
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Yuncen Huang · Jieqing Feng

Efficient Skeleton-guided Displaced Subdivision
Surfaces

Received: 20 August 2016/ Revised: 4 January 2017 / Accepted: 23 January 2017

Abstract Displacement mapping is a computer graphics technique that uses scalar offsets along
normals on a base surface to represent and render a model with highly geometric details. The
technique natively compresses the model and saves memory I/O. A subdivision surface is the ideal
base surface, due to its good geometric properties, such as arbitrary topology, global smoothness, and
multi-resolution via hardware tessellation, among others. Two of the main challenges in displacement
mapping representation are constructing the base surface faithfully and generating displacement
maps efficiently. In this paper, we propose an efficient skeleton-guided displaced subdivision surfaces
method. The construction of the base mesh is guided by a sketched skeleton. To make the shape of
the base surface fit the input model well, we develop an efficient progressive GPU-based subdivision
fitting method. Finally, a GPU-based raycasting method is proposed to sample the input model and
generate the displacement maps. The experimental results demonstrate that the proposed method
can efficiently generate a high-quality displacement mapping representation. Compared with the
traditional displaced subdivision surface method, the proposed method is more suitable for the
modern rendering pipeline and has higher efficiency.

Keywords displacement mapping · subdivision surfaces · GPU · skeleton · raycasting

1 Introduction

A mesh is a prevalent representation of geometry in computer graphics due to its simplicity, flexibility
and versatility. Triangular and quadrilateral meshes are the most commonly used meshes. As the
requirements for large-scale meshes with abundant geometric details, such as laser scan range data,
have rapidly increased, representing and rendering such a complex mesh model directly is not an
efficient approach because since it will degrade the computing and rendering performances, and
significantly consume memory and I/O bandwidth.

Alternatives have been proposed to express the geometric details compactly. Among such alter-
natives, storing various details in a 2D texture form is feasible and flexible approach, which adapts
well to the rendering pipeline. These representations are widely used in 3D computer games and in
the film industry. For example, bump mapping [3] consists of to simulating bumps and wrinkles on
the surface by perturbing the surface normals of the object. Normal mapping [8] can be regarded
as 3-channel bump mapping, which stores the surface normals as regular RGB images. Parallax
mapping [20] further improves the visual quality of bump mapping and normal mapping by further
displacing the texture coordinates. In these methods, a complex model with abundant geometric
details is expressed as a coarse base surface together with 1-channel or 3-channel textures. Although

Jieqing Feng
State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou, 310058, China
E-mail: jqfeng@cad.zju.edu.cn



2 Yuncen Huang, Jieqing Feng

Model with
Geometric
Details

Skeleton
Cut &
Hinge

Initial
Control

Mesh (ICM)

Initial Base
Mesh (IBM)

Optimized
Base Mesh
(OBM)

Displacement
Map

GPU-
SubdFit

G
P
U
R
ay
ca
stUser

sketches

Reconstructed
Result

Base Surface

S
u
b
d
iv
id
e

Subdvision
surface

Fig. 1 The framework of our method.

these techniques can create visually plausible shading effects, artifacts can still be easily detected,
particularly along the silhouettes since there is no actual geometric change on the surface.

Displacement mapping [9] treats the geometric details as genuine offsets along the surface normals
of a base surface. Consequently, the silhouette artifacts can be alleviated and the geometric details can
still be natively compressed. Because of its fidelity, the displacement mapping technique has become
popular, particularly in the film industry, 3D games, and so forth. In general, the displacement maps
are obtained manually using sculpting tools, such as MudBox[2], ZBrush[21], and so forth. It is a
forward design procedure. However, it is more attractive and effective to automatically extract the
displacement maps from a given complex model. In such a case, a base mesh needs to be constructed
first. However, constructing a well-shaped base mesh remains a challenge.

Following the releases of OpenGL v4.0 and Direct3D v11, the GPU rendering pipeline supports
a tessellation stage, whose inputs are patches and outputs are tessellated primitives. A subdivision
surface is suitable to be processed via hardware tessellation, and many practical algorithms on
GPUs have been developed [29]. In this paper, an efficient skeleton-guided displaced subdivision
surfaces method is presented, which converts a complex mesh model into a displacement mapping
representation. The construction of the initial base mesh is constructed guided by a skeleton rather
than mesh simplification [24]. In this way, the structure of the model can be well captured and the
user’s design intents can easily be expressed. Furthermore, the computational complexity is greatly
decreased.

Since the initial base mesh may not fit the model well, artifacts may arise when sampling the
geometric details of the complex object. To this end, a progressive GPU-based subdivision fitting
method is developed. Then, a GPU-based raycasting algorithm is proposed to sample the geometric
details and generate the displacement maps, and the algorithm is fully implemented in the rendering
pipeline. The main contributions of the proposed method can be summarized as follows:

– an efficient skeleton-guided base mesh generation method;
– a progressive GPU-based subdivision fitting algorithm to optimize the base surface;
– a GPU-based raycasting method for sampling the geometric details to generate displacement

maps.

