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a b s t r a c t

With the emergence of large-scale point-sampled geometry acquired by high-resolution 3D scanning
devices, it has become increasingly important to develop efficient algorithms for processing such models
which have abundant geometric details and complex topology in general. As a preprocessing step, surface
simplification is important and necessary for the subsequent operations and geometric processing. Owing
to adaptive mean-shift clustering scheme, a curvature-aware adaptive re-sampling method is proposed
for point-sampled geometry simplification. The generated sampling points are non-uniformly distributed
and can account for the local geometric feature in a curvature aware manner, i.e. in the simplified model
the sampling points are dense in the high curvature regions, and sparse in the low curvature regions. The
proposed method has been implemented and demonstrated by several examples.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

With the rapid development of various 3D scanning devices,
point-sampled geometry has become a powerful alternative to
the traditional polygonal geometric model in computer graphics
[1–3]. Efficient modeling and rendering techniques for the point-
sampled geometry have developed into an attractive research
area for its potential ability in representing complex geometric
modelswith high-fidelity [4–6]. However, due to the largememory
requirement and high time complexity, efficiently processing large
scale point-sampled geometry is still facing great challenges, such
as storage, editing, transmission, and rendering, etc. To achieve
real-time performance required in many application fields such
as entertainment, industrial design, virtual reality etc. [7,8], a
simplification procedure is an efficient solution to alleviate the
storage and time complexities.
In the point-sampled geometry simplification, it is important

to choose the representative points and re-sampling the original
geometry for faithfully approximating the underlying geometry
in both geometry and topology. In practical applications, how to
keep geometric features may attract more attentions since it is
a comparably simple task to keep the simplified model topology
unchanged. Thus, pursuing the geometry fidelity of the simplified
model, the sampling density variation should manifest the local
geometric features, i.e. the sample points should be dense in
the sharp features regions (usually with high curvatures), and

∗ Corresponding author.
E-mail addresses:miaoyw@cad.zju.edu.cn, ywmiao@zjut.edu.cn (Y. Miao).

0010-4485/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2009.01.006
sparse in the relative planar regions (usually with low curvatures).
Another important issue that relates to surface re-sampling is
the theoretical analysis of sampling conditions and other pre-
conditions for correct reconstruction of surfaces with or without
boundaries [9–11].
Owing to the efficiency of feature space analysis, a mean-shift

scheme is performed in both spatial and range domain of the
underlying geometry. Due to the bilateral filtering property of our
mean-shift clustering scheme, the proposed re-sampling approach
can filter moderate noise attached by the given model. Moreover,
in order to guide a feature sensitive re-sampling procedure,
unlike the fixed bandwidth mean-shift clustering, the proposed
adaptive scheme is suitable for the moderately non-uniformly
distributed point-sampled geometry. However, point clouds with
highly non-uniform sampling or large noise cannot be treated well
by our algorithm. For these raw scanner data, some pre-processing
steps [12] should be performed for subsequent re-sampling task.
The contributions are summarized as follows:

• Based on an adaptive mean-shift clustering scheme, a novel
point-sampled geometry simplification method is proposed,
which can adaptively re-sample the underlying model so as
to reflect the intrinsic geometry features whilst introducing
relatively lower geometric error.
• By choosing different thresholds and different weights in
our mean-shift clustering scheme, the adaptive re-sampling
scheme can adapt to different sampling density requirements
of the underlying point-sampled geometry.
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• Our simplification scheme is time efficient and easy to
implement. It allows direct processing of scanned data without
the need to construct polygonal meshes beforehand, leading to
an increased overall performance.

The paper is organized as follows. The related work on simpli-
fication and re-sampling methods for point-sampled geometry is
reviewed in Section 2. In Section 3, an adaptive mean-shift scheme
is proposed to analyze the local maxima of amultivariate probabil-
ity density function. Based on the mean-shift analysis, an adaptive
re-sampling approach for the point-sampled geometry is described
in Section 4. In Section 5, some experimental results are listed and
the geometric error analysis by our re-sampling scheme is given.
Finally, conclusions are drawn and directions for future research
are given in Section 6.

