flux density distribution (bottom)
and the official result (top) for two specific times.
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Table 1: Numerical comparison among the official results, the results from Chiesi et al. (2013)
and our simulation results.

Time

Net Power(kW ) Data
Official data Chiesi M. et al. (2013) Our results

12:00 March 21st 51953.86 51325 52491
16:00 June 21st 34456.32 34403 35119

Time

Peak (kW/m2) Data
Official data Chiesi M. et al. (2013) Our results

12:00 March 21st 644 —— 676.5
16:00 June 21st 469 —— 449.1

5.2. Scalability of the Simulation Algorithm

In this section, we discuss the scalability of the proposed flux simulation
algorithm for both the receiver resolution, i.e., the parameter p (pixel width/m)
of the receiver panel, and the heliostat field scale.

First, the impact of the receiver resolution on the PS10 simulation result
was studied. The receiver resolution parameter can be adjusted for different
applications. Different receiver resolutions mean different sampling granularities
of the energy spot, which will affect the accuracy of the simulation in theory. As
shown in Table 2, the net power of PS10 tends to converge to a stable state when
p is greater than 20. Meanwhile, the simulation time increases quadratically.
We chose p = 40 pixel width/m as a tradeoff between simulation accuracy and
efficiency.

Table 2: The simulated net power of PS10 at 12:00 on March 21st and the simulation time
with respect to receiver resolutions.

p 1.0 5.0 20.0 40.0 50.0 80.0 100
Time (ms) 8.1 9.8 24.2 39.2 67.1 155.7 256.3

Net Power (kW ) 58037 52946 52342 52491 52540 52352 52303

Second, we studied the scalability of the simulation algorithm for the helio-
stat field scales. Here, ten synthesized rectangular heliostat fields were generated
as examples. The basic parameters of the synthesized scene are listed in Table
3. Five groups of experiments were conducted with receiver resolutions of p=65,
50, 40, 30 and 20.

The runtime statistics are shown in Figure 14. The results show that the
simulation time varies approximately linearly with the heliostat number for a
specific receiver resolution.

5.3. Performance Comparison with Ray Tracing Methods

In the proposed method, one pixel in the render target can be approximately
regarded as a ray in the ray tracing method in the sample rate. In the validation
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Table 3: Basic field parameters of the synthesized scene.

Site longitude Site latitude Solar azimuth angle Solar altitude angle
6.23◦ 37.4◦ 90◦ 52◦

Receiver position Receiver type Receiver width Receiver length
(0.0, 100.0, 0.0) One panel 8 m 8 m

Heliostat width Heliostat length Field type
6 m 6 m Rectangular

Figure 14: Flux simulation time for different scales of heliostat fields with various p.

for PS10 when p=50, the number of rays is:

N = 600 ∗ 268 ∗ 624 ∗ 4 = 401, 356, 800 (9)

while the corresponding run time is approximately 67.1 milliseconds. To our
knowledge, TieSOL (Izygon et al., 2011) is the most efficient GPU-based ray
tracing software for flux simulation of CRS. As reported by Izygon et al. (2011),
tracing 100 million rays took approximately 887 milliseconds on 3 GTX 570
GPUs. Comparably, our method achieves much faster performance. Of course,
the simulation accuracy of TieSOL is higher than ours due to the methods
adopted.

The proposed method shares many similarities with the reverse ray tracing
method in which the receiver surface is discretized. As indicated in the work by
Chiesi et al. (2013), they required 4.33 s to simulate a field of 12,000 heliostats.
The corresponding discretization schemes of each receiver panel and heliostat
are 40× 40 and 20× 20, respectively, which is approximately equivalent to 7.68
billion rays. In our experiments, as shown in Figure 14, the maximum ray
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number appears in the simulation of a field containing 30,000 heliostats and
p=65 pixel width/meter. Comparably, the proposed method needs only 0.618 s
to trace 65 ∗ 65 ∗ 8 ∗ 8 ∗ 30000 = 8.11 billion rays.

5.4. Comparison with Analytical Methods

One advantage of analytical methods is the fast evaluation of the field per-
formance. Thus, these methods can be used for heliostat field design and aiming
optimization. Because the proposed method is fully implemented on GPU, it is
sufficiently fast to fulfil this task. Another experiment was conducted to eval-
uate the annual performance of the PS10 plant from year 2005 to 2014, with
a simulation time interval of 5 minutes. The plant was assumed to run every
day in a year, 10 hours per day. The proposed method took approximately 7.5
seconds to simulate for a day and 2698 seconds (0.75 h) for a year. Compared
with the work by Huang and Xu (2014), which reports approximately 2.67 hours
for simulating a year, the proposed method not only runs much faster but can
also provide the instantaneous flux density distribution on the receiver surface.

6. Conclusion

We presented a GPU-based algorithm that is capable of simulating the flux
distribution on the receiver for central receiver systems. To exploit the spatial
coherence of a heliostat field, a uniform grid structure is built to organize the
heliostats. A beam traversal algorithm is designed and implemented in parallel
to efficiently detect shadowing and blocking heliostats for each heliostat. The
flux spot of each heliostat on the receiver is computed through a rasterization
operation in the rendering pipeline. All of the flux spots are accumulated in a
single rendering pass, taking the shadowing and blocking effects into account.
By exploiting the advantages of the parallel computing capacity and the render-
ing pipeline of GPUs, the algorithm can achieve an almost real-time simulation
for a medium-scale field.