The remainder of this paper is organized as follows. Section 2 reviews the related work. The
proposed efficient skeleton-guided displaced subdivision surfaces are described in detail in Section
3. We present the implementation results and compare the proposed method with other methods in
Section 4, and we draw conclusions in Section 5.



Efficient Skeleton-guided Displaced Subdivision Surfaces 3

2 Related Work

Displacement mapping represents a model as a base surface and additional geometric offsets. It can
be expressed as follows:

r(u, v) = s(u, v) + H(u, v)

where r(u, v) is the underlying model with high-frequency geometric details, s(u, v) is the base
surface, and H(u, v) is the displacement function [32]. In scalar displacement mapping, the offsets
are displaced along the normals of the base surface; thus, H(u, v) can be re-written as

H(u, v) = n(u, v)× h(u, v)

where n(u, v) is the unit normal of the base surface, and h(u, v) is a scalar height function, which is
often stored in 2D 1-channel textures.

Wang et al.[33] proposed a technique called view-dependent displacement mapping for high-
quality rendering of detailed appearances, such as fine-scale self-shadows, occlusions and silhouettes
along the viewing direction. Jang and Han [18] sampled more vertices on the higher-frequency feature
parts of an input model with one extra 3D map for each patch, called the feature-preserving displace-
ment map, to re-map sample points in the domain shaders. Jang and Han [19] proposed the indirect
scalar displacement maps (ISDMs), aiming for maintaining the features while animating. Hirche et
al.[15] proposed a local ray tracing method to efficiently render displaced surfaces, where the al-
gorithm for the ray-surface intersection is completely designed using pixel shaders. Wang et al.[34]
introduced a five-dimensional displacement map, called the generalized displacement map (GDM).
The purpose of the map was to reduce texture distortions and to generate rich shadow effects. Nießner
and Loop [28] introduced a smooth analytic displacement function and stored the coefficients in a
tile-based texture format. In this way, the normals of displaced surface can be evaluated analytically
rather than querying from a pre-computed normal map.

In the aforementioned methods, the generation of the base mesh is not well studied in the dis-
placement mapping representation. Many works [23,22,14] adopt a parametric surface as the base
surface because the normals of the parametric surface can be evaluated analytically and in parallel on
GPU. However, constructing a globally smooth 2-manifold shape by smoothly joining the piecewise
parametric surfaces together remains a challenge. On the other hand, subdivision surfaces, which
were first introduced by Catmull and Clark [6] and by Doo and Sabin [12], are inherently globally
smooth. A subdivision surface has many good properties, such as arbitrary topology, scalability, mul-
tiresolution, global smoothness, analytical computation [31], and so forth. Such surfaces are currently
widely used in the film industry, 3D games, and so forth to address many complex shape modeling
challenges [11]. Recently, many works on subdivision surface rendering on GPUs have been devel-
oped[29,5]. Among them, Loop and Schaefer approximated Catmull-Clark subdivision surfaces using
bicubic Bézier patches [27]. Their approximate Catmull-Clark subdivision surface is C1 everywhere,
eliminating normal discontinuity between patches.

Lee et al.[24] introduced subdivision surfaces into displacement mapping representation, called
displaced subdivision surfaces (DSS). They used edge-collapse simplification to obtain the base mesh
from the input model in a recursive manner. It was extended to address animated meshes [25] by
considering the errors caused by motion. One drawback of DSS is that they need to delete the edges
one by one. For a large-scale model, the process can require hours. In the proposed method, the
construction of the initial base mesh is guided by a skeleton, reducing the computational complexity.
Furthermore, through hardware tessellation, subdivision fitting and the sampling procedures become
more efficient.

3 Efficient Skeleton-guided Displaced Subdivision Surfaces

The framework of the proposed method is shown in Fig. 1. The input of the proposed method is a
mesh model with abundant geometric details. First, a user sketches a skeleton on the input. Then, the
initial control mesh (ICM) is generated by properly connecting cuts and hinges along the skeleton.
Next, the ICM is subdivided into the initial base mesh (IBM). A progressive GPU-based subdivision
fitting method (GPUSubdFit) is developed to optimize the IBM to further approximate the input
model, and the optimized base mesh (OBM) is obtained. Finally, the Catmull-Clark subdivision



4 Yuncen Huang, Jieqing Feng

surface of the OBM serves as the base surface and a GPU-based raycasting (GPURaycast) method is
developed to sample the input model for displacement map generation.

3.1 Generation of Skeleton and Base Mesh

3.1.1 Skeleton Generation

cross‐section

sight line

(a) a sight line from the camera

joint

sight line

cross‐section

(b) a cross-section

joint

n‐sided polygon

(c) a cut (n-sided polygon)

Fig. 2 Illustration of a joint of skeleton and a cut generation.

Fig. 3 The skeletons of Venu, bunny, armadillo and Neptune are generated through sketching.

