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Abstract  Convolution surfaces generalize point-based implicit surfaces to incorporate higher-

dimensional skeletal elements, of which line segments can be considered the most fundamental

since they can approximate curve skeletons. Existing analytical models for line-segment skeletons

assumes uniform weight distributions and thus can only produce constant-radius convolution

surfaces. This paper presents an analytical solution for convolving line-segment skeletons with a

variable kernel modulated by a polynomial function, thus allowing generalized cylindrical

convolution surfaces to be conveniently modeled. Its computation requirement is competitive

compared with the case of uniform weight distribution. The source code of field computation is

available online.

1.  Introduction

Implicit surface has been proven to be a good representation for modeling and
animating smooth deformable objects of complex topology that may change over time,
such as liquid, snow, cloud and organic shapes [Bloomenthal et al. 97], [Dobashi et al.
00], [Cani, Desbrun 97], [Nishita et al. 97], [Jin et al. 00].  A skeleton-based implicit
surface is most commonly defined as an iso-surface satisfying the following equation:

{ }∑ =−= 0),,( ),,( TzyxFzyxS i ,                                     (1)

where iF  is the field function of the ith contribution source and T  is the threshold field

value. For example, the implicit functions in metaballs (or blobs, soft objects) [Blinn
82], [Nishimura et al. 85], [Wyvill et al. 86], [Wyvill, Wyvill 89] are defined as a
summation of point fields.  Metaballs are widely implemented in commercial software
packages (e.g., Softimage, 3D Studio Max), but they suffer from a major drawback in
being inadequate for representing flat surfaces and generalized cylinders. Distance
surface allows the use of higher-dimensional skeletons [Bloomenthal, Wyvill 90],
[Bloomenthal 95], however creases or curvature discontinuity may arise when there are
multiple non-convex skeletal primitives.
    Bloomenthal and Shoemake [Bloomenthal, Shoemake 91] presented convolution
surfaces as a natural and powerful extension to point-based field surfaces. By
convolving skeletons with a three-dimensional low-pass Gaussian filter kernel, the
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resulting iso-surfaces overcome the above-mentioned drawback of distance surfaces
[Bloomenthal 97]. The skeletal elements in convolution surfaces can be points, line
segments, curves, polygons and other geometric primitives. As skeletons are natural
abstractions for shapes, convolution surfaces offer a convenient means of controlling
the shape of the underlying modeling object.
    While the modeling potentials of convolution surfaces are very attractive, their
mathematical formulation still poses some open problems, stemming from the fact that
the convolution integrals seldom yield closed-form solutions that can be directly
evaluated. The possibility of deriving closed form solutions depends on both the kernel
function and the skeletal element. Bloomenthal and Shoemake [Bloomenthal,
Shoemake 91] calculated the field function numerically using a point-sampling method,
which, unfortunately, suffers from potential under-sampling artifacts. By employing a
new kernel function—Cauchy function—McCormack and Sherstyuk [McCormack,
Sherstyuk 98], [Sherstyuk 99] deduced analytical solutions for the following elements:
point, line segment, polygon, arc and plane. Their method thus provides an accurate and
robust solution for more general-shape convolution surfaces.
    The line-segment analytical model derived by McCormack and Sherstyuk assumes
uniform weight distribution, and produces only constant-radius convolution surfaces
around the line-segment skeleton. Modeling surfaces of varying radius thus requires
specifying multiple line segments. To overcome this problem, this paper presents a
closed-form model for line-segment skeletons with weight distribution modulated by a
polynomial. Since many objects can be abstracted as curve skeletons, which can in turn
be approximated by line segments, our closed-form solution can facilitate the modeling
of a large variety of generalized cylindrical shapes1.

