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Abstract Efficient parameterization of point-sampled surfaces is a fundamental problem in the field of digital geometry
processing. In order to parameterize a given point-sampled surface for minimal distance distortion, a differentials-based
segmentation and parameterization approach is proposed in this paper. Our approach partitions the point-sampled
geometry based on two criteria: variation of Euclidean distance between sample points, and angular difference between
surface differential directions. According to the analysis of normal curvatures for some specified directions, a new
projection approach is adopted to estimate the local surface differentials. Then a k-means clustering (k-MC) algorithm
is used for partitioning the model into a set of charts based on the estimated local surface attributes. Finally, each
chart is parameterized with a statistical method — multidimensional scaling (MDS) approach, and the parameterization

results of all charts form an atlas for compact storage.
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1 Introduction

When processing meshes or point-sampled surfaces,
many applications require a proper parameterization
of the surface, such as texture mapping and texture
synthesis!!~3] surface morphing and editing!4~% sur-
face remeshing and multiresolution analysis("™~?!, ge-
ometry compression!'®~12l etc. The key issue behind
a proper parameterization is how globally or locally
to flatten the surface as isometrically as possible. A
good survey of surface parameterization was given by
Floater and Hormann!['3].

Naturally, surface parameterization is closely re-
lated to the topic of surface development. From knowl-
edge of differential geometry, only certain kinds of sur-
faces are developable[!¥]| for example, cylinder surface,
cone surface, and tangent surface. It is thus difficult
to parameterize a general surface globally without dis-
tortions (in terms of angle or distance distortions),
especially if the surface has areas of high curvature.
This is also true for surface meshes and point-sampled
geometry. Due to the success of the atlas approach
for texture mapping!'®!, the piecewise parameteriza-

computer graphics, point-sampled surface, segmentation, parameterization, k-means clustering, multidi-

tion approach received more and more attention in re-
cent years!19~20 The piecewise approach consists of
three steps in general: first, a surface patch is parti-
tioned into a set of charts, each chart is then param-
eterized individually as a region of a texture domain,
and finally, all parameterization results are combined
to form an atlas.

However, this piecewise parameterization scheme
is applicable only to polygonal meshes or triangu-
lar meshes, which possess globally consistent topo-
logical information. The connectivity information fa-
cilitates geometry processing and parameterization.
Point-based representation of geometry is essentially
a discrete sampling of a continuous surface without
topological information. Although topological infor-
mation may be preserved by a graph which connects
each sample point to its nearest neighbors21:22] the
high complex connectivity information leads to large
distance distortions or time-consuming parameteriza-
tions. Moreover, how to select a suitable neighborhood
for estimating the local geometric attributes of the sur-
face at each sample point is still an open problem.

In this paper, we propose an efficient segmenta-
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tion and parameterization approach for point-sampled
surfaces. The proposed approach partitions a given
point-sampled surface based on two criteria: variation
of Euclidean distance between sample points, and an-
gular difference between surface differential directions
which are estimated by a projection method. Subse-
quently, each chart is parameterized with a statistical
method so as to minimize the distance distortions. Our
main contributions can be summarized as follows:

e an estimation algorithm of local surface differ-
entials at sample points by analyzing surface normal
curvature using the projection method;

e a partition scheme which divides the surface
model into a set of charts through k-means clustering
(k-MC) according to two criteria;

e a piecewise parameterization approach with dis-
tance distortion minimizing — a multidimensional
scaling (MDS) solution.

Our motivation for using k-means clustering and
multidimensional scaling of the unstructured point-
sampled geometry lies in the following observations:
there is a high coherence in local point set regard-
ing their intrinsic geometry properties, and the goal
of low distance distortion for parameterization can be
achieved using statistical methods on a discrete point
cloud.