In theory, the proposed simulation framework is applicable to a receiver
with an arbitrary shape as long as the receiver surface can be approximated
by a series of planar panels, e.g., the commonly used cylindrical receiver. In
this case, the computational complexity of the simulation is proportional to the
number of panels in the approximation.

The proposed method is independent of flux spot models, whether reflected
by planar or parabolic heliostats with multi-facet mirrors. In addition this
method is independent of the heliostat field layout, the aiming strategy of each
heliostat, and the receiver shape, as long as the configuration of the CRS is
given. To the best of our knowledge, an accurate analytical model of flux spot
reflected by a planar heliostat remains a challenge, which will be more suitable
for current central receiver systems. We would like to investigate this issue in
the future. Furthermore, fast simulation is the basis of a series of optimization
problems in CRS simulation. Therefore, we will investigate the optimization
problems based on our fast simulation method in the future, including aiming
strategy, and heliostat field layout.
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8. Appendix:

A list of symbols and variables used in the paper.

Nomenclature

• CRS: Central Receiver System.

• GPU Graphics Processing Unit.

• ηaa Atmospheric attenuation fac-
tor.

• d Distance from the heliostat to
the receiver aiming point.

• Ph Total energy reflected by a he-
liostat.

• ID Direct Normal Irradiance.

• SH Heliostat reflective surface
area.

• ρ Heliostat reflectivity.

• cosw Cosine loss of a heliostat.

• σHF Effective deviation of the
HFLCAL model.

• Pabs Receiver surface absorptiv-
ity factor.

• N′ The normal of the adjusted
heliostat.

• s Normalized vector of sun direc-
tion in the global coordinate sys-
tem.

• r Normalized vector of reflection
light direction.

• p The resolution parameter from
the receiver panel to the render
target.

• dp Virtual depth value of the pro-
jection in the rendering pipeline.

• N Number of heliostats.

• ID Heliostat index.

• Ei Flux density value of one pixel
in W/m2.

• Spixel Receiver surface area rep-
resented by a pixel.
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Belhomme, B., Pitz-Paal, R., Schwarzbözl, P., Ulmer, S., 2009. A new fast ray
tracing tool for high-precision simulation of heliostat fields. Journal of Solar
Energy Engineering volume 131, 376–385. doi:10.1115/1.3139139.

Besarati, S.M., Goswami, D.Y., 2014. A computationally efficient method for
the design of the heliostat field for solar power tower plant. Renewable Energy
69, 226–232. doi:10.1016/j.renene.2014.03.043.

Besarati, S.M., Goswami, D.Y., Stefanakos, E.K., 2014. Optimal heliostat aim-
ing strategy for uniform distribution of heat flux on the receiver of a so-
lar power tower plant. Energy Conversion and Management 84, 234–243.
doi:doi:10.1016/j.enconman.2014.04.030.

Biggs, F., Vittitoe, C.N., 1976. The helios model for the optical behavior of
reflecting solar concentrators. Sandia National Laboratories Report Report
N0.SAND76-0347 .

Blackmon, J.B., 1985. Development and performance of a digital image radiome-
ter for heliostat evaluation at solar one. Journal of Solar Energy Engineering
107, 315–321. doi:10.1115/1.3267699.

Bode, S., J., Gauche, P., 2012. Review of optical software for use in concen-
trating solar power systems, in: Proceedings Southern African Solar Energy
Conference.

Chen, Y.T., Kribus, A., Lim, B.H., Lim, C.S., Chong, K.K., Karni, J., Buck,
R., Pfahl, A., Bligh, T.P., 2004. Comparison of two sun tracking methods in
the application of a heliostat field. Journal of Solar Energy Engineering 126,
638–644. doi:10.1115/1.1634583.

Chiesi, M., Vanzolini, L., Scarselli, E.F., Guerrieri, R., 2013. Accurate optical
model for design and analysis of solar fields based on heterogeneous multicore
systems. Renewable Energy 55, 241–251. doi:10.1016/j.renene.2012.12.
025.

21

http://dx.doi.org/10.1080/10867651.2000.10487517
http://dx.doi.org/10.1080/10867651.2000.10487517
http://dx.doi.org/10.1115/1.3139139
http://dx.doi.org/10.1016/j.renene.2014.03.043
http://dx.doi.org/doi:10.1016/j.enconman.2014.04.030
http://dx.doi.org/10.1115/1.3267699
http://dx.doi.org/10.1115/1.1634583
http://dx.doi.org/10.1016/j.renene.2012.12.025
http://dx.doi.org/10.1016/j.renene.2012.12.025


Collado, F.J., 2010. One-point fitting of the flux density produced by a heliostat.
Solar Energy 84, 673–684. doi:10.1016/j.solener.2010.01.019.

ComputeShader Overview, 2016. URL: https://msdn.microsoft.com/

en-us/library/windows/desktop/ff476331(v=vs.85).aspx. [Online; ac-
cessed 02-September-2016].

Coordinate Systems (Direct3D), 2016. URL: https://msdn.microsoft.com/
en-us/library/windows/desktop/bb204853(v=vs.85).aspx. [Online; ac-
cessed 02-September-2016].

Dellin, T.A., 1979. An improved hermite expansion calculation of the flux
distribution from heliostats. Report No. SAND79-8619 .

Duffie, J.A., Beckman, W.A., Mcgowan, J., 2013. Solar Engineering of Thermal
Processes. John Wiley & Sons.

Fujimoto, A., Tanaka, T., Iwata, K., 1986. Arts: Accelerated ray-tracing system.
IEEE Computer Graphics & Applications 6, 16–26. doi:10.1109/MCG.1986.
276715.
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