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a b s t r a c t

We propose a novel and efficient approach for extracting the boundary surfaces from heterogeneous
volumetric data in one pass. Each homogeneous material component is surrounded by a boundary
surface, which is composed of piecewise 2-manifold meshes. The key idea is to subdivide each cubical
voxel into two tri-prism voxels and to construct the boundary surfaces in a dimension-ascending (DA)
way, i.e., from points to lines and then to faces. The extracted boundary surfaces can fully isolate the
homogeneous material components, and the information on intersections between boundary surfaces
can be explicitly retrieved. The surface reconstruction process can be accomplished efficiently by
adopting a case table. The proposed approach is independent of the number of material types employed.
Additionally, a new case index encoding approach is proposed to encode all possible cases in a
heterogeneous tri-prism voxel that can verify the proposed DA approach in an exhaustive enumeration
manner. The experimental results demonstrate that our approach can accurately and efficiently generate
a boundary representation of heterogeneous volumetric data.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Heterogeneous objects are ubiquitous in the real world. A hetero-
geneous object is composed of multiple homogeneous material
components [1]. The reconstruction of a geometric representation of
heterogeneous objects is essential in many geometry-related applica-
tions [2]. For example, the computation of a geometric representation
that distinguishes different functional parts of a digital liver is crucial
for surgical planning. In this paper, we focus on reconstructing surfaces
at which different materials meet in one pass to display and explore
heterogeneous objects.

In heterogeneous object reconstruction, topologies are com-
bined with heterogeneous materials. The meshing approach
should meet the following requirements when reconstructing a
geometric representation of a heterogeneous object:

� The boundary surfaces should classify the heterogeneous
volume into homogeneous parts without T-junctions, cracks
or holes.

� Each homogeneous part is enclosed by its corresponding
boundary surface. Furthermore, each boundary surface should
be a piecewise 2-manifold surface, allowing for additional
graphical and geometrical processing.

� The approach should be independent of the number of material
types employed.

� The common patches of two boundary surfaces should be
topologically consistent.

Only a few efforts have been reported for the efficient recon-
struction of heterogeneous objects. Existing solutions address the
meshing problem by using voxels (either cubical or tetrahedral).
We reconstruct the surfaces from tri-prisms obtained by subdivid-
ing cubical voxels [3]. Using the new case index encoding
approach we provided herein, the triangulation types in the tri-
prisms can be degenerated into a number of cases and verified.

The use of tri-prisms also enables the application of conventional
dimension-ascending (DA) schemes, that is, the points along the
edges, the edges connecting the points, the triangles are generated
sequentially. The interfaces and boundary surfaces can be obtained by
carefully organizing the triangles. A hierarchical data structure is
designed to facilitate the above-described surface extraction process.

In summary, the main contributions of this paper include the
following:

� A new efficient tri-prism-based surface extraction scheme for
heterogeneous objects in a DA manner, independent of the
number of material types present.

� An effective triangle formation scheme that produces piecewise
2-manifold and orientable boundary surfaces and explicitly
preserves the topological relationship.

The remaining sections are organized as follows. After describing
the related work in Section 2, a hierarchical data structure is
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designed in Section 3. The details of the proposed approach are
described in Section 4. The implementation results and a discussion
are presented in Section 5. Finally, conclusions are drawn and future
work is highlighted in Section 6.

2. Related work

Isosurface extraction: The extraction of the boundary surfaces of a
3D shape from scalar field or volumetric data has been an important
research topic in computer graphics and scientific visualization for
decades. Wyvill et al. first proposed the polygonization method of
implicitly defined surfaces [4]. Lorenson et al. then proposed the
famous Marching Cube (MC) algorithm, which extracts the isosurface
from scalar volume data using a look-up table [5,6]. Bloomenthal
proposed an adaptive polygonization method to more efficiently
capture fine geometric details [7]. To overcome ambiguity in the
extracted isosurface, some improvements and extensions of the MC
algorithm have been proposed, and these improvements can suc-
cessfully preserve the topological consistency [8,9]. As an alternative
to Wyvill's method, Poston et al. proposed the skeleton-climbing
algorithm to extract the isosurface in a topology-ascending manner, i.
e., building the isosurface step by step according to its intersections
with grid edges (1-skeleton), then faces (2-skeleton), then cubes (3-
skeleton) [10,11]. Fujishiro et al. extended the concept of traditional
surface fitting to define and extract a boundary surface associated
with the scalar values and a user-specified interval [12,13]. Ju et al.
combined the extended marching cubes algorithm with a dual
algorithm to generate polygonal surfaces from Hermite data. Differ-
ent from the cube- or tetrahedron-based isosurface methods, Xu
et al. extracted the isosurface from tri-prisms voxels [3]. However,
these methods can extract only the interface between two materials
and cannot be trivially adapted to the heterogeneous cases.