2. Related work

Surface simplification and re-sampling.Many pieces of work
related to point-sampled geometry simplification and re-sampling
have been proposed in digital geometry processing, such as
extrinsic Voronoi diagram-based scheme, intrinsic technique, grid-
based and statistical-based approach, incremental and hierarchical
clustering scheme, iterative simplification method, and particle-
based re-sampling approach, etc.
Dey et al. [13] presented a dedicated point cloud simplification

algorithm using the particular structure of 3D Voronoi cells of a
dense point cloud. It is a locally restricted method and cannot
handle the non-uniformly distributed point clouds or point clouds
with holes. Moenning and Dodgson [14,15] presented an intrinsic
coarse-to-fine simplification algorithm with sampling density
guarantee for point clouds. However, their algorithm requires the
complicated computation of intrinsic geodesic Voronoi diagrams.
Linsen [2] proposed a point set simplification scheme that
associated each input sample point with an information content
measure and then iteratively removed points with lowest entropy.
This re-sampling algorithm is only limited to the generation of
point cloud subsets and cannot give any density guarantee.
Kalaiah and Varshney [16] described a statistical-based ge-

ometry representation scheme, which can contribute to reduce
network bandwidth and to high-quality interactive rendering
without sacrificing visual realism. Nehab and Shilane [17] pro-
posed a grid-based stratified sampling strategy for 3D models,
which first voxelizes the underlying model and then selects one
sample point for each voxel. However, these surface simplification
approaches cannot sample the given 3D model to indicate its local
geometric features exactly.
Due to the comprehensive research on mesh simplification

[18–21], many greedy and local clustering mesh simplification
schemes can be directly extended to point-sampled geometry.
However, major difficulties for the direct extension are how
to control the re-sampling density, and the approximation
error for simplifying point-sampled geometry. Pauly et al. [7]
adopted uniform incremental clustering and adaptive hierarchical
clustering methods to simplify a given point cloud. The uniform
incremental clustering approach is computationally efficient but
is reported to cause high approximation error. Similarly, the
hierarchical clustering approach ismemory and execution efficient
but even in its adaptive version the approximation error is not very
low in general. Similar to the error-controlled mesh simplification
scheme [18], Pauly et al. [7] also presented an iterative scheme to
produce an optimal result in terms of average geometric accuracy.
But it is not intuitive for the point set density control. Wu et al. [8]
re-sample a given dense point set by a sparse set of circular or
elliptical object-space splats. Nevertheless, the generation of initial
splat candidates and guarantee of the simplified model of being
free of holes are time-consuming.
Recently, particle simulation has become a popular approach
for simplifying large-scale 3D models. Early in 1992, Turk [22]
introduced a mesh re-sampling method via particle simulation.
The particles with a specified number are randomly spread across
the surface and they are approximately equal-distance distributed
by using a point repulsion algorithm according to their curvature
estimation. Witkin and Heckbert [23] used an adaptive repulsion
and split-and-death criteria to scatter a particle system on an
implicit surface which minimizes an energy criterion. Hart et al.
[24] extended the method of Witkin and Heckbert to uniformly
sample and control the more complex implicit surfaces. Pauly
et al. [7] adopt particle simulation to simplify the point-sampled
geometry by considering approximation accuracy and density
controls. Recently, Proenca et al. [25] achieved non-uniform
sampling MPU implicit surface according to the model features,
i.e. high densities in the abundant feature areas and vice versa. In
general, the particle simulation is a computationally demanding
approach and is not efficient enough for the large-scale point-
sampled models.

Local surface differentials estimation. In order to obtain the
splats for each cluster produced by our technique, an important
step of our algorithm is to estimate the local surface differentials.
A detailed overview of surface differentials estimation algorithms
can be found in recent papers [26,27] and the references therein.
Taubin [28] proposed a integral eigenvalue method to estimate

the tensor of curvature using a one-ring neighborhood. Hameiri
and Shimsoni [29] presented a modification of Taunbin’s method
by expanding to all the neighbor points inside a given radius
across the normal sections for stable principal curvature estimate
on discrete noisy range data. Applying the principal component
analysis (PCA) method to the neighborhoods of sample points,
Pauly et al. [7] proposed an algorithm to estimate normals and
curvatures for point-sampled geometry. Translating from Taubin’s
method, Lange and Polthier [30] derived a similar method for
estimating principal curvatures and principal curvature directions
for point set surfaces.
The idea of surface fitting is always applied to estimate