2 Related Work

FEstimating Local Surface Differentials. The local
shape of point-sampled surfaces can be described in
terms of differential geometry concepts such as nor-
mal, principal normal, curvature and principal curva-
ture, etc. These geometric parameters are not only re-
quired for generating realistic images of point-sampled
surfaces, but also play an important role in surface
modeling and editing!?3~25],

Pauly et all?% applied the principal component
analysis method to the neighborhoods of sample
points to estimate normals and curvatures. Based
on Levin’s MLS approximation method[?%!, Alexa and
Adamson?” adopted the gradient of the local im-
plicit surface as an accurate surface normal estimation
and presented efficient orthogonal projection operators
for sampling theory. Translating from Taubin’s inte-
gral eigenvalue method (IEM)[?®! for estimating the
tensor of curvature for polygonal meshes, Lange and
Polthier!?®! derived a similar method for estimating
principal curvatures and principal curvature directions
for point set surfaces. Nevertheless, their approach is
computationally complex and time-consuming.

Chart Partitioning. There are several methods
for partitioning surface meshes into charts. Krish-
namurthy and Levoy®® proposed an interactive ap-
proach for partition reconstruction. An automatic seg-
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mentation method is proposed by Maillot et al.*%!, by
which face clustering is guided by their normal dis-
tribution. Sander et al.['9] used a region-growing ap-
proach to segment the mesh, then merge charts ac-
cording to the criteria of both planarity and compact-
ness by a greedy face clustering algorithm. These ap-
proaches produce charts with convex boundaries. This
restriction may increase distortions in the final param-
eterization.

The algorithm by Levy et al.ll searches for sharp
feature curves which correspond to high curvature of
the surface and then grows charts so as to align chart
boundaries with these feature curves. Yamauchi et
al.3" proposed a mesh segmentation method employ-
ing the integrated Gaussian curvature to measure the
developability of a chart. They evenly distributed
the integrated Gaussian curvature over the charts and
automatically ensured a disk-like topology for each
chart. Sander et al['® proposed a chartification ap-
proach based on the dual graph of the surface mesh to
form compact charts. Their cutting curves are along
high-curvature lines, which are traced with the Dijk-
stra search algorithm. Katz and Tall®? hierarchically
decomposed surface meshes using a fuzzy clustering
approach based on geodesic distance and angular dis-
tance in the dual graph space, then optimized chart
boundaries using graph cutting techniques. All these
mesh segmentation approaches utilize the connectivity
information for chart generation or face clustering.

Chart Parameterization. There are several schemes
for flattening a surface chart as isometrically as pos-
sible. Maillot et al!'®! unfolded each chart to form a
texture atlas by optimizing edge springs of non-zero
rest length. In 2001, Sander et al'® proposed a pa-
rameterization approach which minimizes both texture
stretch and texture deviation between levels of details.
In 2002, they®3! further proposed a mesh parameter-
ization scheme specialized to the geometric signal by
minimizing the signal approximation error. Based on
a least squares approximation of the Cauchy-Riemann
equations for conformal maps, Levy et al.ll] proposed
a new parameterization method — least squares con-
formal map. Desbrun et al.l3* proposed a similar pa-
rameterization method which minimizes the distortion
of different intrinsic measures of the original mesh.

For point-sampled geometry, research on effi-
cient surface parameterization is comparatively rare.
Floater and Reimers?!l introduced meshless param-
eterization for a single point-sampled patch. They
mapped the sample points into a planar parameter
domain, one to one, by solving a sparse linear sys-
tem. In the area of reverse engineering, Barhak and
Fischer[®®! proposed respectively partial differential
equation parameterization and neural network self or-

ganizing maps parameterization for irregular and scat-
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tered 3D points. The partial differential equation
scheme can avoid self-intersection of the parametric
grid, whilst the self organizing maps approach sup-
ports a uniform and smooth reconstruction of the sur-
face. Zwicker et al.l?! described a parameterization al-
gorithm for point-sampled surfaces which is similar to
Levy’s method for polygonal meshes!!). They solved
the linear least squares problem efficiently by hierar-
chical clustering points. Zigelman et all3l presented a
surface flattening method based on a multidimensional
scaling approach. These algorithms tend to introduce
angle or distance distortions when flattening the en-
tire surface patch onto a planar domain. Moreover,
their methods are not efficient enough for large scale
models.