Heterogeneous object modeling: In a pioneering work, Nielson et al.
proposed a marching tetrahedra method to mesh a multi-material
object [14]. Themethod can partition each heterogeneous tetrahedron
into homogeneous material parts. However, the resulting boundary
surfaces are given in terms of polygon soups. Wang et al. developed a
so-called boundary surfaces extraction from the heterogeneous object
(BSHO) method to build the interface surfaces in a tetrahedral volume
data [1]. However, the BSHO method is time consuming, requires a
large amount of memory, and can hardly be performed on a desktop
PC. Alternatively, Wu et al. proposed the multi-material marching
cubes (M3C) method to reconstruct boundary surfaces from a
volumetric medical image by directly extracting the surfaces from
cubical voxels [15]. The M3C method is focused on separating
heterogeneous objects with accurate geometry but does not maintain
the polygon orientations in its meshing step, which may lead to visual
defects unless postprocessing is imposed. Feng et al. combined tri-
linear contouring and volume rendering to directly display the
heterogeneous objects on a GPU directly [16]. However, their imple-
mentation does not explicitly provide a geometric representation. Dey
et al. provided a method to mesh piecewise-smooth complexes
defined by multi-label datasets [17,18]. Interface surfaces are itera-
tively created by a Delaunay meshing algorithm. The triangles in the
interface surfaces are well shaped, and the corresponding tetrahedra
meshes can be produced at no extra cost. However, their method
involves subtle pre-processing steps which have potential impacts on
the interface surface generation [17].

The CAD community has also explored heterogeneous object
modeling and representation [19]. Wang proposed an alternative
solution to the boundary representation of heterogeneous objects
[2,20]. However, the information on topological intersections
cannot be preserved because the boundary surfaces for the
materials are optimized individually. Shammaa et al. combined
region growing and graph-cut to precisely classify a volumetric

model into several homogeneous material parts [21]. However, as
indicated by the authors, this approach cannot robustly process
heterogeneous objects containing more than three materials.

3. Hierarchical boundary data structure for the dimension-
ascending process

A hierarchical data structure is designed to efficiently recon-
struct boundary surfaces and query the topological and geometric
information on intersections between/among boundary surfaces,
as shown in Fig. 1.

In the proposed approach, the geometric representation of a
heterogeneous object H is given as a union of boundary surfaces.
A boundary surface is a set of the interfaces isolating one material
component from the others, denoted as Ω. An interface is a set of
separating triangles between two materials, denoted as Γ. Each
interface is built only once and is shared by the two boundary
surfaces to achieve topological consistency. Separating triangles
(STs) are obtained by triangulating the loops formed by sequen-
tially connecting the separating line segments. A separating line
segment (SL) is defined by connecting two separating points.
A separating point (SP) is the point on the edge or in the face of
a tri-prism at which two, three, or four materials meet. The
material information is recorded in the separating points and is
inherited by the separating line segments, separating triangles,
interfaces, and boundary surfaces at each level.

4. Our approach

Algorithm 1 describes the framework of the approach. The
regular cubical volumetric data in Algorithm 1 is a cubical grid
sampled over a discrete set V �R3. A cubical voxel is first
subdivided into two tri-prisms. The boundary surfaces are recon-
structed in a DA manner. First, the SPs on the tri-prism's edges or
faces are extracted. Second, oriented SLs are generated by con-
necting the extracted SPs, and loops are formed by properly
traversing the SLs. Third, triangles, obtained by triangulating the
loops, are clustered as interfaces according to their material
indices. Finally, boundary surfaces are generated by grouping the
related interfaces.

Algorithm 1.

1: Input: labeled regular cubical volumetric data;
2: for each cube do
3: Subdivide the cube into two tri-prisms;
4: Extract SPs on the edges or in the faces;

SL(u,v)

ST(u,v)

(u)

2D

1D

0D

3D (u,v)

SP(u,v)

...

... (u,w)

SP(u,v) SP(u,v)

ST(u,v)

SL(u,v) SL(u,v)

Fig. 1. Hierarchical data structure.
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5: Connect the SPs to form the SLs;
6: for each tri-prism do
7: Generate loops by connecting the SLs;
8: Triangulate the loops;
9: end for
10: end for
11: Merge the shared SPs for 2-manifold preservation;
12: Cluster triangles to generate interfaces;
13: Group the interfaces to form the boundary surfaces.