surface features. To calculate surface differentials analytically,
the quadratic or cubic polynomial fitting is adopted to find
an implicit representation that fits the geometry locally [31,
32]. Cazals and Pouget [33] proposed a method to estimate
local surface differentials by polynomial fitting of an osculating
jet. Rusinkiewicz [34] presented an algorithm to estimate the
curvature tensor by least-squares fitting to the normal variations.
Also using local least square fitting, Mitra et al. [35] described
a method for estimating the normals at all sample points of a
point cloud data set. Tong and Tang [36] proposed a tensor voting
technique to robustly estimate curvature tensors. Based on Levin’s
moving least square (MLS) approximation method [37], Alexa and
Adamson [38] adopted the gradient of the local implicit surface
as an accurate surface normal estimate and presented efficient
orthogonal projection operators for sampling theory. Based on the
explicit definition for point-set surfaces [39], Yang and Qian [40]
proposed a direct computing scheme for surface curvatures.
Recently, based on curvature tensor fitting, Kalogerakis et al.

[26] proposed a robust statistical framework for curvature
estimate on discretely sampled surfaces. Miao et al. [41] proposed
a projection scheme to estimate local surface differentials for the
point-sampled geometry. All of the sample points in the neighbors
are projected onto the normal plane, and the two principal
directions and curvatures can be obtained by normal curvature
analysis regarding to only three sampled tangent directions.
In our implementation, we use the projection scheme [41] to

estimate the principal directions and curvatures as it provides an
efficient estimation of the principal directions and curvatures for
point-set surfaces. However, our re-samplingmethod is not strictly
dependent on this specific curvature estimate algorithm and other
techniques also can be used instead.
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3. Adaptive bandwidth mean-shift scheme

Based on the analysis of multi-modal feature space defined in
both spatial and range domains, the mean-shift approach [42,43]
is a powerful non-parametric feature space clustering technique
for scattered point data. The geometric feature space itself can
be regarded as an empirical probability density function, and the
mean-shift scheme is a gradient ascend technique to search for
the local maxima. Applying this scheme to each discrete point
data set will create clusters around the maxima modes, which
corresponds to a dense region in the feature space. Unlike many
other parametric clustering techniques which take the number of
the modes or clusters as a prerequisite, this scheme can determine
them automatically by the mean-shift procedure itself.
Given a set of data points in spatial-range domain

χ = {Xi = (pi, qi) : pi ∈ P ⊆ Rd1 , qi ∈ Q ⊆ Rd2},
i = 1, 2, . . . , n

drawn from a density function f (x) : Rd1+d2 7−→ R, we want
to estimate the multivariate probability density at point x. In the
definition of spatial-range domain P × Q , the P represents the
spatial position information for discrete data point set, while the
Q denotes its range information, such as the normal information
for sample points. The d1 and d2 are the dimensions of the spatial
information and the range information, respectively. In order
to handle the spatial and range intrinsic feature efficiently, the
multivariate kernel density estimator can be divided into two
parts, that is the spatial kernel K1(·) and the range kernel K2(·),
and the density function can be estimated by

f̂ (p, q) =
1

nhd11 h
d2
2

n∑
i=1

K1

(
p− pi
h1

)
K2

(
q− qi
h2

)
where K(x) is the so-called kernel function satisfying

∫
Rd K(x)dx =

1, the parameter h is a smoothing factor called the bandwidth.
In general, the kernel function K(x) is radially symmetric like
K(x) = ck(‖x‖2), where k(x) is called the profile function and c
is a normalizing constant. Thus the separable multivariate density
function becomes
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The mean-shift approach is considered as a gradient ascend
search scheme for the maxima of a density function over the
feature-space along the increasing direction of the function
gradient. The gradient of density function can be deduced as
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wherewedenote−k′1(x) as g1(x), and−k