The skeleton represents the global structure of a model. Thus, it is a dominant control structure
that is generally used in animation. The skeleton can be extracted automatically or interactively [10].
The automatic extraction methods are convenient for users. However, capturing the structure and
shape of the model or expressing user’s design intents is challenging. For example, a joint, which is not
equipped with prominent geometric features and thus, it is difficult to be extracted automatically. In
this paper, we develop an intuitive sketching interface to define the skeleton of an input model. The
user picks a point on the screen near an articulation. The viewpoint and the picked point form a ray
in world space, as shown in Fig. 2(a). The middle point of the nearest and the farthest intersections
between the ray and the model is taken as the default position of the joint (Fig. 2(b)). The desired
position of the joint can be further adjusted manually if necessary. After the joints are specified
as above, they are connected properly as the skeleton of the model. In fact, it will not influence
the initial mesh generation if the position of the joint is not accurate. Thus, the proposed skeleton
generation method is simple and intuitive. The sketched skeletons of Venus, bunny, armadillo and
Neptune are shown in Fig. 3.

3.1.2 Generation of Initial Control Mesh and Initial Base Mesh

Based on the sketched skeleton, the ICM and the IBM will be constructed using the following steps.



Efficient Skeleton-guided Displaced Subdivision Surfaces 5

Cut generation. A cross-section, as shown in Fig. 2(b), is generated at each articulation joint, whose
valence is not greater than 2. Then, the cross-section is approximated as an n-sided polygon (Fig.
2(c)), called a cut, which is an element of the ICM. We adopt the method of [13] to generate the
cut. The point list of the polygon is initialized to be the farthest point pair among the input points,
and then the farthest point among the rest of input points is iteratively added into the current point
list until the n is meet. In our implementation, the ”n” of a cut is determined according to the ratio
between the perimeter of the cross-section and the bounding box of the input model. In contrast
to the ICM generation method [35], in which all cuts are quadrilaterals, the cuts in the proposed
method allow n-sided polygons because an n-sided polygon can better approximate the shadpe of
the model. The resulting cuts of the armadillo are shown as blue dashed lines in Fig. 4(a).

(a) cuts & Hinges (b) ICM (c) IBM

Fig. 4 The generated cuts (blue dashed polygons), hinges (red-line polyhedrons), ICM and IBM of the ar-
madillo.

Hinge generation. A hinge is a polyhedron, in which each face intersects with at most one skeleton
segment. We adopt the method of [35] to construct a hinge on each joint whose valence is larger than
2. The hinges in the armadillo are shown as red-line polyhedrons in Fig. 4(a).

Connection of cuts and hinges. For each skeleton segment, we connect two adjacent cuts, or a cut
and a face of a hinge sharing the segment, to form a pipe. For two adjacent cuts or a cut and a face
of a hinge, we map one of them onto the plane which the other one is on and connect the nearest
pair of points to form a pipe. Since the hinge is generated in such that each face of the hinge has at
most one skeleton segment intersecting with the face, the pipes and hinges can form a well-shaped
skeleton-defined ICM. An example is presented in Fig. 4(b).

From ICM to IBM. Since quadrilaterals have relatively less distortions in piecewise texture mis-
alignment than triangles, we use a tile-based texture format to record displacement maps, similar
to Ptex[4], where each tile corresponds to a quad face of the base mesh. To this end, we perform
Catmull-Clark subdivision [6] one time on the ICM to obtain the all-quadrilateral IBM. To reduce
the shrinking problem caused by Catmull-Clark subdivision, we perform progressive interpolation of
Catmull-Clark subdivision [7] one or two times prior to the subdivision. An example is presented in
Fig. 4(c). Note that the proposed framework is compatible with the base surface generated through
simplification [24].

3.2 Progressive GPU-based Subdivision Fitting

Although the IBM can be used as the control mesh to generate the Catmull-Clark subdivision surface,
it may not sufficiently approximate the input model, which may lead to an unfaithful displacement
map. To this end, we present a progressive GPU-based subdivision fitting method (GPUSubdFit)
inspired by the method in [26], where the IBM is optimized as the OBM. The main idea is to



6 Yuncen Huang, Jieqing Feng

IniƟalize the base mesh C = IBM

GPUSubdFit

Vertex Shader
Control Point ccpi

Hull Shader

Tessellator
TessellaƟon PaƩern

Domain Shader

– Sample point Si∗(u, v)
– Nearest point pnearest of Si∗(u, v)
– Each sample point Si∗(u, v)’s dif-
ference vector δ(u, v)

– Coefficients ωj

– Each control point ci’s difference
vector∆i

ccpi

h0 h1 h2 h3

h4 h5 h6 h7

h8 h9 h10 h11

h12 h13 h14 h15

δ(u, v) = pnearest − Si∗(u, v)

Si∗(u, v)

Pnearest

In each iteraƟon

ci ← ci +∆i

– Bézier Control Points hi
– CoefficientsMi

Fig. 5 Overview of the rendering pipeline of the progressive GPU-based subdivision fitting method, where
programmable stages are in green and the fixed stages are in white.