4.1. Tri-prism decomposition

It is reasonable to perform surface extraction using cubes
rather than tri-prisms to generate fewer triangles. However, there
may be 88 cases in a cube if the underlying region is hetero-
geneous, making the procedure impractical. Furthermore, it is
difficult to properly separate a heterogeneous cube in some cases.
As shown in Fig. 2, one such case is the cube, whose diagonal
vertex pairs are supposed to have the same material types. An
octahedron region at the interior of the cube will remain unde-
termined if a cube centroid point is not introduced, as shown in
Fig. 2. If a cube centroid node (point) is introduced, as reported by
Wu et al., a cube will be blockwise partitioned, blocking the
diagonal corners with identical materials, as shown in Fig. 2(a)
[15]. Our approach partitions the heterogeneous cube into homo-
geneous subspaces that are not undetermined or overlapped and
ensures that at least one homogeneous diagonal corner is con-
nected, as shown in Fig. 2(b). This result is achieved by subdividing
the cube into a pair of tri-prisms, as shown in Fig. 3. The two tri-
prisms are termed as OPsm (Odd Tri-Prism, defined by the cube
vertices C0, C2, C3, C4, C6 and C7 ) and EPsm (Even Tri-Prism,

defined by C2, C0, C1, C6, C4 and C5). The points Pi ði¼ 0…18Þ in
Fig. 3 are potential SPs, which will be described in the following
subsection.

4.2. Material-oriented index encoding method

The traditional case index encoding method is not suitable for
heterogeneous cases. For example, there are a total of 33ð44Þ cases
of material distribution in a triangular (quadrilateral) face,
whereas there are at most three (or six) partitioning patterns of
the triangular (quadrilateral) face when symmetry, rotation invar-
iant, and complementarily are considered. To facilitate the sub-
sequent processing, a new case indexing method, called the
material-oriented index encoding method (MOIEM), is proposed
to remarkably reduce the case number. The MOIEM encodes the
case index of a face according to whether the material at the
corner is within the set of the materials of the encoded corners.

Let us illustrate the MOIEM by encoding a triangular face with a
16-bit unsigned integer. The material indices are denoted by u, v,
w, and x. We assume that uovowox without loss of generality.
MCi

denotes the material at corner Ci. MOIEM encodes the
triangular face as follows. (a) The first 4-bit is 0 (0�0***) because
the face contains only three corner vertices. (b) The second 4-bit is
assigned to 1 (0�01**) because MC0 , i.e., u, is the first material
encountered in the triangular face. (c) MC1 , i.e., v, is the second
material encountered, so the third 4-bit is assigned to 2 (0�012*).
(d) The fourth 4-bit is assigned to 1 (0�0121) if MC2 ¼MC0 . If MC2

differs from MC0 and MC1 , the fourth 4-bit is assigned to 3
(0�0123). The quadrilateral face is encoded in a similar manner
by the MOIEM.

4.3. Separating points (SPs)

SPs are the primary element in the proposed approach. There
will be an SP on the edge if the material types of a tri-prism edge's
two endpoints are different. For a quadrilateral face, there will also
be an SP introduced in the quadrilateral face if the four corner
vertices are associated with more than two material types and if
the material types at the diagonal corner vertices are different.

As shown in Fig. 4, the five faces of a tri-prism are F_BOTTOM
(C1C0C2), F_TOP (C3C4C5), F_SIDE1 (C2C0C3C5), F_SIDE2 (C1C2C5C4),
and F_SIDE3 (C0 C1C4C3), where Ci (i¼0,…, 5) are the corner vertices
of the tri-prism. The points labeled from 6 to 17 are the SPs in a tri-
prism. It is natural to introduce a face centroid point to separate the

Fig. 2. (a) If a cube centroid point is not introduced, an octahedron outlined by the
red dashed lines will remain undetermined. (b) M3C introduces a cube centroid
point and generates a blockwise partitioning result [15]. (c) The use of tri-prisms
can effectively separate the cube with the diagonal vertices connected as much as
possible. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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Fig. 3. Subdividing a cube into two tri-prisms. The points Piði¼ 0;…;18Þ are
potential SPs in a cube. The six dashed arrows indicate the normal vectors of the
cube faces.
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Fig. 4. A tri-prism: The points labeled from 6 to 17 are SPs. The thin dashed line
segments connecting these points are SLs. The five dashed arrows indicate the
outwards normal vectors of the tri-prism faces.
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heterogeneous quadrilateral faces. However, for the triangular faces in
Fig. 4, the points on their hypotenuses act as the face centroid points.
In this manner, the SP in the tri-prism can be avoided. As a result, the
connectivity of the cube can be preserved as much as possible.
However, this achievement comes at a cost: SP6 and SP9 are
considered as SPs on the edge and in the triangular face simulta-
neously, which will make the loop generation step slightly more
complex. The positions of the SPs can be determined as the mid-point
of an edge or as the barycenter of a face.

