
The Visual Computer manuscript No.
(will be inserted by the editor)

Jianbing Shen · Xiaogang Jin (Corresponding author) · Xiaoyang Mao ·
Jieqing Feng

Deformation-based Interactive Texture Design using
Energy Optimization

Abstract In this paper, we present a novel interactive
texture design scheme based on deformation and energy
optimization. Given a small sample texture, the design
process starts with applying a set of deformation opera-
tions to the sample texture to obtain a set of deformed
textures. Then local changes to those deformed textures
are further made by replacing their local regions with the
texture elements interactively selected from other tex-
tures. Such a deform-select-replace process is iterated for
many times until the desired deformed textures are ob-
tained. Finally those deformed textures are composed to
form a large texture with the graph-cut optimization. By
combining the graph-cut algorithm with an energy op-
timization process, interactive selections of local texture
elements are done simply through indicating the posi-
tions of texture elements very roughly with a brush tool.
Our experimental results demonstrate that the proposed
technique can be used for designing a large variety of
versatile textures from a single small sample texture, in-
creasing or decreasing the density of texture elements, as
well as for synthesizing textures from multiple sources.

Keywords Deformation · Interactive · Texture design ·
Brushes · Energy optimization

1 Introduction

Textures have been a research focus for many years in
human perception, computer graphics and computer vi-
sion. Recent decades of research activities in this area
emphasize on texture synthesis. Given a sample texture,
a texture synthesis algorithm generates a new one bear-
ing the same visual characteristics. In spite of the fact

Jianbing Shen · Xiaogang Jin · Jieqing Feng
State Key Lab of CAD & CG, Zhejiang University, Hangzhou,
310027, P.R.China
E-mail: {shenjianbing, jin, jqfeng }@cad.zju.edu.cn

Xiaoyang Mao
University of Yamanashi, Japan
E-mail: mao@yamanashi.ac.jp

that numerous methods have been proposed for texture
synthesis, how to design a variety of large textures from a
single small sample texture is still a challenging problem.

Recently, Matusi et al. [20] has developed a system for
designing novel textures in the space of textures induced
by an input database. However, their morphable texture
interpolation is based on a single one-to-one warping be-
tween the pairs of texture samples, which might be too
restrictive for textures with highly irregular structures,
causing discontinuous mappings of the patches to the
original image. Shen et al. [24] proposed a completion-
based texture design technique for producing a variety of
textures by applying deformations to the extracted lay-
ers of texture elements. The main limitation of Shen et
al.’s method, however, lies in its no interaction over the
local property of the resulting texture elements.

In this paper, we present a new deformation-based
interactive texture design algorithm. The proposed algo-
rithm has the ability to locally change the visual prop-
erty of texture elements with little user interaction, and
hence drastically broadens the variation of textures which
can be synthesized with the existing methods. As shown
in Figure 1, from a single small sample texture, our tech-
nique can create a variety of versatile textures, regular or
irregular, with increased or decreased density of texture
elements. The main contributions of our work consist of
the following three aspects:

– A novel framework for designing a large variety of
textures by integrating the techniques of 1) texture
synthesis, 2) interactive image editing, 3) graph-cut
based optimization, and 4) gradient-based Poisson
optimization.

– An effective graph-cut and energy optimization based
method for automatically extracting texture elements
indicated by the designer.

– A new optimization based algorithm for synthesizing
textures from multiple sources.

In the rest of the paper, we first introduce the related
work on texture synthesis and interactive image manip-
ulation tools in Section 2. Then, in Section 3, we discuss



2 Jianbing Shen et al.

the details of our deformation and energy optimization
based interactive texture design scheme. The extension
of the existing texture deformation algorithm using the
completion technique is also described in Section 3. The
details of the new graph-cut based energy optimization
method are given in Section 4, and the method for syn-
thesizing textures from multiple sources using optimiza-
tion is presented in Section 5. After showing the exper-
imental results in Section 6, we conclude the paper and
show the directions for future work in Section 7.

2 Related work

Texture synthesis

There is a long sequence of earlier papers on pixel-based
and patch-based texture synthesis, which we can briefly
review here. In nonparametric texture synthesis [2,9],
texture is synthesized one pixel (or one patch) at a time
by finding pixels (patches) with similar neighborhood
to the already synthesized pixels (patches) in the sam-
ple texture. The traditional approach is to generate tex-
tures sequentially in a scanline order. Improvements in-
clude hierarchical synthesis [1], coherent synthesis [4,
22], similarity-based synthesis [5], feature matching and
patch deformation synthesis [16], texton revisited syn-
thesis [25], and appearance-space synthesis [26].