k-Means Clustering Algorithm (k-MC). Statisti-
cal clustering algorithms are applied in many applica-
tions, such as pattern classification, pattern recogni-
tion, data compression, and vector quantization, etc.
Among statistical clustering algorithms, k-means clus-
tering is the most widely used approach. It can be
described as follows: given a set of n data points in
R?, determine a set of k centers so as to minimize
the mean squared distance from each data point to its
nearest center. The popular heuristic for solving the
k-means clustering problem is based on a simple it-
erative scheme for finding a locally minimal solution,
namely Lloyd’s algorithm!/36-37,

Multi-dimensional Scaling (MDS). Multi Dimen-
sional scaling can be considered as an alternative to
factor analysis. It is related to the point representa-
tion of objects. MDS maximizes the fit between the
proximity measure of each pair of objects and the dis-
tances between all of them in the map. It is a statisti-
cal technique used to uncover the geometric similari-
ties of datasets.

Tenenbaum et al.*8] proposed a nonlinear dimen-
sionality reduction technique — IsoMap based on clas-
sical MDS. It preserves the intrinsic geometry of the
data, i.e., the geodesic manifold distances between all
pairs of data points. Given a set of high-dimensional
points, the method computes the geodesic distances
between each pair of points on a manifold, then applies
MDS to these geodesic distances to find a set of points
embedded in low-dimensional space with similar pair-
wise distances. A similar approach can be extended to
mesh parameterization by reducing data dimensiona-
lity to two, i.e., 2-dimensional planar datal®!.

3 Estimation of Local Surface Differentials at
Sample Points

3.1 Analyzing the Local Surface Differentials

For a given direction T in the tangent plane IT
at sample point p on a regular surface S, a unique

normal curve I' can be defined as the intersection be-
tween the surface and the normal plane corresponding
to the tangent direction T'. The normal curvature &,
of the planar normal curve is completely determined
by the tangent direction T at point p. The maximum
and minimum normal curvatures ki and ks are called
the principal curvatures. The tangent directions corre-
sponding to the two principal curvatures are called the
principal curvature directions e; and ey, respectively.

The local surface differentials {II,n, k1, K2, €1, €2,
kn} for point p on a regular surface S have the follow-
ing relationships(4:

e the principal curvature directions ey, es, and sur-
face normal n form an orthogonal local frame at point
D;

e for any tangent T' = ty1e; + tae, the correspond-
ing normal curvature can be calculated as k,(T) =
mt% + Hgtg;

e Gaussian curvature K and mean curvature H are
defined as: K = k1Ko, H = (k1 + k2)/2, which are the
intrinsic surface geometric invariants. They reflect the
surface normal variation at the sample point p.
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Fig.1. (a) Analysis for principal directions and principal curva-
tures in the tangent plane. (b) Projecting neighboring points

onto the normal plane.

Our projection algorithm of estimating the surface
differentials at the regular surface point p are derived
from the theory of differential geometry and the fol-
lowing fact[39].

Let the tangent plane at point p be II, the angle
from a chosen tangent direction T, to the principal
direction e; be 6 and the angle from T, to Tz and
T., be 61 and 65, respectively (see Fig.1(a)).



752

The normal curvatures for the direction T, T
and T, can be expressed in terms of the two principal
curvatures, respectively:

Ko = k1 cos2 0 + Kq sin? 0,
Kkp = K1 cos2(0+ 01) + kasin®(0+601), (1)
Ky = K1 082 (0 + 02) + Ko sin?(60 + 65).