4.4. Separating line segment (SL)

After SPs are obtained, SLs are generated by properly connect-
ing the SPs. There are two types of SLs. One is defined on the tri-
prism faces, noted as SLðFÞ, whereas the other is defined in the tri-
prism volume, noted as SLðVÞ, as shown in Fig. 4.

4.4.1. SLs on the tri-prism face (SLðFÞ)
According to the MOIEM, except for homogeneous cases, the

triangular and quadrilateral faces can be encoded as 4 and 14
cases, respectively, as shown in Figs. 5 and 6.

The direction of an SLðFÞ is important because it will be used to
determine the orientation of a loop in the next step. The direction
of an SLðFÞ is consistently determined such that the corner vertex
with the lower material index is at its left side if viewed against its
face's normal vector. In Figs. 5 and 6, the direction of the SLðFÞs is
given under the assumption that the material indices satisfy
uovowox. The SLðFÞ from SP1 to SP2 is denoted as SLðFÞðSP1 ;SP2Þ in
the remainder of the paper.

4.4.2. SL in tri-prism (SLðVÞ)
An SLðVÞ is defined by connecting two face centroid SPs. The

SLðVÞs outline the skeleton of the internal structure. The SLðVÞs,

Fig. 5. Except for the homogeneous case, SL s in a triangular face can be encoded as four cases. The direction of an SLðFÞ is determined such that the corner vertex with the
lower material index is at the left side of the SLðFÞ . (a) 0�0112, (b) 0�021, (c) 0�0122, and (d) 0�0123.

C 0 (u ) C 1 (u )

C 2 (v )C 3 (w )

C 0 (u ) C 1 (v )

C 2 (v )C 3 (w )

C 0 (u ) C 1 (v )

C 2 (w )C 3 (u )

C 0 (u ) C 1 (v )

C 2 (w )C 3 (w )

C 0 (u ) C 1 (v )

C 2 (w )C 3 (x )

Fig. 6. Except for the homogeneous case, the SLðFÞ s in a quadrilateral face can be encoded as 14 cases. (a) 0�1112, (b) 0�1121, (c) 0�1122, (d) 0�1211, (e) 0�1212,
(f) 0�1221, (g) 0�1222, (h) 0�1123, (i) 0�1213, (j) 0�1223, (k) 0�1231, (l) 0�1232, (m) 0�1233, and (n) 0�1234.
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together with SLðFÞs, partition the tri-prism into subspaces that are
not undetermined or overlapped. The prerequisite of introducing
an SLðVÞ is that the two related SPs must be extracted. The seven
SLðVÞs are independently generated according to their respective
rules. The detailed rules are described as follows:

� SLðVÞð6;16Þ will be added if SP7 is extracted or the SLðFÞð6;13Þ is
generated.

� SLðVÞð6;17Þ will be added if SP8 is extracted or the SLðFÞð6;12Þ is
generated.

� SLðVÞð9;16Þ will be added if SP10 is extracted or the SLðFÞð9;13Þ is
generated.

� SLðVÞð9;17Þ will be added if SP11 is extracted or the SLðFÞð9;12Þ is
generated.

� SLðVÞð15;16Þs and SLðVÞð15;17Þs will be added as long as the prerequisite
is satisfied.

� SLðVÞð16;17Þ will be added if one of the following four conditions is
false: (a) no SP14; (b) no SLðFÞ sequence formed by SLðFÞð17;11Þ,
SLðFÞð11;10Þ and SLðFÞð10;16Þ; (c) no SLðFÞ sequence formed by SLðFÞð17;8Þ,
SLðFÞð8;7Þ and SLðFÞð7;16Þ; (d) no SP15 and no SLðVÞ sequence formed by
SLðVÞð6;16Þ, SL

ðVÞ
ð16;9Þ, SL

ðVÞ
ð9;17Þ and SLðVÞð17;6Þ.

Furthermore, SLðFÞð9;15Þ and SLðFÞð6;15Þ are SLðVÞs even though they are
generated according to the rule of SLðFÞ because SP6 and SP9 are
also considered as the face centroid SPs in the triangular faces.

In the following loop generation step, each SLðVÞ will be reused
and their directions are trivial.