′

2(x) as g2(x) respectively.
Now, if we take the normal kernel k(x) = exp(− x

σ 2
), the

shadow of the kernel becomes g(x) = −k′(x) = ck(x). For the sake
of alleviating the point data noise, the position σ and the normal σ
are chosen as 3.0 and 10.0 respectively in our experiments, which
can produce satisfied results in most cases. The advantages of the
normal kernel is that the normal kernel and its shadow have the
same expression except for a constant [43], that is,
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Therefore, the local maxima of the density function can be
obtained by solving the following equations:
n∑
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or the fixed point of the iteration procedure,
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They can be solved by the mean-shift iteration.
In the fixed bandwidth mean-shift clustering scheme, the

neighbor points within a fixed radius will depend heavily on the
distribution of high-dimensional data points in the feature space,
e.g. it maybe sparse or dense in the feature space. The sampling
irregularity may lead to incorrect clustering results [44]. In our
adaptive mean-shift clustering, for each data point p in the d-
dimensional feature space Rd, a key step is to determine a proper
size of neighborhood N(p) and the associated adaptive bandwidth
value h(p) through following equation,

h(p) = max
q∈N(p)

(dist(p, q))

that is, the maximum distance between data point and its
neighbors.
For each sample point, the traditional k-nearest neighborhoods

only consider their position information and neglects their normal
variance. One potential solution to this issue is an adaptive
neighbor selection, which reflects both the position information
and normal variance around sample points. For each sample
point p, the traditional neighborhood Nk is defined by k-nearest
neighbors. Then, depending on the local sampling density and local
feature size at the sample point, the normals of the neighboring
points q ∈ Nk can span quite a different range, that is, the bounding
cone-of-normals of all normals of the points q ∈ Nk is not constant
for a k-nearest neighborhood. Our adaptive neighbors of sample
point p can be selected as all points q in Nk within a certain angle
of normal deviation. These neighbors span a (bounding) normal
cone of a pre-defined opening angle. In our implementation, the
parameter k for the initially chosen neighborhoodNk and the angle
of bounding cone for obtaining the final adaptive neighborhood
are selected as 16 and 15◦, respectively, which work well in our
experimentation. Therewith, the size of neighbors of each point
is about 6–16, that is, it ranges adaptively from 6 to 16. In fact,
the selection of the neighborhood size of each sample point is
not a determinant for our re-sampling results. Fig. 1 illustrates
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Fig. 1. Our adaptive re-sampling results in terms of different neighbor selections,
whereas the weights for position and normal variation are always chosen as (0.2,
0.8). (a) The size of neighbors of each point is about 6–16, whilst the number of
simplified points is 16 729; (b), (c) and (d) The size of neighbors of each point is
12–16, 6–24 and 12–24, respectively, whilst the number of simplified points is 16
728, 16 546 and 16 553, respectively.

the different re-sampling results in terms of different selections of
neighborhood size.
To find the local maximamode bymean-shift iteration, we first

calculate the weighted average of the data points that fall inside
this neighboring window, and then iteratively move the window
to the mean point. The weighted mean at a feature data point p
in the joint feature space is defined by a monotonically decreasing
symmetric profile Gaussian kernel g(x) with the adaptive radius
h(p) in the feature space. The mean shift local maxima mode
in the feature space can be evaluated by the following iteration
procedure:
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where the convergent point p∗ of the above mean-shift iterative
procedure is also called the mean-shift local mode, in which the
initial value can coincidewith p andMv

h (p) is themean-shift vector
associated with the adaptive bandwidth.

4. Adaptive re-sampling for point-sampled geometry

In surface data acquisition, the modern 3D scanning devices
are capable of producing point clouds that contain millions of
sample points. These sample points are often converted into
a continuous surface representation for further graphics and
geometry processing. Many of these conversion algorithms are
computationally expensive and require substantial amounts of
main memory. Reducing the complexity of such data sets is one
of the key preprocessing steps for subsequent applications, such as
point-based modeling, real-time rendering and visualization, etc.
Owing to the above mean-shift iterative scheme for discrete

sample points, the corresponding mean-shift local modes can be
determined. In Section 4.1, we present our hierarchical clustering
scheme to reduce the complexity of large data sets based on their
mean-shift local modes. Then, in Section 4.2, we explain how to
obtain the representative splats for each cluster based on the fast
projection and curvature estimation method of [41].