2. Convolution Surface

A convolution surface is an iso-surface in a scalar field implicitly defined by a skeleton
consisting of three-dimensional points, and a potential function representing the
contribution of each skeletal point to the scalar field. In this paper, we adopt the
following convolution surface definition given by McCormack and Sherstyuk

[McCormack, Sherstyuk 98]. Let ),,( zyxP be a space point in 3R , and let RRg →3:

be the geometry function that represents a modeling skeleton V :


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Let RRf →3:  be a potential function generated by a single point in the skeleton V ,

and let Q  be a point in the skeleton, then the total field contributed by the skeleton at a

point P  is the convolution of two functions f and g ,

                                                       
1 Grimm [Grimm 99] has also investigated implicit generalized cylinders; her method involves specifying an axis
and one or more profile curves. In contrast, our method produces exact convolution surfaces and extends the
versatility of modeling with convolution surfaces.
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Thus, f  is also called the convolution kernel. For convenience, we rewrite the field

function of the convolution surface as the volume integral along the skeleton,

∫ −=
V

dVfF
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In this paper, we adopt the Cauchy kernel function proposed by McCormack and
Sherstyuk [McCormack, Sherstyuk 98],
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where QP −=r , and s  is a parameter for controlling the width of the kernel. The

field function )(PF  now becomes

∫ +
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    Superposition is one of the most important properties of convolution surfaces; that is,
summing the convolution surfaces generated by two separate skeletons yields the same
surface as that generated by their combined skeleton. It is this property that enables
convolution surfaces to overcome the problem of bulges and creases in distance
surfaces. This independent evaluation feature guarantees that the user only has to be
concerned with the shape of the skeleton, not the number of segments used, when
designing a convolution surface. Superposition property ensures that the skeletons can
be arbitrarily subdivided and the field function of the sub-skeletons can be simply
summed to evaluate the final convolution surface.

3.  Line-Segment Skeleton with Polynomial Weight Distributions

We multiply the field function at a point Q  by )(Qq : RR →3  to define a weighted

convolution surface model with non-uniform weight distributions:

∫∫ +
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We now derive the analytical formulae for line-segment skeleton with polynomial
weight distributions. A line segment of length l , with start point b  and unit direction a,
can be represented parametrically as

lttt ≤≤+= 0                ,)( abL ,                                    (8)

Letting bPd −= , the squared distance from a point P  to a point on the line )(tL  is

then
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where d=d . Let )(line P
itF  denote the field function of the line segment )(tL  with

weight distribution it ; for 3,2,1,0=i , we obtain
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By substituting )(2 tr  into )(1
line PF , letting ad •=h , and integrating, we obtain
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where p  is a distance term:
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Similarly, we can derive the analytical formulae for )(),(),(
32

linelineline PPP ttt FFF  as

follows:
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     Analogously, analytical formulae for )(line P
itF  with 4≥i  can be derived; however,

since cubic polynomials are usually sufficient for meeting user requirements, we omit

these formulae here. Note that an 1),(line ≥iF
it P  can be represented in terms of

)(,),(),( 1
linelineline

21

PPP FFF
ii tt
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; this enables the use of incremental calculations which

are more efficient.
Based on the closed-form field functions of a line segment with weight

distributions 32 ,,,1 ttt , we can now use a cubic polynomial function to define a profile

distribution function along the skeletal line segment.  To provide an intuitive interface
for controlling the cubic curve, we represent it in the Bezier form with control points

),3( jqj  where 3,,0�=j .  This form of Bezier curve can simply be rewritten as

)()( uBquq jj∑=  where )(uBj  are cubic Bernstein basis functions [Farin97]. The

designed profile Bezier curve is then converted to power basis form.
For linear weight distribution, which is the most frequently used in practice, the

formula is very simple. Let the weights at the start and end points of the line segment

)(tL  be 0
~q  and 1

~q  respectively; then the weight at parameter t  is

t
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and the field function of the entire line segment is
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 We now derive the field function of a skeletal polyline nPPP �10  with linear

weight distributions, given that the weights at 0P  and nP  are 0
~q  and 1

~q  respectively.