4.4.3. Special cases
There are two special cases in which the SLðFÞ s in F_SIDE3

should be carefully processed, as shown in Fig. 7. (a)When the case
indices of all three quadrilateral faces are 0�1232 or 0�1213,
SLðFÞð6;9Þ will be introduced. (b) When the case indices of F_SIDE3 and
F_SIDE1 are 0�1221 and 0�1223, respectively, both the tri-prism
and its companion tri-prism, e.g. the OPsm and its EPsm, will add
the centroid point to their F_SIDE3 (SP15). Thus, SL

ðFÞ
ð6;9Þ (or SL

ðFÞ
ð9;6Þ) in

F_SIDE3 will be replaced by SLðFÞð6;15Þ and SLðFÞð15;9Þ (or SLðFÞð9;15Þ and
SLðFÞð15;6Þ).

4.5. Loop generation and triangulation

A loop is generated by properly connecting the SLs, which can
potentially span a surface to separate a homogenous part from the
others regions. The loops can be classified into three types
according to the SLs they contained: (i) composed of SLðVÞ s only;
(ii) composed of SLðFÞ s and SLðVÞ s; and (iii) composed of SLðFÞ s
only. The loops are constructed in the order of type (i), (ii) and (iii).
Except for SLðFÞð6;9Þ, which is also considered as an SLðVÞ, each SLðFÞ is
employed only once in the loop generation.

There are a total of seven configurations for type (i) loops. Each
configuration contains only one triangle, so the loop is directly
denoted as Δðp;q;rÞ, where p, q, and r are the indices of the SPs. The
loop generation rules are closely related to the SLðVÞ s. In the rules
given below, MCi

indicates the material index of the tri-prism

corner vertex Ci, and mþ (m� ) indicates the material index at the
positive (negative) side of the loop (right-hand screw rule)

� Δð9;16;17Þ: mþ ¼MC5 ,

m� ¼
MC0 if C0 and C4 are connected;

MC1 else

(

� Δð17;16;6Þ: mþ ¼MC2 ,

m� ¼
MC0 if C0 and C4 are connected;

MC1 else

(

� Δð15;16;17Þ: mþ ¼MC5 , m
� ¼MC2 ;� Δð9;17;15Þ: mþ ¼MC3 ,

m� ¼
MC4 if SLðFÞð10;14Þ exists;

MC5 else

(

� Δð15;17;6Þ: mþ ¼MC0 ,

m� ¼
MC1 if SLðFÞð7;14Þ exists;

MC2 else

(

� Δð15;16;9Þ: mþ ¼MC4 ,

m� ¼
MC3 if SLðFÞð11;14Þ exists;

MC5 else

(

� Δð6;16;15Þ: mþ ¼MC1 ,

m� ¼
MC0 if SLðFÞð8;14Þ exists;

MC2 else

(

The loops above are generated under the assumption that
mþ om� . Otherwise, the three SPs corresponding to Δ are
recorded in the reverse order, and the values of mþ and m� are
switched.

Let SðSPÞ ¼ fSP6; SP9; SP15; SP16; SP17g. The type (ii) loops can be
generated in three steps: (a) choose an unemployed SLðFÞ whose
starting point SPstart is in SðSPÞ; (b) trace SLðFÞ s in a consistent
direction, tail to head, until one reaches the SLðFÞ whose ending
point SPend is also in SðSPÞ; and (c) close the SLðFÞ sequence with
SLðVÞðSPend ;SPstart Þ or with the only two SLðVÞs in the tri-prism. A detailed
example is provided in Fig. 8.

The type (iii) loops are only composed of SLðFÞ s with consistent
directions. These loops can be generated by tracing SLðFÞ s from
end to end. The process of loop generation is not complete until all
of the SLðFÞ s have been traversed.

The orientation of a type (ii) or type (iii) loop is determined by
the direction of the SLðFÞ s that it contains according to the right-
hand screw rule. The material index at the loop's positive (nega-
tive) side is identical to the material index of the SLðFÞ’s left
(right) side.

The loops are triangulated directly after being generated. A
maximum of five triangles are generated because none of the
loops contain more than seven edges. The loops are triangulated in
three steps: (1) generate a triangle with three successive SPs in the
loop, which yields the largest aspect ratio; (2) retain the first and
third SPs of the successive three to reuse and delete the second SP;
(3) repeat the previous two steps until fewer than three SPs
remain in the loop.

C0

C2

C1

C4C5

C3

15

0x123124C0

C2

C1

C4C5

C3
6

9

0x123312

Fig. 7. Two special cases.
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4.6. 2-Manifold preservation and verification of the separating
patterns

The quadrilateral faces with diagonally identical materials
should be carefully processed [22]; this situation is termed the
diagonal case throughout the remainder of this paper. The SLðFÞ

generation rule is slightly modified in the diagonal case for the
sake of 2-manifold preservation. The SLðFÞ s are connected counter-
diagonally in the OPsm and primary-diagonally in the EPsm as
shown in Fig. 9.