A number of authors have tackled the challenge of
combining and mixing textures. Efros and Freeman [2],
Cohen et al. [9] and Kwatra et al. [12] synthesized a non-
uniform texture composed of homogeneous patches. Wei
et al. [10] generated mixture of textures from multiple
input textures. Liu et al. [18] described a system to ana-
lyze and manipulate photographic textures that allows a
user to design near regular textures. Similar to the work
by Liu et al. [18], Matusik et al. [20] strived to build
a comprehensive texture model, then constructed a tex-
ture space that spanned the range of textures induced
by a database of natural images.

The idea of applying transformations to the patches
has also been discussed by Kwatra et al. [12] in their
patch-based texture synthesis technique using the graph-
cut algorithm. The results are made using deformation
operations, such as rotation, mirror and scaling. But as
mentioned in their paper, the cost for searching match-
ing patches will increase when the extent of deformation
increases. Shen et al. [24] proposed a completion-based
texture design algorithm by applying transformations to
the extracted texture layers. Their technique can pro-
duce a wide variety of textures by making changes to
the size, orientation and relative position of texture ele-
ments. However, the main limitation of their method lies
in its inability to take into consideration of the designer’s
need and creation. Interactions on local texture elements
are not allowed for the designers in their method.

Interactive image manipulation tools

Interactive image manipulation and editing packages are
commonly utilized by digital photographers, such as Ado-
be Photoshop. In their workflow [21], images are manipu-
lated directly and immediate visual feedback is provided.

Recently, many researchers have proposed a lot of
interactive digital image editing tools by using region-
based methods, e.g., magic wand in Photoshop [21], in-
telligent paint [7], interactive graph-cut image segmenta-
tion [17], lazy snapping [19], and interactive image Pho-
tomontage [15].

Our work is most closely related to the method of
interactive digital montage [15], where users use brushes
to indicate which parts of a set of photographs should
be combined into a composite result. Similarly, our pro-
posed method also uses the strokes to define constraints
for designing a variety of deformed textures. By allowing
the user to interact with local texture elements, our tech-
nique can provide local changes to the size, orientation
and relative position of texture elements according to the
texture designer’s need and creation. Moreover, our pro-
posed algorithm has the ability to increase or decrease
the density of texture elements interactively, which is
suitable for designing a variety of versatile textures from
a single small sample texture.

3 Our approach

3.1 Algorithm Overview

The goal of our algorithm is to enable the texture de-
signer to easily create a deformed texture in a spatially
varying manner, along with several common types of de-
formation operations (rotation, translation, mirror, scale
and flip).

Our proposed workflow is summarized as below:

1. Load a small sample texture image I.
2. Apply deformation operations (rotation, translation,

mirror, scale and flip) to produce a set of small de-
formed textures Ib1, Ib2, · · ·, Ibk. The range of rota-
tion, translation and scale is interactively controlled
by the designer.

3. Make local changes to the deformed textures by copy-
ing local texture elements from one to another.

4. Design large textures from the deformed textures ob-
tained in step (3) by using the graph-cut optimiza-
tion algorithm. Deformation operations are further
applied if it is necessary.

5. Repeat steps (2) to (4) until a satisfactory set of tex-
tures Id1,Id2,· · ·,Idk is obtained, combining the tex-
ture deformation algorithm described in Section 3.3.

This workflow is illustrated by the sequence of images
in Figure 1. Given an input sample texture (Figure 1(a)),
a set of deformed textures are produced (Figure 1(b1,



Deformation-based Interactive Texture Design using Energy Optimization 3

Fig. 1 Our deformation-based interactive texture design
algorithm. a) Small input texture I ; b1),b2),b3) the ini-
tial deformed textures Ib1, Ib2, · · · , Ibk; c1),c2),c3) the tex-
ture elements regions indicated by the designer’s interactive
brush; d1),d2),d3) the composed result by local deforma-
tions using energy optimization; e1),e2),e3) the interactive
deformed textures Ic1, Ic2, · · · , Ick; f1),f2) the designed tex-
tures Id1,Id2,· · ·,Idk.

b2, b3)) after applying deformation operations. Then the
user uses brushes to paint some texture elements inter-
actively (Figure 1(c1, c2, c3)) and the corresponding re-
gions of those texture elements are automatically calcu-
lated (Figure 1(d1, d2, d3)). Those texture elements are
stitched into other textures, together with the gradient-
based Poisson optimization [8,15,24], in order to obtain
the textures with varying local properties (Figure 1(e1,
e2, e3)). Finally, by applying the texture deformation al-
gorithm described in Section 3.3 to those deformed tex-
tures, the large textures are designed (Figure 1(f1, f2)).