Thus, the relation between the angle of tangent direc-
tion and the corresponding normal curvature can be

deduced.
sin(91 — 02)

Ko — kg sinfy

tan(20 4 65) = . (2)

— cos(6y — 62)

Ko — Ky sinf;

So, with the three normal curvatures xq, kg, K~ Te-
garding to three sampled directions and corresponding
01,05, the angle 6 and the principal directions can be
determined from (2). Furthermore, substituting 6 and
01,02 into the linear system (1), the principal curva-
tures k1 and ko can be calculated.

3.2 Calculating Normal Curvature by Curve
Fitting Scheme

To calculate the discrete curvature of unorganized
point clouds, we can adopt the traditional curve fitting
scheme. By taking the sample point p as the origin
of the local coordinate system, and the normal n as
the y axis, the projection points can be represented as
some (z;y) pairs. We then fit an n-degree polynomial
to the resulting (z;y) pairs. For efficiency, we choose
quadratic polynomial as the fitting curve due to the
fact that quadrics are the lowest degree polynomials
that can locally approximate all cases of normal cur-
vatures, such as positive curvature for convex curves,
negative curvature for concave curves, etc.

To satisfy the constraint that the polynomial curve
passes through the origin, we take the constant term
of the polynomial as zero, and the fitting polynomial
can be represented in the form

y = ax + ba?.

Then, a simple linear system can be obtained by
least squares the fitting error and solved efficiently.
The relative curvature at the origin of the planar
quadratic curve is finally estimated as

—2b
Kp = ——=
(1+a2)2

which approximated the normal curvature for the
given tangent direction.
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3.3 Estimating Local Surface Differentials by
Projection Method

Our algorithm takes as input a set of unstructured
surfels rather than a discrete point cloud. Normals
are often available, and the input surfels can be rep-
resented as clouds of point-direction pairs {(p;, n;)}.
Based on the classical differential geometry and the
analysis for principal directions and principal curva-
tures in the tangent plane, our projection algorithm of
estimating local surface differentials at a regular point
p, consists of the following four steps:

e For each regular point p,, its neighborhood is de-
termined adaptively so as to keep the local sampling
density p = k/r? as a constant, where r is the radius of
the enclosing sphere of k-nearest neighboring sample
points.

e According to the normal direction n; for sample
point p;, the tangent plane IT can easily be obtained.
On the tangent plane II, three different tangent di-
rections T'o,T3,T, are sampled. For each sampled
tangent direction, a normal plane is defined by the
surface normal and the tangent direction.

e All adaptively selected neighboring points to
p; are then projected onto this normal plane (see
Fig.1(b)). The normal curvature can be approximated
as the discrete curvature of these planar discrete pro-
jection points on the normal plane, and can be cal-
culated through curve fitting scheme (see Subsection
3.2).

e Based on the three estimated normal curvatures
Ko, Kg, Kk for three tangent directions T, T'g, T, re-
spectively, the principal directions and corresponding
principal curvatures can be determined as the above
closed form (see Subsection 3.1).

Finally, Gaussian curvature and mean curvature at
each sample point are straightforward results with the
above estimations.

Table 1. Comparison of Estimation Times for Our
Projection Method and the Integral Eigenvalue Method
(IEM) for Different Models

Timings for Differential

Models #Points Neighbors Estimations (s)

Our Method IEM Method
Bunny 35283 7/27 0.53 0.87
Horse 48484 3/99 1.27 3.03
Rabbit 67038 11/40 1.15 2.38
Fandisk 103570 6/84 1.57 3.02
Venus 134 345 9/50 2.25 4.58

Notice: The timing is measured on a PC with a Pentium IV
2.0GHz CPU, 512MB memory.