The following three results demonstrate the following: (a) the
proposed DA algorithm can be verified and (b) the surfaces
produced by the proposed DA algorithm are watertight and
piecewise 2-manifold.

First, the surface patches extracted from a tri-prism are water-
tight. The MOIEM can be extended to encode heterogeneous
tri-prisms with a 32-bit unsigned integer. By exhaustively
enumerating the 203 cases from 0�111111 to 0�123456, each
case separates a tri-prism into subspaces that are not undeter-
mined or overlapped.

Second, the surface patches extracted from a tri-prism pair are
watertight. Table 1 presents the SPs' index map for the tri-prism pair
to their cube. The numbers in the first row of Table 1 are the SP indices
of the tri-prisms, whereas the numbers in the remaining rows are the
corresponding SP indices in the cube. The SPs in the cutting plane
(F_SIDE3) are independently extracted from OPsm and EPsm and are
merged to obtain a watertight representation. As an example, in Fig. 9,
the SPs of the EPsm, i.e., SP6, SP9, SP12, and SP13, are replaced with
the SPs of the OPsm, i.e., SP6, SP9, SP13, and SP12, respectively. For the
special tri-prisms shown in Fig. 7 (left), the companion EPsm would
be one of the 17 cases: 0�122232, 0�121231, 0�123233, 0�
123243, 0�121232, 0�122231, 0�123232, 0�122233, 0�123242,
0�122234, 0�123231, 0�121233, 0�123241, 0�121234, 0�123
244, 0�123234, or 0�123245. For the special tri-prism shown
in Fig. 7 (right), the companion EPsm would be one of the 10
cases: 0�122122, 0�121121, 0�123123, 0�121122, 0�122121,

0�123122, 0�122123, 0�12�3121, 0�121123, or 0�123124. All
of these cases are watertight.

Third, the patches extracted from adjacent cubes are watertight
because the common SPs independently extracted from adjacent
cubes are replaced by the SP with the lowest subscript, and the
common faces shared by adjacent cubes are separated with same
topology. As an example, in Fig. 10, the patches extracted from a
2�2�2 dataset are watertight.

4.7. Interface and boundary surfaces

Each loop is generated with an orientation, having the material
with the lower index at its positive side. The triangles produced by
triangulating a loop will inherit the loop's orientation. An interface
is a set of triangles that isolates one material from the others. The
interface is generated by clustering the triangles associated with
the same materials, as described in the below equation:

Γðu;vÞ ¼
fΔsjmþ ¼ u;m� ¼ vg if uov

fΔsjmþ ¼ v;m� ¼ ug if vou

(
ð1Þ

where Γðu;vÞ is the interface and Δs denotes the related triangle
set. The orientations of the triangles belonging to an interface are
clearly consistent.

According to the data structure defined in Section 3, the
boundary surface related to a material, e.g., u, is composed of the
interfaces that isolate the material u from the other materials.
Thus, the boundary surface surrounding the material u can be
constructed by grouping the interfaces related to material u, as
described in the below equation:

Ωu ¼ ⋃
i ¼ �1;…;n�1;iau

Γðu;iÞ ð2Þ

where n is the number of materials of interest and �1 is the
material index for materials that are not of interest. Because all of
the interfaces about a specific material are orientable and piece-
wise 2-manifold, the boundary surface for the material is also
orientable and piecewise 2-manifold.

Similarly, as described in Eq. (3), the geometric representation
of a heterogeneous object H is also the union of interfaces:

H¼ ⋃
i ¼ �1;…;n�1

Ωi ¼ ⋃
i;j ¼ �1;…;n�1;ia j

Γði;jÞ ð3Þ
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Fig. 8. Generation of a type (ii) loop: (a) begin with SLðFÞð6;7Þ , whose starting point SP6ASðSPÞ; (b) trace SLðFÞ s in a consistent direction until SLðFÞð14;17Þ is reached, whose ending
point SP17ASðSPÞ; (c) close the above SLðFÞ s sequence with SLðVÞð17;6Þ .

C0

C3

C7

C4

C0

C1

C2

C6 C5

C2

C4

C6OPsm EPsm

12
12

13

13

6

9

6

9

F_SIDE3 F_SIDE3

Fig. 9. For the diagonal case, SLðFÞ s are connected counter-diagonally in the OPsm
and primary-diagonally in the EPsm. To obtain a watertight representation, the SPs
of the EPsm, i.e., SP6, SP9, SP12 and SP13, are replaced with the SPs of the OPsm, i.e.,
SP6, SP9, SP13 and SP12, respectively.

Table 1
The map of separating points between the cube and its tri-prisms.