(a) IBM (b) 1st iteration,
ε = 24.731%

(c) 2nd iteration,
ε = 18.045%

(d) 3rd iteration,
ε = 8.236%

Fig. 6 The armadillo IBM and the result of each iteration in GPUSubdFit (tessfactor=16 × 16, ε is the RMS
error, and the OBM is the resulting mesh of the 3rd iteration).

progressively adjust the control points of the IBM by evaluating the error between the subdivision
surface of the IBM and the input model, until the fitting error is less than a pre-defined threshold.

The input detailed model is denoted as P, whose vertices are denoted as {p0,p1, · · · ,pnp−1}.
The base mesh, denoted as C, is also referred to as the control mesh. The vertices of C are denoted
as {c0, c1, · · · , cns−1}. GPUSubdFit is an iterative method. At the beginning of GPUSubdFit, the
base mesh C is initialized as the IBM. The Catmull-Clark subdivision surfaces of the base mesh C
is denoted as S. In each iteration of GPUSubdfit, we evaluate the sample points on S, as well as
their corresponding nearest points on P, denoted as pnearest. The sample points are on a surface,
which will be evaluated in the rendering pipeline. Then, each control point in the control mesh is
progressively updated according to the related difference vectors between the sample points and their
corresponding nearest points.

To facilitate the nearest point search, we adopt a space-partitioning data structure designed on a
GPU, 3DDDA [1]. Because the normals of the base surface are important in the definition of displace-
ment mapping, we take not only geometric positions but also normal similarity into consideration
when searching the nearest points. Therefore, we map each vertex from the three-dimensional Eu-



Efficient Skeleton-guided Displaced Subdivision Surfaces 7

clidean space into the six-dimensional feature-sensitive space [30] of the base surface when evaluating
the nearest point.

To exploit the parallelism of GPU, we approximate the Catmull-Clark subdivision surface S with
bicubic Bézier patches {S∗

i , i = 0, ..., nF − 1} [27], where nF is the number of faces of the base
mesh. Each bicubic Bézier patch S∗

i corresponds to a quad face/patch Ci on the base mesh C. The
bicubic Bézier control points (BCPs) of S∗

i are evaluated as the weighted summation between the
control points(CPs) of the 1-ring neighbor patches of Ci and the masks that are encoded by a set of
coefficients [27]. A sample point on the bicubic Bézier patch S∗

i is denoted as Si
∗(u, v), 0 ≤ u ≤ 1, 0 ≤

v ≤ 1. The sample density of (u, v) is defined by tessfactors in the rendering pipeline. The pipeline
of GPUSubdFit is illustrated in Fig. 5. Each iteration of GPUSubdFit consists of the following four
steps:

1. Evaluate the sample point Si
∗(u, v) on the bicubic Bézier patch, which approximates a patch of

the Catmull-Clark subdivision surface, Si
∗(u, v) =

∑15
j=0 bj(u, v)hj , where bj(u, v) is the bicubic

Bézier basis function, and hj is the bicubic Bézier control point(BCP). hj is evaluated as follows,

hj =
N−1∑
k=0

ωj,kccpk
= Mj


ccp0

ccp1

.

.

.
ccpN−1


where ccpk

, cpk ∈ [0, ns), is the control point(CP) and Mj is its masks [27]. N is related to the
valences of the four corners vertices of the underlying patch on the base mesh. In our implemen-
tation, N is set as 32.

2. Find the closest vertex pnearest on the input model P of each sample point Si
∗(u, v) and calculate

its difference vector δ(u, v) = pnearest − Si
∗(u, v).

3. Evaluate the coefficients wk between each sample point Si
∗(u, v) and its control points ccpj

, j =
0, ..., N − 1,

Si
∗(u, v) =


b0(u, v)
b1(u, v)

.

.

.
b15(u, v)



T 
h0

h1

.

.

.
h15

 =


b0(u, v)
b1(u, v)

.

.

.
b15(u, v)



T 
M0

M1

.

.

.
M15




ccp0

ccp1

.

.

.
ccpN−1

 =
[
w0 w1 ... wN−1

]


ccp0

ccp1

.

.

.
ccpN−1

 ,

then we have

wk =
15∑
j=0

bj(u, v)Mjk, k = 0, ..., N − 1,

where Mjk is the jth element of Mk.
4. Accumulate the difference vector ∆i of each control point ci from all its related sample points’s

difference vector δj according to the respective coefficients wj ,

∆i =

∑
j wjδj∑
j wj

and update ci with ∆i, ci ← ci +∆i.

In our implementation, we perform Laplacian smoothing in the first iteration to alleviate the
potential self-intersections.