The surface normal gives us first order informa-
tion of the surface configuration around the sample
point p,, while the principal curvature directions and
the principal curvatures give us second order informa-
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tion. Unlike other schemes, our projection algorithm
can estimate local surface differentials according to the
normal curvatures for only three tangent directions,
which makes it an efficient method for estimating dif-
ferentials of large-scale point-sampled surfaces. The
above algorithm was implemented and tested on a PC
with a Pentium IV 2.0GHz CPU, 512MB memory and
Windows XP. Table 1 compares the estimation timings
for surface differentials by our projection method and
the integral eigenvalue method (IEM), which demon-
strates the efficiency of our scheme. For example, for
the horse model (it has totally 48484 sample points
and the size of neighborhood is about 3/99, i.e., ranged
adaptively from 3 to 99 (not including itself)), the tim-
ing for estimating surface differentials is about 1.27s
for our projection method while the timing for the in-
tegral eigenvalue method is about 3.03s, etc. Examples
of local differential estimations for the fandisk model
and the horse model are illustrated in Figs.2 and 3,
respectively. For the sake of visualization, all figures
for differential estimations are colored by the magni-
tude of the corresponding curvature tensors (Hermosa

(b)
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pink means high curvature zone and black means low
curvature zone, and so on). For the horse model, we
compare the performance for curvature estimations by
two different methods, which demonstrate the robust
and accuracy of our projection scheme. Furthermore,
the surface principal directions at sample points should
be obtained. Now they can be determined easily from
our projection approach (see Fig.4). They are funda-
mental in the next section for segmenting the point-
sampled model with the criterion of the angular dif-
ference between surface differential directions.

4 Model Segmentation Using k-Means
Clustering Algorithm

Given a point-sampled surface S, the goal of seg-
mentation is to decompose the surface model S into k
disjoint parts Sy,.Ss, ..., Sk, whose union is S.

In this section, a new model segmentation ap-
It
provides an efficient k-means clustering solution for
clustering a set of discrete point clouds

proach based on statistical analysis is proposed.

[36]

(d)

Fig.2. Local surface differential estimations for the fandisk model by our projection method. (a) Original fandisk model. (b) Color-

coded ki-curvature estimation. (c) kg-curvature estimation. (d) Color-coded Gaussian curvature estimation. (e) Mean curvature

estimation.

(a) (b)

)

(g)

Fig.3. Comparison of different methods for local surface differential estimations.

(c)

(d)

Upper row is differential estimations by our

projection method: (a) Original horse model. (b) Color-coded ki-curvature estimation. (c) kz-curvature estimation. (d) Color-

coded Gaussian curvature estimation. (e) Mean curvature estimation. Lower row is the corresponding differential estimations by

the integral eigenvalue method.
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(CH]

Fig.4. Principal curvature direction estimations by our projection method. (a) Original fandisk model. (b) k1-principal directions

for a corner of fandisk model. (c) x2-principal directions for a corner of fandisk model. (d) Original venus model. (e) x1-principal

directions for face of venus model. (f) k2-principal directions for face of venus model.

Our clustering algorithm is based on the under-
lying assumption that two sample points, distant in
terms of both Euclidean distance and angular differ-
ence between local differential directions, are less likely
to be in the same cluster than points which are close.
This assumption can create compact and planar sur-
face charts, so that we can achieve low distortions in
the subsequent parameterization procedure.

We define the angular difference between two sam-
ple points p; and p; as follows:

ang_Diff (p;,p;) =1 — cos® avjj
where o;; is the angle between local differential di-
rections at p; and p;. The local differential direction
can be the normal or principal curvature directions. A
large ang_Diff means a big angular deviation between
local differential directions and vice versa.