SP 6 7 8 9 10 11 12 13 14 15 16 17

OPsm P12 P2 P3 P13 P6 P7 P8 P10 P11 P18 P15 P16
EPsm P12 P0 P1 P13 P4 P5 P10 P8 P9 P18 P14 P17
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The intersection of two boundary surfaces is exactly equal to
the interface between the two materials. This assertion can also be
obtained according to the definition of boundary surface in Eq. (2).
Thus, the intersections can be efficiently described by the below
equation:

Ωu⋂Ωv ¼Γðu;vÞ ð4Þ

5. Implementation and results

The proposed approach was implemented on a PC with an Intel
Core i5-2300 2.8 GHz CPU with 8 GB of main memory, a NVIDIA
Quadro FX 5800 graphics card, and Windows 7 OS. OpenGL was
employed to render the output.

5.1. Implementation and acceleration

In general, more than 60% of heterogeneous voxels in a dataset
contain only two materials. Thus, it is inefficient to process all of
the voxels in the same manner. Therefore, we designed a strategy
for acceleration. The three steps of the strategy are as follows:
(a) classify all of the heterogeneous voxels into two groups, two-
and multi-material voxels; (b) process the two-material voxels
according to the pre-generated case table and accelerate the
processing using multi-thread technology; and (c) process the
multi-material voxels in a DA manner. The pre-generated case
table is derived from the DA implementation, whose indices are
encoded according to the MOIEM. The separating triangles in the
entries are produced by the DA implementation. Because the case
table is derived from the DA implementation, it is compatible with
the DA approach. The accelerated DA approach is denoted as DAn.

In addition to the DA and DAn approaches, we implemented the
M3C [15] and BSHO [1] method for comparison. The M3C method
also faithfully separates the heterogeneous objects. However, the
raw mesh exhibits some visual defects because the orientations of
the triangles generated by the M3C method are inconsistent. We
improved upon the M3C method by rectifying the triangles with
inconsistent orientations. Let n! be the triangle's normal vector, v!
be the vector from the triangle centroid to the nearest cube corner
Cn, MCn be the material index of the Cn and tþ (t� ) be the material
index of the triangle's positive (negative) side. The orientation will
be reversed if the triangle satisfies any of the following conditions:
(a) n!� v!o0 and MCn ¼tþ ; (b) n!� v!Z0 and MCn ¼t� .

Another minor improvement is required to accelerate the M3C
method in a manner similar to DAn. Regarding the diagonal case,
the original M3C method forces the corners with the lower
material index to connect, which makes it difficult for the original
M3C method to derive a concise case table for two-material voxels.
Therefore, we separate the diagonal cases in a fixed pattern: If a
diagonal case contains C1, it is separated as the F_SIDE3 of EPsm
in Fig. 9; if not, it is separated as the F_SIDE3 of OPsm in Fig. 9.
The improved M3C method is denoted as M3Cn.

5.2. Results and comparison

The proposed DA approach was verified by both simulation and
measured datasets. The first example is the BluntFin, which is a freely
available open dataset [23] (http://www.informatik.uni-erlangen.de/
External/vollib/). This dataset is the simulation of airflow over a flat
plate with a blunt fin rising from the plate, which is also recognized as
the Utah Teapot in Computational Fluid Dynamics Visualization. As
shown in Fig. 11, the BluntFin contains three clearly distinct compo-
nents, which are rendered in maroon, olive, and teal. The boundary
surfaces of the components are denoted as Ωm, Ωo and Ωt.
Ω′

i ði¼m; o or tÞ provides information for the adjacent component,
which is obtained by switching themþ andm� of each triangle inΩi.
Ω′

i is equal toΩi in geometry. The materials that are not of interest are
denoted as �1, and the boundary is rendered in gray. Each material is
delimited by its boundary surface, which is composed of interfaces.
The Γðm;tÞ is rendered together with Γðo;tÞ for conciseness because the
Γðm;tÞ contains only six triangles.

The second dataset is the Utah Torso model, which is a high-
resolution simulation dataset obtained from finite element analy-
sis of the human thorax [24]. The scale values are sampled via
SCIRun software [25]. As shown in Fig. 12, the boundary surfaces of
six organs, i.e., the liver, kidney, lung, bone, artery and heart, are
extracted in one pass.

The dataset for the liver model shown in Fig. 13(a) was acquired
from a patient. A liver can be segmented into functional parts
according to the internal blood vessel distributions. For liver
surgery, the segment information of the patient's individual liver
is crucial for estimating the risk of operation strategies. The
proposed approach can reconstruct the segmented liver model in
one pass.