3.2 Interactive local texture deformation

In order to make the above workflow effective, several
requirements should be met, such as quickly generated

previews of the overall result, a simple, intuitive and easy
to use mechanism for performing the local deformation,
and an undo function allowing the user to modify pre-
viously specified adjustments. Our prototype implemen-
tation is based on the interactive digital photomontage
technique [15], and supports several types of brushes that
can be used to set constraints for the texture’s local de-
formations. Similar to [15], the designer uses the most
frequently used single-texture brushes.

At step (3), the local deformation of a texture is re-
alized by replacing its local regions with the texture el-
ements from another deformed texture. We call the tex-
ture to be locally deformed the base texture Ibase(Ibase ∈
{I, Ib1, Ib2, · · · , Ibk}) and the texture providing the tex-
ture elements the reference texture Iref (Iref ∈ {{I, Ib1,
Ib2, · · · , Ibk} − Ibase}). As shown in Figure 1, the user
does not need to precisely specify the region including
the texture elements in Iref . Instead, the designer uses
the brush to roughly paint the texture elements (“yel-
low flowers”) in Iref . The corresponding region includ-
ing the texture elements is calculated automatically with
the graph-cut based energy optimization technique. The
obtained texture elements are then embedded into to the
base texture Ibase seamlessly by the gradient-based Pois-
son optimization method [15,24]. Such local deforma-
tions are repeated for several times, while at each step
the user is allowed to choose new texture elements by
painting new strokes according to his creation. The re-
sulting base texture is further refined by the texture de-
formation algorithm using completion and then is used
as the reference texture for another base texture. The
descriptions of the texture deformation algorithm using
completion and the graph-cut based energy optimization
technique can be found in Section 3.3 and Section 4, re-
spectively.

3.3 Texture deformation using completion

The last step of our texture design workflow employs
the texture deformation algorithm using the completion
technique [13,23,24], which is based on the method pro-
posed in [24]. We refer the readers to [24] for a de-
tailed description of their completion-based texture de-
sign method. The texture deformation algorithm using
the completion technique is summarized as follows:

– Input: single sample texture I.
– Step 1: layering, extracting texture layers using ex-

isting color image segmentation techniques [6,14].
– Step 2: deformation, applying chaotic-based deforma-

tion operations (such as rotation, translation, mirror,
flip and scale) to the texture layers.

– Step 3: example-based image completion, inpainting
the hole regions induced by deformation with the
graph-cut algorithm.



4 Jianbing Shen et al.

– Step 4: smoothing, removing the visual artifacts pro-
duced by step 3 through the gradient-based Poisson
optimization [15].

– Output: deformed textures I1,I2,· · ·,Ik.

In order to increase the versatility of the deformed
textures, we add a new flip operation to the set of defor-
mation operations provided by [24]. Moreover, we extend
it with more robust chaotic maps [3] beyond the basic
logistic map. The experimental results demonstrate that
our technique can generate a wide variety of large de-
formed textures with a good stochastic property.

4 Interactive design using energy optimization

Boykov et al.[17] has developed several techniques which
use the graph-cut algorithm for optimizing pixel labeling.
Some early vision problems, such as image restoration,
can be modeled as an image labeling problem which is
to find a labeling f that assigns each pixel p a label fp,
so that f is both piecewise smooth and consistent with
the target data. Such a labeling f can be obtained as the
result of minimizing the following energy:

E(f) = Esmooth(f) + Edata(f) (1)

where Esmooth measures the extent to which f is not
piecewise smooth, while Edata measures the disagree-
ment between f and the objective data. Boykov et al.[17]
proposed an algorithm to find f through an iterative pro-
cess. At each step, the graph-cut algorithm is used to
find out the swapping between two labels α and β (α-
β swap) or the assigning of a given label (α-expansion)
while decreasing the energy E(f) from that of the pre-
vious step. The labeling computation is guaranteed to
be within a factor of two of the global minimum when
the cost function is a metric. Agarwala et al.[15] used
Boykov’s graph-cut optimization algorithm for their in-
teractive digital photomontage application, where a new
cost function is used to guide the optimization process
resulting a smooth composition of source images.