Let the length of the ith segment 1+iiPP  be 1,,1,0,1 −=−= + nil iii � PP , and denote the

field functions along the line segment 1+iiPP  with weight distributions ,,1 t  as
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as follows:

)~~(~
01

1

0

1

0
0 qqllqq

n

j
j

i

j
ji −





+= ∑∑

−

=

−

=

.                                      (17)

Thus, the field function for the entire polyline is
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Figure 1. Hayfork.  (a) Skeleton. (b) Convolution surface.

  

Figure 2.  Deer horn.  (a) Skeleton.  (b) Convolution surface.
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Figure 3.  Snowflake.  (a) Skeleton.  (b) Convolution surface.

       

Figure 4.  T-shape object.  (a) Skeleton.  (b) Convolution surface.

4.  Examples and Performance

To demonstrate the modeling capabilities of our method, we have modeled some

examples. For uniform processing, all the convolution models are first polygonized into

polygon meshes, which are then ray-traced with solid or projective texture mapping.

Figures 1 to 3 are convolution surfaces that adopt linear weight distributions. The

underlying skeletal representation is shown on the left of each example. The hayfork,

deer horn and snowflake are respectively modeled using 6, 15 and 18 line segments.

Figure 4 shows an example that uses a cubic polynomial distribution for the vertical

line segment.

    For more complex examples, we show a maple tree in Figure 5 whose stem and main

branches are modeled using polyline skeletons with linear weight functions (the twigs

and leaves are modeled using traditional modeling methods). Similarly, the branches of

the potted plant in Figure 6 are modeled in a similar way (the leaves are modeled

separately before adding to the branches). These examples demonstrate the

convenience of modeling convolution surfaces of generalized cylindrical shapes using

our analytical models.
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Figure 5.  Maple tree.

Figure 6.  Potted plant.

    Tables 1 and 2 show the computational efficiency of our algorithm. Table 1 gives the

number of special function calls and floating-point operations required in calculating
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the field function for a line segment with constant distribution; optimizations have been

performed to reduce the number of operations. Table 2 gives the incremental operations

required for a line segment with weight distributions 32 ,, ttt . From these tables, we can

conclude that the incremental cost from constant distribution to linear distribution is

nominal—only additional five multiplications/divisions and two additions/subtractions

are needed. Even for cubic polynomial distribution, the additional computation cost is

only one ln operation, 24 multiplications/divisions, and 10 additions/subtractions,

which is less than twice the cost of constant distribution.

Special functions and floating-point operations
Weight distribution

atan sqrt ln * / + −

1 2 1 0 17 5 10 5

Table 1. Computational costs for a line segment convolved with constant distribution.

Incremental special functions and floating-point operations
Weight distribution

atan sqrt ln * / + −

t 0 0 0 2 3 1 1
2t 0 0 0 4 2 2 1
3t 0 0 1 8 5 2 3

Table 2. Incremental computational costs for a line segment convolved with 32 ,, ttt distribution.

5.  Discussion

Skeleton-based convolution surface modeling can create and animate a wide variety of
complex objects, which maybe difficult with parametric geometric modeling methods.
Since curve skeletons are good abstractions for a wide variety of natural forms, and
curve skeletons can be approximated by polylines, our method is considerably general
in its applicability. Combining with other skeletal elements, our method facilitates the
modeling of trees, sea-forms and organic. By defining tapering factors in grammar rules,
our method can also be easily incorporated into string rewriting systems (L-systems) to
describe the geometric shapes of plant trunks [Prusinkiewicz, Lindenmayer 90].
    Since convolution surfaces are iso-surfaces that are determined by skeletons, profile
curves, and threshold field value, our method has the following limitations. (1) Unlike
traditional sweeping operations, the profile curve only approximates that of the
generated generalized cylinder because the profile curve in general does not lie on the
iso-surface; thus precise specification of the radius of the generalized cylinder is
difficult. (2) If the threshold exceeds the field of some part of a skeleton, no convolution
surface is produced at that part; this requires special attention and causes
inconveniences in some applications.
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