4.1. Hierarchical clustering for local maxima modes

It is argued that effective surface simplification can be
performed in the feature space, similar to other point-based
processing and visualization applications. We adopt a hierarchical
clustering approach to simplify the input point-sampled geometry.
For each sample point, a corresponding mean-shift local mode
can be calculated according to the above iterative procedure.
The sample points with the approximately same mean-shift local
modes are clustered hierarchically. Applying our scheme to a set
of given discrete data points will create some clusters around
the maxima modes, which correspond to the dense distribution
regions in the feature space. The set of local modes will be split
if one of the following criteria is satisfied:
• the size of the set with local maximamodes is larger than a user
specified maximum cluster size, or
• the variation within a set of local modes is above a given
threshold.
In our implementation, the user specified maximum cluster

is selected as 30 sample points. The local modes variation
information can be obtained by the covariance analysis method,
which is composed of two parts, i.e., the position variation1position
and the normal variation 1normal. Finally the definition of local
modes variation is the linear combination of them:
ωposition1position + ωnormal1normal.

If the splitting criterion is not satisfied, the set of local modes
becomes a cluster. Thus, we can build a binary tree, and each leaf
node corresponds to a cluster. The sampling points in each cluster
are abstracted as a representative splat, and a simplified geometry
is created.

4.2. Representing surface splat elements

For each cluster, the representative splat can be obtained by
the principal component analysis approach [7,8,45]. The position
of splat is chosen as the centroid of the sampling points in the
cluster and its normal direction is chosen as the eigenvector
associated with the minimal eigenvalue of the covariance matrix
of the sampling points in the cluster. Then, using our projection
scheme to local surface differentials estimation for the point-
sampled geometry [41], all sampling points in the cluster are
projected to the normal plane at the splat, and the two principal
directions are obtained by normal curvature analysis regarding
to only three sampled tangent directions. Finally, to render the
simplified sample point efficiently, an elliptic splat is adopted to
address the anisotropic sampling property as [8], in which the
principal curvatures and principal directions are chosen to fully
determine the elliptic splat.

5. Results and discussion

All the algorithms presented in this paper are implemented and
tested on a PC with a Pentium IV 3.0 GHz CPU, 1024M memory.



Y. Miao et al. / Computer-Aided Design 41 (2009) 395–403 399
Fig. 2. Adaptive re-sampling by point position and normal information. Left column: The original sampling for different models. Middle column: Color maps for the results
of adaptive re-sampling different models by point position and normal information, in which different colors show the different sizes of clusters, that is, the pink means
small size of cluster, and blue means large size of clusters, etc. Right column: The zoom-in views of the corresponding sampling results.
In ourmean-shift clustering algorithm, the feature space definition
and the clustering criteria of local modes are very important to
the final simplification result. During the mean-shift local modes
clustering, the local modes variation will affect the clustering
results, which could be adjusted by selecting different weights for
the position variation and the normal variation.

5.1. Adaptive re-sampling via position and normal attributes

In general, surface normal gives us first order information of
the underlying surface variation around the sample point, and the
variation of normal direction can reflect the curvature distribution
to some extent. In order to adaptively sample the surface according
to the curvature variation, it should perform clustering algorithm
in the combinative spatial and range domains, i.e. position and
normal information for each sample point.
Fig. 2 gives three re-sampling examples. In these examples, the

threshold for mean-shift clustering is 0.10, and all weights for
the local modes variations are the same, i.e. (ωposition, ωnormal) =
(0.2, 0.8). The results illustrate that the proposed re-sampling
scheme is a curvature aware manner, i.e. the simplification points
at the high curvature regions are dense, while those at the planar
low curvature regions are sparse.
Using the same threshold andweights formean-shift clustering

as Fig. 2, Fig. 3 gives another two re-sampling results for raw
scanned point clouds. The experiments show that our re-sampling
results can reflect the curvature distribution of the underlying
models even for non-uniformly sampled dragon model and for
noisy Max-Planck model.