We further extend Agarwala’s work by employing the
energy optimization for texture montage. Suppose that
we have obtained k deformed textures Ib1, Ib2, · · ·, Ibk af-
ter applying the deformation operations in the first step.
We want to make local changes to some of those tex-
tures by replacing their local regions with the texture
elements from remaining textures. As shown in Figure 2,
the user starts with selecting a base texture Ibase (Figure
2(a), the texture to be locally changed) and the reference
texture Iref (Figure 2(b), the texture providing the tex-
ture elements). After the user indicates the texture ele-
ments in Iref using brushes (Figure 2(c)), a sub-image
Is (Is ⊂ Iref ) enclosing the brush stroke is clipped out
from Iref . In order to produce the locally deformed tex-
ture (Figure 2(f)), we use the graph-cut based energy
optimization algorithm to compute the label of pixels in
the composite texture (Figure 2(d)) and find the best

path (Figure 2(e)) to smoothly stitch Is with Ibase. The
labeling of the pixels in the composite texture is a map-
ping of the pixels between the base texture Ibase and the
clipped reference texture Is. We denote the label for each
pixel as L(p), it is certain that a seam (Figure 2(e)) ex-
ists between two neighboring pixels (p, q) in the output
if L(p) �= L(q).

Fig. 2 Illustration of our interactive design using energy op-
timization. a) The base texture Ibase; b) the reference texture
Iref ; c) the position of the user’s brush; d) the cut region
(with red boundary) including texture elements using our en-
ergy optimization method; e) its corresponding labeling map;
f) the designed texture.

In [15,17], the energy function E for the labeling L
of an image is defined as follows:

E(L) = Edata(L) + λ·Esmooth(L) (2)

Edata(L) =
∑

p

Ed(p, L(p)) (3)

Esmooth(L) =
∑
p,q

Es(p, q, L(p), L(q)) (4)

where the first term is defined by the distance to the
image objective while the second term is defined by the
distance to the seam objective. Since we want to replace
the local region of the base texture with the specified
texture elements in the reference texture, the image ob-
jective here is Is. Therefore Edata(L) is computed as fol-
lows

Edata(L) =
{

0, if L(p) = Is

v, if L(p) �= Is
(5)

where v is a user specified large value.
Since the labeling is a mapping to either Ibase or Is ,

the second term is defined by the distance between the
pixels of Ibase and Is, that is:

Es(p, q, L(p), L(q)) = 0, if L(p) = L(q) (6)

Otherwise, the energy is computed in the same way as
[15]:

Es(p, q, L(p), L(q))



Deformation-based Interactive Texture Design using Energy Optimization 5

=




Mx, if “colors”
My, if “gradients”
0.5(Mx + My) if “colors + gradients”

(7)

where Mx = ‖CL(p)(p)−CL(q)(p)‖+‖CL(p)(q)−CL(q)(q)‖,
My = ‖∇GL(p)(p)−∇GL(q)(p)‖+‖∇GL(p)(q)−∇GL(q)(q)
‖, and ∇G(p) is a 6-component color gradient (in R, G,
B) at pixel p.

The algorithm terminates when a pass over all labels
fails to reduce the cost function. Kwatra et al. [12] and
Agarwala et al. [15] have successfully used the “alpha
expansion” with this interaction penalty. In our case,
we have also found that it is good enough to produce
satisfactory composite textures (Figure 2(f)).

5 Texture design from multiple sources using
optimization

Our texture design method from multiple sources us-
ing optimization is extended from [10], but differs from
theirs in that we perform patch-based synthesis via opti-
mization while theirs is based on pixel-by-pixel mixture.
The goal of multi-source texture design is to synthesize
new textures that capture the combined characteristics
of several input textures. For example, given four flower
and grass textures (Figure 6(a)), a set of new textures
can be generated with a hybrid appearance (Figure 6(b)-
(l)).