The above steps are performed iteratively until

ε =

√∑ns−1
i=0 δ2i
ns

/B < ε0



8 Yuncen Huang, Jieqing Feng

where ε0 is the threshold and ε is the root-mean-square error(RMS) between the fitted subdivision
surface and the input model, normalized to the diagonal length of the bounding box, B. In our
experiments, no more than five iterations are required and the threshold is set to 0.1. The base meshes
and errors of armadillo after each GPUSubdFit iteration are shown in Fig. 6. The convergence of this
algorithm is discussed in [26]. To summarize, GPUSubdFit is suitable for parallel implementation
with hard tessellation.

3.3 Displacement Map Generation via Raycasting Sample on GPU

(a) Base surface(782 patches) (b) Casted sample rays

Fig. 7 The base surface and sample rays (the sample density on each patch is 16 × 16) of the armadillo.

OBM

GPURaycast

Vertex Shader

Control Point ccpi

Hull Shader

– Bézier Control Points hi

Tessellator

TessellaƟon PaƩern

Domain Shader

– Sample point Si
∗(u, v)

– Nearest intersecƟon I along
n(u, v)

– Store offset from Si
∗(u, v) to

I into the displacement map

ccpi

h0 h1 h2 h3

h4 h5 h6 h7

h8 h9 h10 h11

h12 h13 h14 h15

Displacement map

n(u, v)

Si
∗(u, v)

I

Fig. 8 Overview of the rendering pipeline of GPURaycast, where the programmable stages are in green and
the fixed stages are in white.



Efficient Skeleton-guided Displaced Subdivision Surfaces 9

(a) Input (b) sd=4 × 4,
E = 0.129%

(c) sd=8 × 8,
E = 0.052%

(d) sd=16 × 16,
E = 0.024%

Fig. 9 Results of Venus.

(a) Input (b) sd=4× 4, E = 0.190% (c) sd=8 × 8, E = 0.075% (d) sd=16 × 16,
E = 0.037%

Fig. 10 Results of the bunny.

After we obtain the OBM, the differences between the base surface and the input model, which
are geometric details, can be represented as the displacement mapping. Since each sample in the
displacement maps via raycasting is independent, the procedure can be efficiently implemented on
GPU. To this end, we introduce a GPU-based raycasting method (GPURaycast) that takes advantage
of hardware tessellation to compute each sample of displacement maps. To avoid cracks between
patches, the normals across the boundary of the patches are required to be continuous. Therefore,
we approximate the base surface using piecewise smooth bicubic Bézier patches [27], which ensures
globally C1 continuous. The base surface of the armadillo is illustrated in Fig. 7(a).

To acquire the displacement map, a ray is casted from each sample point Si
∗(u, v) along its normal

and the nearest intersection with the input model can be found in the domain shader. The density
of the sample rays on each patch is defined by the sample density(sd). The offsets are stored in a
2D 1-channel texture as the displacement map. We adopt the same data structure [1] mentioned in
Section 3.2 to accelerate the nearest intersection search. The overview of each stage of GPURaycast
in the rendering pipeline is shown in Fig. 8, and the casted sample rays on the armadillo are shown
in Fig. 7(b).

4 Results and Comparison

We implemented the proposed method using Direct3D v11.1 on a PC with a 2.80 GHz Intel Core
i5-2300 CPU, an NVIDIA GeForce GTX 570 GPU, and Windows 10. All GPU codes are written in
HLSL (high-slevel shading language).

Four complex models of different scales, from 50k to 2M vertices, are selected as test examples,
i.e., Venus, bunny, armadillo and Neptune. The rendering results for these examples are shown in
Figs. 9, 10, 11, and 12, respectively. We use E, which is the RMS error between the reconstructed
surface and the input model normalized to the diagonal length of the bounding box, to measure the
constructed quality. Tables 1 and 2 present the statistics of the models and performances.



10 Yuncen Huang, Jieqing Feng

(a) Input (b) sd=4 × 4, E = 0.172% (c) sd=8 × 8, E = 0.078% (d) sd=16 × 16,
E = 0.046%

Fig. 11 Results of the armadillo.

(a) Input (b) sd=4 × 4, E = 0.195% (c) sd=8 × 8, E = 0.123% (d) sd=16 × 16,
E = 0.101%

Fig. 12 Results of Neptune.

Table 1 The numbers of vertices and faces of the input models, the numbers of vertices and faces of ICM and
IBM, and the number of joints in our experiments of Venus, bunny, armadillo, and Neptune.

Models venus bunny armadillo neptune
Input Model Vertices Number 50002 124037 172974 2003932
Input Model Faces Number 100000 248070 345944 4007872
ICM Vertices Number 60 80 137 225
ICM Faces Number 120 144 256 420
IBM/OBM Vertices Number 368 44a6 784 1292
IBM/OBM Faces Number 370 444 782 1294
Joints Number 7 12 31 47

4.1 Analysis of Results

In the experiments, the proposed method can reconstruct the input complex model well while pre-
serving the geometric details faithfully. Fig. 11(d) shows that geometric details on the armadillo’s
legs and its head are recovered faithfully. The geometric details of the hair of Venus, the body of the
bunny, and the beard of Neptune are well preserved in the reconstructed meshes, as shown in Fig.
Fig. 9(d), 10(d) and Fig. 12(d), respectively. Therefore, the proposed method can process not only
the models of simple structures (such as Venus, whose skeleton is a straight line from top to bottom)
but also the models with a complex topology (such as Neptune, which has 2 genus, 9 hinges and
38 cuts). Thanks to the hardware tessellation, GPUSubdFit and GPURaycast are highly efficient,



Efficient Skeleton-guided Displaced Subdivision Surfaces 11

Table 2 Statistics of our experiments on different models, including execution time, compression ratio and
RMS in different tessfactors and sample density. T. denotes the time measured in seconds(s).