The last example, shown in Fig. 14, is the Schaedel model. The
dataset is provided with courtesy of Tiani Medgraph (http://www.
tiani.com/). There are 10 materials (objects) in the Schaedel model,

Fig. 10. The patches extracted from a 2�2�2 cubical dataset are watertight, and they are depicted with different perspective views. (a) 01, (b) 451, (c) 901, (d) 1351, (e) 1801,
(f) 2251, (g) 2701, and (h) 3151.
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and the geometric representation of the Schaedel model is also
constructed in one pass.

The Schaedel* model in Table 2 is a downsampled version of
the last dataset. The statistics of model complexity and runtime
are depicted in Figs. 15 and 16, respectively. The runtimes of the
approaches are the average of 10 runs. The BSHO method is
performed on the GPU. The runtime of the BSHO for the Schaedel
dataset is not included because the BSHO method requires too
much memory to obtain results on a desktop graphics card.
Although the BSHO method is the most memory- and time-
consuming approach, it can generate high-quality boundary sur-
faces as shown in Fig. 13(b). The video memory malloc and the
merging step (the synchronous operator) are the bottleneck of the
BSHO method. The proposed DA approach exhibits performance
comparable to that of the M3C method and can generate high-
quality boundary surfaces comparable to those of the BSHO

Fig. 12. The Utah Torso model contains six organs, i.e., the liver, kidney, lung, bone,
artery and heart.

Fig. 11. The BluntFin (a) contains three materials, which are rendered in maroon
(b), olive (c) and teal (d). Each boundary surface is formed by interfaces. The
proposed DA approach provides not only the boundary of each material but also
information for the adjacent component. (a) HBluntFin , (b) Ωm, (c) Ωo, (d) Ωt, (e) Ω′

m ,
(f) Γð�1;mÞ , (g) Γðm;oÞ , (h) Ω′

o , (i) Γðm;oÞ , (j) Γðo;tÞ , (k) Γð�1;oÞ , (l) Ω′
t , (m) Γð�1;tÞ , and (n)

Γðo;tÞ . (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

Fig. 13. All of the approaches reconstruct the liver with accurate geometry. However, the original M3C method generates the model with some visual defects because the
orientations of the resulting triangles are not consistent. (a) DA, (b) BSHO, (c) Improved M3C, and (d) Original M3C.

Fig. 14. The Schaedel model contains 10 organs, i.e., the skull, brain, eyes, clavicle,
artery, teeth, respiratory system, C1, C2 and cervical vertebra. The boundary
surfaces of the objects are constructed simultaneously.
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method. As shown in Fig. 16, the acceleration strategy is effective
for both the DA and M3C approaches. Because the interfaces of the
liver model contain a comparable number of triangles, both DAn

and M3Cn obtain a maximum acceleration effect on the liver
model. Moreover, the DAn approach proceeds at least 17% faster
than the M3Cn method. As shown in Fig. 15, because of the
difference in primitive voxels, the number of triangles generated
by the proposed DA approach is less than one-half of that of the
BSHO method (tri-prism (vs.) tetrahedron), but slightly more than
that of the M3C method (tri-prism (vs.) cube).

6. Conclusion

In this paper, we proposed a new approach for extracting the
boundary surfaces of a heterogeneous volume. We performed our
extraction using the tri-prisms. With the help of a carefully designed
hierarchical data structure, the boundary surfaces are constructed
in a DA manner i.e., separating points, separating line segments,
loops, interfaces and boundary surfaces. The information regarding

topological intersections among different boundary surfaces is pro-
vided explicitly. The proposed DA approach can be verified because
the separating patterns of a heterogeneous tri-prism can be exhaus-
tively enumerated by the proposed MOIEM. Furthermore, the strategy
for accelerating the DA approach is also effective for the M3C
approach.

Compared with the BSHO method, the proposed DA approach
has a clear advantage in performance. The M3C technique was
improved upon to eliminate the visual artifacts of the raw mesh.
Both the DAn and M3Cn approaches are 10 times faster than their
trivial implementations. Moreover, the DAn approach proceeds at
least 17% faster than the M3Cn method.

Although it is efficient, the proposed DA approach has an
inherent flaw. Let us demonstrate this flaw with a 2D illustration.
The boundaries are extracted from the two logical triangular
regions, as shown in Fig. 17(a). For the material distribution shown
in Fig. 17(b), the boundary construction is related to the manner in
which a quadrilateral is subdivided into two logical triangular
regions. We name this flaw as ”directional bias”.

In the future, we will combine the proposed DA approach with
a volume rendering technique. A conventional direct volume
rendering technique produces a volume classification from volume
data, which can be regarded as the input of the proposed DA
algorithm [26]. In this sense, the DA approach can be naturally
integrated with direct volume rendering.
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