The details of the proposed texture design algorithm
from multiple sources via optimization are described as
follows:
– Input: multiple texture sources {I1, I2, · · · , Ik}.
– Step 1: each source texture is divided into l patches,

and the source textures are represented by the patch
sets: I1 = {P I1

1 , P I1
2 , · · · , P I1

l }, I2 = {P I2
1 , P I2

2 , · · · , P I2
l },

· · ·, Ik = {P Ik
1 , P Ik

2 , · · · , P Ik

l }.
– Step 2: randomly select an initial patch P Ik

l , paste it
to the left top corner of the output texture Imk, then
find the best matched neighborhood patch Pi con-
strained through optimizing the following function:

min
∑

(P
Ik
l

,Pi)

wi · (‖P Ik

l − Pi‖ + ‖Ni(P Ik

l ) − Ni(Pi)‖)(8)

where index i runs through all the input textures,
Ni(P Ik

l ), Ni(Pi) are the neighborhoods of P Ik

l and
Pi, respectively, and wi are the weights specified by
the relative importance of the input sources.

– Step 3: copy the best matched patch Pi to the out-
put texture Imk. Apply the graph-cut algorithm [17]
to get a minimum-error-cut seam in the overlapped
region between Pi and P Ik

l .
– Step 4: run steps (2) to (3) iteratively until the whole

output texture Imk is synthesized, the texture defor-
mation using the completion technique described in
Section 3.3 is then employed for further designing the
deformed textures.

– Output: the final designed textures {Im1, Im2, · · · , Imk}.

6 Experimental results and discussions

Our algorithm has been applied to a variety of sample
texture images. In our experiments, most of the source
texture images are downloaded from the web sites1. For
comparison, we use those sample textures which have
been used by existing texture synthesis work [2,9,12].
All the experiments shown in this section were run on a
PC with Pentium IV 1.6GHz CPU + 512MB RAM.

In Figure 3, we compare our approach with other
existing techniques. The result for Graphcut was taken
from [12], while the other two were generated by our
implementation. The texture size is 268×230 for Figure
3(a), and 360×360 for Figure 3((b), (c), (d), (e)). The
patch size is selected as 64×64. From the images, we can
find that the quality of the texture generated with our
approach is superior to that of Image Quilting [2] and
Wang Tiles [9], and is comparable to the result produced
by Graphcut [12]. The sample texture in Figure 3(a) con-
sists of only two different lotus flowers. The techniques
which simply use the original patches selected from the
sample texture can lead to the repetition of those tex-
ture elements in the resulting large texture. As shown
in Figure 3(d), all the flowers have the same shape and
orientation as either of the two flowers in the sample tex-
ture. However, our interactive technique can create the
texture consisting of the flowers of different shape, size
and orientation, which is demonstrated in Figure 3(e).
The density of the lotus flowers in our results can be in-
creased or decreased at the desired position according to
the user’s need.

Figure 4 is another example demonstrating the effec-
tiveness of our method, comparing with the Graphcut
[12] method. As shown in Figure 4(c)-(e), the density of
texture elements (flowers) is increased (Figure 4(c), (d))
or decreased (Figure 4(e)).

Figure 5 and Figure 7 give more examples demon-
strating the capability of our technique for creating a
large variety of textures from a small sample, while main-
taining the continuity of texture features as well as the
shapes of individual texture elements. Our presented met-
hod change the density of texture elements (yellow flow-
ers) interactively according to the designer’s need. In
Figure 5(a2)-(a6), the density of the texture elements
decrease gradually. We can also interactively make the
left part and the right part of the designed texture with
different density (Figure 5(a3)), create new texture ele-
ments (Figure 5(a5)), locally enlarge the size of texture
elements (Figure 5(a6)), design regular (Figure 5(a5),
(a6)) or irregular (Figure 5(a2)-(a4)) texture patterns,
and make the shape of designed texture look like a large
“S” shape (Figure 5(b5)).

1 http://www.cc.gatech.edu/cpl/projects/graphcuttextures
http://people.csail.mit.edu/wojciech/TextureDesign/index.html



6 Jianbing Shen et al.

(a) Input

(b) Image Quilting [2] (c) Wang Tiles [9]

(d) Graphcut [12] (e) Our method

Fig. 3 Comparison of our deformation-based algorithm with
Image Quilting [2], Wang Tiles [9] and Graphcut [12].