5.2. Adjusting the sampling density of simplified model

In our proposed framework, the sampling density could be
adjusted easily to satisfy different requirements of the simplified
model. The sampling density can be adjusted by two different
ways. One is the threshold for mean-shift clustering, and the other
is the weights for position and normal variation.
Different thresholds in mean-shift clustering can generate

different re-sampling results. Fig. 4 shows the experimental results
by setting different thresholds in our clustering procedure for
Stanford bunny model simplification. If the threshold is chosen
as 0.10 for mean-shift clustering, the number of sampling points
in the simplified model is 16729, while it is 23 304 for the
threshold 0.05. However, if the threshold is chosen as 0.20 for
mean-shift clustering, the number of sampling points in the
simplified model is 14381. The experimental results show that
large threshold will lead to small number of the sampling points
in final simplified model, but they can reflect the surface intrinsic
curvature distribution.
Moreover, the sampling density could also be changed and

adjusted through adjusting the weights ωposition and ωnormal. Fig. 5
illustrates the different re-sampling results by choosing different
weights. The number of sampling points for the simplified model
is highly correlative with the selected weights for the mean-shift
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Fig. 3. Adaptive re-sampling by point position and normal information. First row: The original non-uniform sampling and our adaptive re-sampling result for dragonmodel.
Second row: The original sampling and the adaptive re-sampling result for noisy Max-Planck model.
Fig. 4. Adaptive re-sampling by selecting different thresholds for mean-shift clustering, whereas the weights for position and normal variation are always chosen as
(0.2, 0.8). (a), (b) and (c) The thresholds for clustering are 0.05, 0.10 and 0.20, respectively. Below row is the zoom-in views of the corresponding sampling results.
Fig. 5. Adaptive re-sampling by selecting different weights for position and normal variation for mean-shift clustering, whereas the threshold is always chosen as 0.10.
(a) Original sampling for balljoint model; (b), (c), (d) The re-sampling results by selecting different weight for mean-shift clustering, that is, the weights for position and
normal variation are (0.2, 0.8), (0.5, 0.5), and (0.8, 0.2), respectively. Below row is the zoom-in views of the corresponding sampling results.
clustering. For example, for balljoint model (the original number
of sample points is 137062), if the weights for position and normal
variation are (0.2, 0.8), the number of sampling points in the
simplified model is 9857, while it is 7062 for the weights (0.8, 0.2)
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Fig. 6. Geometric error analysis for the simplified rabbitmodel. (a) and (b) The originalmodel and simplified one; (c) Re-sampling results by selecting theweights for position
and normal variation as (0.2, 0.8) and (d) the color map of geometric error for simplified model, in which different colors show the different magnitudes of normalized error
at simplified sample points.
Table 1
Time statistics of the proposed simplification and re-sampling scheme for different point-sampled models. The time data are collected on a PC with a Pentium IV 3.0 GHz
CPU, 1024Mmemory.

Models #Points Timings for different stages #Points of simplified model Normalized average error1∗avg
Differential
estimation (s)

Mean-shift
iteration (s)

Mean-shift
clustering (s)

Dragon 437645 3.93 38.16 11.51 34049 5.29× 10−4

Bunny 280792 2.55 15.01 2.73 16729 4.73× 10−4

Dog 195586 1.77 11.97 1.92 14159 6.31× 10−4

Armadillo 172974 1.51 9.56 1.67 15482 8.24× 10−4

Balljoint 137062 1.24 6.92 1.29 9857 6.54× 10−4

Noisy Planck 96 844 0.86 4.04 2.49 5873 11.14× 10−4

Santa 75781 0.67 5.05 0.65 6983 9.90× 10−4

Rabbit 67038 0.60 3.16 0.58 4493 10.28× 10−4
and it is 8485 for the weights (0.5, 0.5). Our experimental results
also show that the sampling result using a large ωnormal will reflect
the surface intrinsic curvature distribution, whilst a large ωposition
will lead to a uniform sampling.