The proposed segmentation algorithm aims at par-
titioning point-sampled surfaces into k disjoint sub-
patches. Each sub-patch S; is represented by its cen-
ter C;. The local differential directions for center C;
are calculated as:

direct(C;) = Z 0(p;, C;)direct(p;)
Pjesi

where 6(-,-) denotes a Gaussian weighting or a nor-
malized Gaussian weighting function. The objective
for clustering is to minimize the distance from each
sample point to its closest center, such as:

min F

where:
F=)\ Z Euclid_Distz(p]-,Ci)/num
C: p;€S;
+(1-X Z Z ang_Diff (p;, C;)/num.
Ci p;€S;

The first term measures the average squared Eu-
clidean distance between all sample points p, over all
sub-patches and their corresponding centers. Minimiz-
ing the Euclidean distance ensures that the physical
distances between each pair of sample points on the
same chart are small, thus making each chart compact.
However, taking account of only the first term would
include sample points with big angular differences but
close in physical distances in the same chart. Thus,
the planarity of each chart cannot be guaranteed.

The second term measures the average angular dif-
ference between all p, over all sub-patches and their
corresponding centers. Minimizing the average angu-
lar difference ensures that the angular deviation be-
tween all differential directions of sample points on the
same chart are small, thus making each chart planar.

We trade off the compactness and planarity of each
chart by using a weighting parameter A\. A = 1 means
clustering the model by Euclidean distance only, whilst
A = 0 means by angular difference only. Varying the
weight will affect the clustering result, see Figs.5, 6
and 7.
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(@) (b) () (d)

Fig.5. Segmentation examples using the k-means clustering algorithm by weighting Euclidean distance and normal direction. (a)
Original venus model. (b) Model segmentation by Euclidean distance only (A = 1.0). (c) Model segmentation by A = 0.3. (d)
Model segmentation by normal direction only (A = 0.0).

(a) (c) (d) (e) (f)

Fig.6. Segmentation examples using the k-means clustering algorithm by weighting Euclidean distance and first principal curvature
direction. (a) Original rabbit model. (b) Model segmentation by Euclidean distance only (A = 1.0). (c), (d), (¢) Model segmentation
by A = 0.8, A = 0.5 and A = 0.3, respectively. (f) Model segmentation by first principal curvature direction only (A = 0.0).

(d)

(a) (b)

Fig.7.
curvature direction. (a) Original horse model. (b) Model segmentation by Euclidean distance only (A = 1.0). (c), (d), (e) Model

Segmentation examples using the k-means clustering algorithm by weighting Euclidean distance and second principal

segmentation by A = 0.8 and A = 0.4, respectively. (f) Model segmentation by second principal curvature direction only (A = 0.0).

Unfortunately, there is no efficient solution known
to this optimal problem because it is an NP-hard
problem[7). One of the popular heuristics for solving
the problem is based on an iterative scheme for find-
ing a local minimal solution. We refer to this as the
k-means clustering algorithm or generalized Lloyd’s al-
gorithm.

The idea of the k-means clustering algorithm for
point-sampled geometry segmentation is as follows:
firstly, k initial centers are selected randomly. For the
sake of efficiency, we choose k centers so as to maxi-
mize the Euclidean distances between them. Secondly,
for each sample point, the distances F' to all centers
are calculated. Using these distances, all of the dis-
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crete points are partitioned into k clusters by assigning
each point to its nearest center. Thirdly, the algorithm
updates the centers to be the centroids of their associ-
ated clusters before starting a new partition with these
new centers. The second and third steps are iterated
until convergence or until some predefined number of
iterations is performed. Finally, the whole model is
decomposed into k disjoint charts according to these
final clusters.

However, due to the expensive cost of determin-
ing the nearest centers, a naive implementation of the
generalized Lloyd’s algorithm will be time-consuming.
To improve the efficiency of the proposed clustering
algorithm, we organize the discrete point clouds in a
Kd-tree and adopt a filtering algorithm(®7” for com-
puting the nearest center to each sample point in each
stage of Lloyd’s algorithm. We associate each node of
the Kd-tree with a subset of candidate centers. The
candidate centers are selected which might serve as the
nearest neighbors for some sample points lying within
the associated bounding box. For the root of tree,
the candidate centers consist of all k centers. While
traversing to the node’s children, the special center C*
closest to the midpoint of the bounding box is found,
and if any sample points in the bounding box are closer
to the C* than they are to candidate center C, the
candidate center C for the children node is pruned
or filtered. For each leaf node of the Kd-tree, we as-
sign each sample point to its single candidate or to its
nearest candidate center.