Figure 6 demonstrates another interesting application
of our technique, which synthesizes textures from mul-
tiple source textures using our optimization method. In
Figure 6, four input textures of size 230×230 are used to
interactively create a variety of designed textures of size
360×360 (Figure 6(b)-(l)).

7 Conclusions and future work

A novel deformation-based interactive texture design met-
hod using energy optimization has been proposed in this
paper. Experimental results demonstrate both the feasi-
bility and the effectiveness of our algorithm. The main
advantage of our algorithm over the most existing tex-
ture synthesis methods lies in its capability to create a
wide variety of very natural textures interactively, only
from a single small sample texture, according to the tex-
ture designer’s need and creation. By applying the ex-
tended graph-cut based energy optimization approach
and the completion-based texture deformation method,
we have designed textures with good stochastic prop-
erty. Our experimental results also demonstrate that the
proposed technique can be applied to other applications
such as texture synthesis from multiple sources.

Although the deformation operations used in our met-
hod can produce good results, it is very meaningful to de-
velop more sophisticated and powerful deformation tools
in the future. Another potential extension of our method
is its application in dynamic texture design [11], where
the consistency of the deformed textures between adja-
cent frames should be considered.

(a) Input

(b) Graphcut [12] (c) our method

(d) our method (e) our method

Fig. 4 Comparison of our deformation-based algorithm with
Graphcut [12].

8 Acknowledgements

This work is supported by the 973 program (Grant No.
2002CB312101),China 863 program (Grant No. 2006AA-
01Z314), the National Natural Science Foundation of
China (Grant No. 60573153), the Natural Science Foun-
dation of Zhejiang Province (Grant No. R105431), and
the Program for New Century Excellent Talents in Uni-
versity (Grant No. NCET-05-0519). The authors would
like to thank Vivek Kwatra for making their Graphcut
texture synthesis results available.

References

1. Wei, L. Y., Levoy, M.: Fast texture synthesis using
treestructured vector quantization. In: Proceedings of
SIGGRAPH ’00, New Orleans, pp. 479-488. ACM, New
York (2000)

2. Efros, A. A., and Freeman, W. T.: Image quilting for
texture synthesis and transfer. In: Proceedings of SIG-
GRAPH ’01, Los Angeles, pp. 341-346. ACM, New York
(2001)

3. Jakimoski, G., and Kocarev, L.: Chaos and cryptography:
block encryption ciphers based on chaotic maps. IEEE
Transactions on Circuits System-1: Fundamental Theory
and Applications. 48(2), 163-169 (2001)



Deformation-based Interactive Texture Design using Energy Optimization 7

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)

(d1) (d2) (d3) (d4) (d5) (d6)

Fig. 5 Examples of spatially varying designed textures using our deformation-based method. Left columns ((a1), (b1), (c1),
(d1)) are the input textures, the others are the deformed textures. Texture size: input: 268×230; output: 360×360.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6 Designed textures from multi-source textures using our optimization algorithm. Texture size: input: 230×230; output:
360×360.



8 Jianbing Shen et al.

Fig. 7 Deformed textures using our deformation-based designing method. The first row is the small input texture, the others
are the deformed textures. Texture size: input: 144×144; output: 360×360.



Deformation-based Interactive Texture Design using Energy Optimization 9

4. Dischler, J.-M., Maritaud, K., Lévy, B., and Ghazanfar-
pour, D.: Texture particles. Computer Graphics Forum.
21(3), 401-410 (2002)

5. Brooks, S., and Dodgson, N.: Self-similarity based texture
editing. ACM Transactions on Graphics. 21(3), 653-656
(2002)

6. Comaniciu, D., and Meer, P.: Mean shift: A robust ap-
proach towards feature space analysis. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 24(5), 603-
619 (2002)

7. Barrett, W. A., Cheney, A.S.: Object-based image editing.
ACM Transation on Graphics. 21(3), 777-784 (2002)

8. Pérez, P., Gangnet, M., and Blake, A.: Poisson image edit-
ing. ACM Transactions on Graphics. 22(3), 313-318 (2003)

9. Cohen, M. F., Shade, J., Hiller, S., Deussen, O.: Wang
tiles for image and texture generation. ACM Transactions
on Graphics. 22(3), 287-294 (2003)

10. Wei, L. Y.: Texture synthesis from multiple sources. Pro-
ceedings of the SIGGRAPH 2003 conference on Sketches
& applications. ACM, New York (2003)