5.3. Geometric error analysis by our re-sampling scheme

To evaluate the quality of the simplified geometry generated by
our re-sampling algorithm, some methods should be introduced
to measure the geometric error between original and simplified
version of the given model. Similar to the 3D mesh Metro analysis
tool [46,7], we measure the geometric error as both the maximum
error between original version S and simplified model S ′, i.e. the
Hausdorff distance,

1max(S, S ′) = max
q∈S
d(q, S ′)

and geometric average error, i.e.,

1avg(S, S ′) =
1
‖S‖

∑
q∈S

d(q, S ′),

respectively. The corresponding normalized geometric errors can
then be obtained by scaling the above error measures according to
the model’s bounding box diagonal.
For each sample point q ∈ S, the geometric error d(q, S ′) can

then be defined as the Euclidean distance between the sample
point q and its projection point q̄ on the simplified surface S ′.
This projection point can be obtained by the simple ‘‘almost’’
orthogonal projection approach [38].
Fig. 6 shows the solid rendering of the simplified model and

the color map of geometric error for the rabbit model that has
been simplified from 67 038 points to 4493 points (the weights
for position and normal variation are 0.2 and 0.8 for mean-
shift clustering, the threshold is 0.10). The normalized average
geometric error is 1∗avg = 10.28 × 10

−4, while the normalized
max geometric error is1∗max = 0.0062.
Table 1 shows the data and time statistics for the example

models and algorithms in this paper. For example, the total number
of sample points for the Stanford bunny model is 280 792, while
the number of sample points for simplified model is 16 729. The
timings for differential estimation,Mean-shift iteration, andMean-
shift clustering are 2.55 s, 15.01 s, and 2.73 s, respectively. The
normalized average error is 1∗avg = 4.73 × 10−4. This table
illustrates the efficiency of our adaptive re-sampling scheme.
In Fig. 7, we compare our curvature-aware re-sampling scheme

with Pauly et al. [7] clustering approaches for point-sampled
geometry simplification. It shows the quantitative error estimates
(scaled according to the object’s bounding box diagonal) for the
Stanford bunny model that has been simplified as 6% of original
points. Uniform incremental clustering has the highest average
geometric error and adaptive hierarchical clustering performs
slightly better. However, our curvature-aware mean-shift re-
sampling scheme provides lower geometric error, comparing
with the uniform incremental and adaptive hierarchical clustering
schemes.

6. Conclusions and future work

A novel curvature aware re-sampling approach is proposed,
which is based on an adaptive mean-shift clustering scheme. The
proposed re-sampling scheme can adaptively reflect the intrinsic
property of the underlying 3Dmodel,which leads to a non-uniform
sampling distribution and can account for the local geometric
features in a curvature-aware manner. That is, the sample points
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(a) Original sampling. (b)∆∗avg = 5.27× 10
−4 ,

∆∗max = 0.0098.
(c)∆∗avg = 4.81× 10

−4 ,
∆∗max = 0.0053.

(d)∆∗avg = 4.73× 10
−4 ,

∆∗max = 0.0096.

Fig. 7. The re-sampling results and geometric error comparisons via different clustering simplification schemes. (a) Original sampling for Stanford bunny model;
(b) Re-sampling result by uniform incremental clustering scheme; (c) Re-sampling result by adaptive hierarchical clustering scheme; (d) Re-sampling result by our curvature-
aware mean-shift re-sampling scheme. The number of simplified points is 6% of original points for three simplification schemes.
are dense in the high curvature regions, while they are sparse in
the planar low curvature regions.
However, it is difficult to incorporate the simplified geometric

error in our adaptivemean-shift clustering algorithm. One possible
solution maybe simplify point clouds according to an user-defined
error threshold, that is, control sample points generation of the
target model under specifying geometric error bounds. Whereas
the surface sampling size should be proportional to the total
absolute Gaussian curvature [47], we can use the Gaussian sphere
to approximate this curvature and control the approximation error
by the sampling on the Gaussian sphere. For the current algorithm,
it is also difficult to give an intuitive user-specified parameter
to adjust the re-sampling result. Because the variation threshold
is based on the combination of position variation and normal
variation, we cannot find its intuitive meaning at present. Maybe
we can consider it as future work.
Therefore, the future research should focus on the Gaussian

sphere based sampling, the introduction of an intuitive parameter,
and some related geometry processing, such as model compres-
sion, streaming processing, etc.
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