In our experiments, the user can adjust three issues
to control the segmentation results. The first param-
eter is the chart number k for every point-sampled
model. The chart number k is adaptively chosen de-
pending on the number of sample points and the shape
complexity of the sampled geometry. For each chart,
the number of sample points should not exceed a given
threshold so as to ensure the efficiency of succeeding
chart parameterization, and the angular difference of
sample points should not be large so as to minimize
the distance distortion of chart parameterization. The
second issue is the criterion selection of the clustering
algorithm, for example, clustering by weighting Eu-
clidean distance and normal direction or by weighting
Euclidean distance and principal curvature directions.
By weighting Euclidean distance and normal direction,
we segment the venus model into 12 charts (Fig.5). For
rabbit and horse model, by weighting Euclidean dis-
tance and principal curvature directions, we segment
the rabbit model into 8 charts (Fig.6) and the horse
model into 10 charts (Fig.7), respectively. The final
parameter is the weighting parameter A in the objec-
tive function F', which trade off the compactness and
planarity of each chart. Both Figs. 6 and 7 show that
a large value of A emphasizes the compactness of the
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model chart, whilst a small A emphasizes the planarity
and segments the model according to principal curva-
ture directions. We can choose these proper parame-
ters for model segmentation according to the specific
application and the underlying geometric model.

5 Chart Parameterization Using
Multidimensional Scaling

Given a chart composed of discrete unorganized
point clouds Sy, = {p;,Ps, .-, PN}, We want to flatten
it so as to establish a chart parameterization. As a pre-
process, the geodesic distance between each point pair
is approximated by the shortest path distance, which
can be calculated based on the following graph-based
approach: first, a neighborhood graph is constructed
by connecting a given point to its nearest neighbors,
with link weights equal to the Euclidean distances be-
tween the points; then the shortest path distances are
computed between all point pairs in the constructed
graph using Dijkstra’s or Floyd’s algorithm.

Our algorithm for chart parameterization is based
upon the IsoMap (isometric feature mapping) dimen-
sionality reduction techniquel®®!, which is termed mul-
tidimensional scaling (MDS) in the context of statis-
tics. The approach first builds a squared geodesic
distance matrix M. Elements of matrix M are the
squared geodesic distances between sample points p;
and p; (4,5 = 1,2,...,N). The chart parameteriza-
tion is equivalent to constructing an embedding of the
parameterized coordinates in a 2-dimensional plane,
such that for each pair of sample points the error be-
tween corresponding squared Euclidean distance in the
plane and squared geodesic distance in the underly-
ing surface chart is as small as possible. The MDS
method can optimally preserve the intrinsic geometry
of the original surface chart/®38]. Our idea of MDS is
to approximate the matrix M by a squared Euclidean
distance matrix E, which is constructed as follows:

e determine the N X N symmetric matrix M
by evaluating the squared geodesic distances between
each pair of sample points;

e apply double centering and normalization to M,

1
ie., B = fiJMJ, where J is an N x N centering

1
matrix defined by J = I — NllT, I is the N x N

identity matrix, and 1 is a vector of ones of length
N. This is used to restrict the barycenter of the set of
pairwise distances to lie at the origin;

e compute the eigenvalues {);} (in decreasing or-
der) and their corresponding eigenvectors {v;} of B
(i=1,2,...,N), let ! be the j-th component of the
i-th eigenvector;

e finally, the first and the second eigenvectors rep-
resent the parameterization information of correspond-
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ing sample points. So, for each sample point p; of the
original surface, let p; be its corresponding point in
the parameter plane. Then its k-th coordinate is:

=V, (k=1,25=12,.. N)

For the spectral decomposition of the matrix B,
i.e., in our case, to find the two largest eigenval-
ues and their corresponding eigenvectors, we use the
power method[*?! to accelerate this procedure due to
its O(2N?) computational complexity. However, in
order to efficiently parameterize each chart, the chart
size should not exceed a given threshold, which can
be achieved by adaptively choosing the chart number
k depending on the sampled geometry as mentioned
in Section 4. In our experiments, the threshold of the
chart size is 3000 sample points.