11. Doretto. G., Chiuso, A., Wu, Y., Soatto, S.: Dy-
namic Textures. International Journal of Computer Vi-
sion. 51(2), 91-109 (2003)

12. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick,
A.: Graphcut textures: image and video synthesis using
graph cuts. ACM Transactions on Graphics. 22(3), 277-
286 (2003)

13. Criminisi, A., Pérez, P., Toyama, K.: Region filling
and object removal by exemplar-based image inpainting.
IEEE Transactions on Image Processing. 13(9), 1200-1212
(2004)

14. Felzenszwalb, P. F., Huttenlocher, D. P.: Efficient graph-
based image segmentation. International Journal of Com-
puter Vision. 59(2), 167-181 (2004)

15. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S.,
Colburn, A., Curless, B., Salesin, D., Cohen, M.: Interac-
tive digital photomontage. ACM Transactions on Graph-
ics. 23(3), 294-302 (2004)

16. Wu, Q., Yu, Y.: Feature matching and deformation for
texture synthesis. ACM Transactions on Graphics. 23(3),
362-365 (2004)

17. Boykov, Y., Kolmogorov, V.: An experimental compari-
son of min-cut/max-flow algorithms for energy minimiza-
tion in vision. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 26(9), 1124-1137 (2004)

18. Liu, Y., Lin, W. C., Hays, J. H.: Near regular texture
analysis and manipulation. ACM Transactions on Graph-
ics. 23(3), 368-376 (2004)

19. Li, Y., Sun, J., Tang, C. K., Shum, H.Y.: Lazy snapping.
ACM Transactions on Graphics. 23(3), 303-308 (2004)

20. Matusik, W., Zwicker, M., Durand, F.: Texture design
using a simplicial complex of morphable textures. ACM
Transation on Graphics. 24(3), 787-794 (2005)

21. Reichmann, M.: An image processing workflow.
http://luminouslandscape.com/tutorials/workflow1.shtml

22. Nicoll, A., Meseth, J., Müller, G., Klein, R.: Fractional
Fourier texture masks: guiding near-regular texture syn-
thesis. Computer Graphics Forum. 24(3), 569-579 (2005)

23. Shen, J. B., Jin, X. G., Zhou, C., Wang, C. C. L.: Gradi-
ent based image completion by solving the Poisson equa-
tion. Computers&Graphics. 31(1), 119-126 (2007)

24. Shen, J. B., Jin, X. G., Mao, X. Y., Feng, J. Q.: Comple-
tion based texture design using deformation. The Visual
Computer. 22(9), 936-945 (2006)

25. Charalampidis, D.: Texture synthesis: textons revisited.
IEEE Transactions on Image Processing. 15(3), 777-787
(2006)

26. Lefebvre, S., Hoppe, H.: Appearance-space texture syn-
thesis. ACM Transactions on Graphics. 25(3), 541-548
(2006)

Jianbing Shen is a PhD can-
didate of the State Key Lab
of CAD&CG, Zhejiang Uni-
versity, People’s Republic of
China. He received his BSc
and MSc degrees in Mecha-
tronic Engineering from Zhe-
jiang University of Technol-
ogy. His research interests in-
clude texture synthesis, image
completion, and high dynamic
range imaging and processing.

Xiaogang Jin is a professor
of the State Key Lab of
CAD&CG, Zhejiang Univer-
sity. He received his BSc degree
in Computer Science in 1989,
MSc and PhD degrees in Ap-
plied Mathematics in 1992 and
1995, all from Zhejiang Uni-
versity. His current research
interests include implicit sur-
face computing, special effects
simulation, mesh fusion, tex-
ture synthesis, crowd anima-
tion, cloth animation and facial
animation.

Xiaoyang Mao is an associate
professor at the University of
Yamanashi in Japan. She re-
ceived her MS and PhD in
Computer Science from Tokyo
University. Her research inter-
ests include flow visualization,
texture synthesis, non-photo-
realistic rendering and human
computer interactions.

Jieqing Feng is a profes-
sor at the State Key Lab
of CAD&CG, Zhejiang Uni-
versity, People’s Republic of
China. He received his BSc
degree in applied mathemat-
ics from the National Univer-
sity of Defense Technology in
1992, PhD in computer graph-
ics from Zhejiang University
in 1997. His research inter-
ests include space deformation,
computer-aided geometric de-
sign and computer animation.