Statistics
tessfactor =

venus bunny armadillo neptune
sample density

GPUSubdFit Iterations 2 4 3 5
T. IBM Generation (s) 0.009 0.013 0.069 0.104
RMS error (%)

4×4

0.187 0.225 0.236 0.162
Compression Ratio 42.175 86.738 68.670 481.124
T. GPUSubdFit (s) 4.790 11.861 21.828 66.573
T. GPURaycast (s) 0.9 1.785 3.892 9.939
T. Total (s) 5.765 13.659 25.789 76.616
RMS error (%)

8×8

0.084 0.123 0.118 0.097
Compression Ratio 14.456 29.624 23.403 164.033
T. GPUSubdFit (s) 4.794 11.767 21.577 65.424
T. GPURaycast (s) 2.512 5.313 12.706 34.228
T. Total (s) 7.315 17.093 34.352 99.756
RMS error (%)

16×16

0.046 0.070 0.071 0.023
Compression Ratio 4.174 8.581 6.797 47.574
T. GPUSubdFit (s) 4.790 11.735 21.529 65.601
T. GPURaycast (s) 8.256 18.085 45.039 118.115
T. Total (s) 13.055 29.833 66.637 183.820

particularly when the sampling density of the displacement map is high. Moreover, although the ICM
and IBM are generated using CPU, the computational complexity of the base control mesh gener-
ation is substantially decreased due to the guidance of the skeleton. The statistics are presented in
Table 2. Although the skeleton needs users to sketch, this process normally takes less than 2 minutes.

When the sampling density becomes high, there will be more rays cast from each patch of the base
surface, and it will capture more geometric details from the input model at the expense of a decrease
in performance. As shown in Fig. 13(a), the average performance decrease is approximately 2x when
the sample density increases from 4 × 4 to 16 × 16 for the three input models. In our experiments,
tessfactor=16× 16 can provide the most reasonable results for practical applications.

0

20

40

60

80

100

120

140

160

180

200

4*4 6*6 8*8 10*10 12*12 14*14 16*16

T
o
t
a
l
 
T
i
m
e
 
(
s
)

tessfactor

bunny armadillo venus neptune

(a) total time costs

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

4*4 6*6 8*8 10*10 12*12 14*14 16*16

RM
S	
er
ro
r(%

)

tessfactor

bunny armadillo venus neptune

(b) RMS errors

Fig. 13 The total time cost(left) and corresponding RMS errors(right) for constructing of the skeleton-guided
displaced subdivision surfaces of the bunny, the armadillo, Venus and Neptune in different tessfactors. The
total time includes base mesh generation, GPUSubdFit and GPURaycast.

There are still some artifacts, which are typically caused by a coarse ICM or sub-optimal OBM.
For example, the fingers and toes of the armadillo are not perfectly reconstructed when sd=16× 16
(Fig. 11(d)) because the ICM (Fig. 4(b)) represents the entire hand with a simple hexahedron.
Although the hexahedron in ICM is subdivided and then optimized, its faces in the OBM (Fig. 6(d))
are still not able to expand into the small part of fingers and toes after GPUSubdFit. Consequently,
there are not enough rays to sample the geometric details in these parts.

To quantitatively analyze the results, we measure the quality of the reconstructed mesh in Eu-
clidean distance normalized to the diagonal length of the bounding box from the input model to the
reconstructed mesh. We use the RMS errors of all the vertices to estimate the overall error of the



12 Yuncen Huang, Jieqing Feng

(a) tessfactor=4 × 4,
E = 0.236%

(b) tessfactor=8 × 8,
E = 0.118%

(c) tessfactor=16 × 16,
E = 0.071%

0 1.0%

Fig. 14 The color-coded Euclidean distance, normalized to the bounding box, between the input model and
reconstructed result.

entire mesh. The RMS errors of Venus, the bunny, the armadillo and Neptune in different tessfactors
are shown in Fig. 13(b). Fig. 14 presents the color-coded errors of the armadillo, and the colored
range is from 0 to 1.0%. As indicated by the results, the loss of detail of the reconstructed mesh
decreases as the sample density increases from 4× 4 to 16× 16.