The distance distortion regarding the parameter-
ization of one chart can be measured as a weighted
average of the distance distortion (wAvDist_D) over
all sample points:

1

PIRL
k

wAvDist_D = > N;Dist_D(i)

i

where N; denotes the number of selected neighbor-
ing points for sample point p,;, and Dist_D(i) de-
notes distance distortion of sample point p, under pa-
rameterization, which can be calculated as the root-
mean-square stretch of neighboring points p; (G =
1,2,...,N;) for sample point p;:

< dgeO(pian) )2 . ( dgeO(Pi:Pj) )2
max | ————~ ) +tmn{-—7F7——
dparam (Pz, PJ) dparam (pm p])

2

where dparam (P;, P;) represents the Euclidean distance
between the parametric coordinates p; and p;, and
dgeo(pi,pj) represents the geodesic distance between
points p; and p;.

The examples of parameterizing one chart are
shown in Figs. 8 and 9. In Floater’s meshless param-
eterization, we use a natural ordered boundary?! for
minimizing the distance distortion. Some comparisons
between our MDS and meshless parameterization al-
gorithm are given, which indicate that the distance
distortion of our MDS approach is always small.

Finally, we pack all parameterized charts into a
rectangular texture domain by adopting a rectangle
packing algorithm[!¢l. The example of the bunny
model parameterization is shown in Fig.10.

6 Conclusions

In this paper, a differentials-based segmentation
and parameterization approach for point-sampled sur-
faces is proposed, which consists of three parts. Based
on the analysis of surface normal curvature and es-
timated by curve fitting scheme, a new projection
scheme is employed to estimate local surface differen-
tials, including principal curvatures and principal cur-
vature directions. An efficient k-means clustering al-
gorithm is then proposed for partitioning the model
into a set of charts. Finally, the multidimensional
scaling method is used for chart parameterization, a
special nonlinear dimensionality reduction technique
which minimizes distortion of distances between all
pairs of data points. Compared with other parameter-
ization approaches, our method partitions the point-
sampled surface based on its local geometric features,
hence producing better parameterization results.

(a) (b)

Fig.8. Parameterization one chart of the bunny model.

(a) Selected chart on bunny model.

(c) (d)

(b) Parameterization using our

parameterization approach (distance distortion is 1.1112). (c) Parameterization by Floater’s uniform parameterization approach

(distance distortion is 1.2156). (d) Parameterization by Floater’s reciprocal distance parameterization approach (distance distortion

is 1.1652).
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Fig.9. Parameterization of two charts of the Santa model. Left: model segmentation using the clustering algorithm. Top Right: first

chart on the model, and parameterization using our parameterization approach (distance distortion is 1.0723), Floater’s uniform

parameterization approach (distance distortion is 1.1674) and Floater’s reciprocal distance parameterization approach (distance

distortion is 1.1170), respectively. Down Right: second chart on the model, and parameterization using our parameterization

approach (distance distortion is 1.1263), Floater’s uniform parameterization approach (distance distortion is 1.2395) and Floater’s

reciprocal distance parameterization approach (distance distortion is 1.1809), respectively.

(a)

(b)

A 00T eK

(e

Fig.10. Forming a texture atlas for the bunny model. (a) Original bunny model. (b) Model segmentation based on first principal

curvature direction. (c¢) Chart parameterization to form the texture atlas.

With the proposed piecewise parameterization

method, future research should focus on geometry pro-

cessing of point-sampled objects, such as morphing,
resampling, editing, compression, etc.
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