4.2 Compression

We also compare the output size of our representation with the input model without any additional
compression techniques during encoding. The total size of our representation S can be calculated as
S = B +M , where B and M are the sizes of the base mesh and the 2D texture, respectively. Since
the IBM is subdivided from the ICM, the IBM can be reconstructed from its geometry GIBM and
ICM’s topology TICM . Therefore, B = GIBM + TICM . The 2D textures only require 1 channel for a
scalar with a dimension of M = FOBM × (sd+ 1)× (sd+ 1), where FOBM is the number of faces of
OBM and sd is the sample density. We assume that the size of a vertex in geometry is three 32-bit
float and a face in topology is 3 or 4 32-bit integer.

As indicated by the results presented in Table 2, the representation can compress the input model
with abundant geometric details, saving the memory I/O on conditions of reconstructing the input
faithfully. In the case of Neptune, it is compressed to nearly 50x, even when the sample density is
16× 16. Thus, the proposed method has shown its potential for use in the film and game industries.

4.3 Comparison with Displaced Subdivision Surfaces

There are two processes of base surface construction in the method of displaced subdivision surfaces
(DSS) [24]: base mesh construction through simplification and global optimization of the base mesh.
Since their sampling stage can also be accelerated with hardware tessellation, we do not compare
the performance of this stage.

The DSS method use a prioritized sequence of edge collapse transformations[16] where edges are
collapsed one by one, whereas the proposed method is performed guided by a skeleton, reducing the
computational complexity. Moreover, the proposed GPUSubdFit exploits hardware tessellation, and
exhibits better performance compared to DSS’s base mesh global optimization [17]. Fig. 15 presents
the execution time in different tessfactors, including the base mesh generation construction, the
optimization and the total. When the tessfactor is 16× 16, the execution time of both stages in DSS
are more than 100x slower for both the armadillo and Neptune compared to the proposed method.

In the reconstruction results of the armadillo shown in Fig. 16, the majority of the geometric
details of the model are recovered faithfully in both methods. However, in the two parts highlighted
above, the incorrect displacements are detected, because there are vertices of high valences remained



Efficient Skeleton-guided Displaced Subdivision Surfaces 13

0.0625

0.25

1

4

16

64

256

1024

4096

DSS ours DSS ours DSS ours

4*4 8*8 16*16

lo
g2

 (E
xe
cu
tio

n 
Ti
m
e)
 (s
)

tessfactor

armadillo

base gen opt

(a) armadillo

0.0625

0.25

1

4

16

64

256

1024

4096

16384

DSS ours DSS ours DSS ours

4*4 8*8 16*16

lo
g2

 (
Ex
ec
u
ti
o
n
 T
im

e)
 (
s)

tessfactor

neptune

base gen opt

(b) neptune

Fig. 15 Base mesh generation, optimization time and total time consumption, illustrated on a logarithmic
scale, compared with DSS.

(a) Original (b) DSS (c) Ours

Fig. 16 Our reconstruction result of the armadillo compared with DSS, where both of the numbers of base
mesh faces are 256, and both of the sample densities are 16 × 16.

during simplification process, and their normals are not as smooth as ours. Note that the proposed
framework shows compatibility with the DSS method in that the IBM can also be constructed
through simplification[16] and then use GPUSubdFit for optimization.

5 Conclusion

We propose an efficient skeleton-guided displaced subdivision surfaces method, which converts an
input model with abundant geometric details into a coarse base mesh with displacement maps,
natively compressing the model and saving memory consumption and I/O bandwidth. The proposed
method exploits the hardware tessellation and exhibits high efficiency. Therefore, the method is
suitable for modern GPUs.

Features on a model are the most important parts that need to be recovered and reconstructed.
Automatically detecting the features while simultaneously adaptively sampling them on the patches
of the base surface, will be our future works.

Acknowledgements

We would like to thank Dr. Chen Xue for her helpful discussions, and also thank the anonymous
reviewers who gave valuable suggestions to improve the quality of the paper. This work was supported
by the National Natural Science Foundation of China under Grant Nos. 61472349 and 61170138.

References

1. Amanatides, J., Woo, A.: A fast voxel traversal algorithm for ray tracing. In: EG 1987-Technical Papers.
Eurographics Association (1987)



14 Yuncen Huang, Jieqing Feng

2. Ara, K.: Introducing Mudbox. John Wiley and Sons Ltd. (2010)
3. Blinn, J.F.: Simulation of wrinkled surfaces. In: Proceedings of the 5th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’78, pp. 286–292. ACM, New York, NY, USA (1978)
4. Burley, B., Lacewell, D.: Ptex: Per-face texture mapping for production rendering. In: Proceedings of

the 19th Eurographics Conference on Rendering, EGSR ’08, pp. 1155–1164. Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland (2008)

5. Cashman, T.J.: Beyond catmull clark? a survey of advances in subdivision surface methods. Computer
Graphics Forum 31(1), 42–61 (2012)

6. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Computer-
Aided Design 10(6), 350–355 (1978)

7. Chen, Z., Luo, X., Tan, L., Ye, B., Chen, J.: Progressive interpolation based on catmull-clark subdivision
surfaces. Computer Graphics Forum 27(7), 1823–1827 (2008)

8. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 115–122.
ACM, New York, NY, USA (1998)

9. Cook, R.L.: Shade trees. In: ACM SIGGRAPH 1984 Papers, SIGGRAPH ’84, pp. 223–231. ACM, New
York, NY, USA (1984)

10. De Aguiar, E., Theobalt, C., Thrun, S., Seidel, H.P.: Automatic conversion of mesh animations into
skeleton-based animations. Computer Graphics Forum 27(2), 389–397 (2008)

11. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: Proceedings of the 25th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 85–94. ACM,
New York, NY, USA (1998)

12. Doo, D., Sabin, M.: Behaviour of recursive division surfaces near extraordinary points. Computer-Aided
Design 10(6), 356–360 (1978)

13. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: The International Journal for Geographic Information and
Geovisualization 10(2), 112–122 (1973)

14. Gumhold, S., Hüttner, T.: Multiresolution rendering with displacement mapping. In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS ’99, pp. 55–66. ACM,
New York, NY, USA (1999)

15. Hirche, J., Ehlert, A., Guthe, S., Doggett, M.: Hardware accelerated per-pixel displacement mapping. In:
Proceedings of Graphics Interface 2004, GI ’04, pp. 153–158. Canadian Human-Computer Communications
Society, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada (2004)

16. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’96, pp. 99–108. ACM, New York, NY, USA (1996)

17. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.:
Piecewise smooth surface reconstruction. In: Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’94, pp. 295–302. ACM, New York, NY, USA (1994)

18. Jang, H., Han, J.: Feature-preserving displacement mapping with graphics processing unit (gpu) tessella-
tion. Computer Graphics Forum 31(6), 1880–1894 (2012)

19. Jang, H., Han, J.: Gpu-optimized indirect scalar displacement mapping. Computer-Aided Design 45(2),
517–522 (2013)

20. Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.: Detailed shape
representation with parallax mapping. In: Proceedings of ICAT, pp. 205–208 (2001)

21. Keller, E.: Introducing ZBrush. John Wiley & Sons (2011)
22. Kobbelt, L.P., Bareuther, T., Seidel, H.P.: Multiresolution shape deformations for meshes with dynamic

vertex connectivity. In: Computer Graphics Forum, vol. 19, pp. 249–260. Wiley Online Library (2000)
23. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proceedings of the

23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 313–324.
ACM, New York, NY, USA (1996)

24. Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 85–94. ACM, New
York, NY, USA (2000)

25. Lee, H., Ahn, M., Lee, S.: Displaced subdivision surfaces of animated meshes. In: ACM SIGGRAPH ASIA
2010 Sketches, SA ’10, p. Article No.37. ACM, New York, NY, USA (2010)

26. Lin, H., Jin, S., Liao, H., Jian, Q.: Quality guaranteed all-hex mesh generation by a constrained volume
iterative fitting algorithm. Comput. Aided Des. 67(C), 107–117 (2015)

27. Loop, C., Schaefer, S.: Approximating catmull-clark subdivision surfaces with bicubic patches. ACM Trans.
Graph. 27(1), Article No.8 (2008)

28. Nießner, M., Loop, C.: Analytic displacement mapping using hardware tessellation. ACM Trans. Graph.
32(3), Article No.26 (2013)

29. Nießner Mner, M., Keinert, B., Fisher, M., Stamminger, M., Loop, C., Schfer, H.: Real-time rendering
techniques with hardware tessellation. Computer Graphics Forum 35(1), 113–137 (2016)

30. Pottmann, H., Steiner, T., Hofer, M., Haider, C., Hanbury, A.: The isophotic metric and its application
to feature sensitive morphology on surfaces. In: Computer VisionECCV 2004, Part IV, volume 3024 of
Lecture Notes in Computer Science (2004)

31. Stam, J.: Exact evaluation of catmull-clark subdivision surfaces at arbitrary parameter values. In: Pro-
ceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’98, pp. 395–404. ACM, New York, NY, USA (1998)



Efficient Skeleton-guided Displaced Subdivision Surfaces 15

32. Szirmay-Kalos, L., Umenhoffer, T.: Displacement mapping on the GPU - State of the Art. Computer
Graphics Forum 27(1) (2008)

33. Wang, L., Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.Y.: View-dependent displacement mapping.
In: Proceedings of ACM SIGGRAPH 2003, SIGGRAPH ’03, pp. 334–339. ACM, New York, NY, USA
(2003)

34. Wang, X., Tong, X., Lin, S., Hu, S., Guo, B., Shum, H.Y.: Generalized displacement maps. In: Proceed-
ings of the 15th Eurographics Conference on Rendering Techniques, EGSR’04, pp. 227–233. Eurographics
Association, Aire-la-Ville, Switzerland, Switzerland (2004)

35. Yao, C.Y., Chu, H.K., Ju, T., Lee, T.Y.: Compatible quadrangulation by sketching. Comput. Animat.
Virtual Worlds 20(23), 101–109 (2009)


