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Abstract
Deformation is a powerful tool for shape 
modeling and computer animation. In this 
paper we present a new local deformation 
model based on convolution surfaces. After a 
user specifies a series of constraints, which can 
consist of line segments, arcs and quadratic 
curves, their effective radii and maximum 
displacements, the deformation model creates a 
set of convolution surfaces taking the 
constraints as the skeletons. Each convolution 
surface determines a local influence region and 
a field function associated with the constraint. 
Compared with the constrained deformation 
model based on generalized metaballs, our 
method can reduce the bulges emerged from 
the deformation. Furthermore, the user can 
finely control the deformation result by 
adjusting the weight distribution along the one 
dimensional convolution skeleton. This 
deformation model operates on the local space 
and is independent of the underlying 
representation of the object to be deformed. 
Experimental results show that our new 
deformation model is both efficient and 
intuitive.
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1. Introduction 
Three-dimensional shape deformation is an 
important tool in both shape design and 
computer animation. Two efficient techniques, 
namely physics-based modeling and spatial 
deformation, have been proposed in this field. 

Physics-based modeling uses physical 
simulation to obtain realistic shapes and 
motions. This technique is very promising but 
generally too expensive for real-time feedback. 

Furthermore, the representation of objects 
cannot be arbitrary. 

The idea behind the spatial deformation is to 
operate on the whole space in which the 
objects are embedded instead of directly 
manipulating the vertices or control vertices of 
these objects. One of the first uses of spatial 
deformations was by Barr in [1], where the 
space deformations of twisting, bending and 
tapering were introduced. However, the 
general problems of arbitrarily shaped 
deformations are not addressed.

The most popular method to define spatial 
deformations is the free-form deformation 
(FFD) technique developed by Sederberg and 
Parry [2]. In the FFD technique, a user deforms 
an object by moving the control points of a 
trivariate Bézier volume whose control points 
are organized as a lattice. There have been 
many variants of FFD. Coquillart extended the 
FFD technique to allow composite lattices in 
addition to a cube [3]. FFD using rational 
Bézier volume or B-spline volumes were also 
proposed by other authors [4-5].Hsu et al. 
developed a version of FFD that allows direct 
manipulation [6], but its computational cost is 
high. MacCracken and Joy extended FFD to 
support more general lattices [7]. 

FFDs and their variants provide a high level 
of geometric control over the deformation, but 
they have the limitations in that the user must 
first define some control points around the 
region of space to be deformed, and then 
manipulate these control points. An object 
embedded within the lattice is deformed by the 
mapping defined by the variation of the lattice. 
While this type of technique is very useful for 
coarse-scale deformations of an object, it can 
be difficult to use for finer-scale deformations, 
where a very dense and customized control 
lattice shape is usually required. Arbitrarily 
shaped lattices can be cumbersome to construct 



and it is often easier to deform the underlying 
geometry directly than to manipulate a dense 
control lattice.

Compared with FFD and its variants, axial 
deformations provide a more compact 
representation in which a one-dimensional 
primitive, such as a line segment or curve, is 
used to define an implicit global deformation 
[8-10]. By introducing domain curves which 
define the domain of deformation about an 
object, Singh and Fiume presented a new 
geometric deformation technique which is 
related to axial deformation called Wires [11].  

Borrel and Bechmann developed a general 
deformation model in which the deformation is 
defined by an arbitrary number of user 
specified point displacement constraints [12]. 
The system lets the user select a solution 
obeying the constraints. However, the shape of 
the deformation is not strongly correlated with 
the constraints. To overcome this problem, 
Borrel and Rappoport introduced a local 
deformation method which they term Simple 
Constrained Deformation (Scodef) [13]. In 
Scodef, the user defines a set of constraint 
points, giving a desired displacement and 
radius of influence for each. Each constraint 
point determines a local B-spline basis function 
centered at the constraint point, falling to zero 
for points beyond the radius. The deformation 
achieved by Scodef is both local and intuitive 
and the constrained points can be directly 
located on the boundary surface of the object to 
be deformed. But their method could not be 
generalized to deal with other kinds of 
constraints, such as line, surface and volume, 
which are desired to extend the flexibility of 
the local deformation.  

The works by Fowler and Gain support not 
only point displacement constraints, but also 
orientation constraints on points [14-15]. 
Llamas et al. developed Twister and Bender 
using a pair of 3D trackers to control a virtual 
ribbon and to deform it [16, 17]. Pauly et al 
used a similar deformation model on a system 
to edit point-sampled geometry [18]. Milliron 
et al. introduced a general framework for 
geometric warps in which the use of 
orientation constraints a also possible [19]. 

Jin et al. proposed a constrained deformation 
model based on the special potential function 
distribution of distance surfaces, which was 
termed as generalized metaballs in [20]. In 
Jin’s method, constraints are generalized to 

include points, lines, surfaces and volumes. 
The user specifies a set of constraints, with 
desired displacements and an effective radius 
associated with each constraint. A generalized 
metaball is then set up at each constraint with a 
local potential function centered at the 
constraint falling to zero for points beyond the 
effective radius. The displacement of any point 
within the metaballs is a blend of these 
generalized metaballs. This deformation model 
is both efficient and intuitive. However, the 
generalized deformation model may suffer 
from bulges, which may occur when the user 
defines two adjacent constrains. 

To alleviate the bulges in the constrained 
deformation based on distance surfaces, we 
propose a new constrained deformation model 
based on the special potential function 
distribution of convolution surfaces. The user 
specifies a set of constraints (which are termed 
as skeletons in convolution surfaces), their 
desired displacements and the radii of 
influence. Each constraint skeleton determines 
a convolution surface centered at the skeleton. 
The field of the convolution surface falls to 
zero for points beyond the radius. The 
displacement of any point within the 
convolution field is a blend of these 
convolution surfaces.  

Because of the superposition property of the 
convolution surfaces, we can effectively reduce 
the bulges emerged from the generalized 
metaball based constrained deformation when 
the user specifies some adjacent constraint 
skeletons.

Figure 1 shows the deformation results 
adopting the field functions of distance 
surfaces and convolution surfaces respectively. 
The constraint skeletons used in this example 
are two line segments. From the figure 1(f) we 
can see, by adopting the convolution surface 
tool, the bulges appeared in 1(e) disappear. 

Our deformation mode is very efficient and 
intuitive, and it is independent of the 
underlying representation of the objects to be 
deformed. The computations required by the 
technique can be done very efficiently and 
real-time interactive deformation editing on 
current workstations is possible. Furthermore, 
the user can control the shape of deformation 
very conveniently by interactively adjusting 
the weight function along the skeleton defining 
the convolution surfaces. 



(a) The distance surface (left) and the corresponding 
deformation result (right) generated by two disjoint 
line segment skeletons. 

(b) The convolution surface (left) and the 
corresponding deformation result (right) generated 
by two disjoint line segment skeletons. 

(c) The distance surface (left) and the corresponding 
deformation result (right) generated by two disjoint 
line segment skeletons that come closer. 

(d) The convolution surface (left) and the 
corresponding deformation result (right) generated 
by two disjoint line segment skeletons that come 
closer.

(e) The distance surface (left) and the corresponding 
deformation result (right) generated by two 
connecting line segment skeletons that form one 
line segment. 

(f) The convolution surface (left) and the 
corresponding deformation result (right) generated 
by two connecting line segment skeletons that form 
one line segment. 

Figure 1 : The deformation results using the field 
functions of distance surfaces and convolution 

surfaces respectively. 

The remainder of this paper is organized as 
follows. Section 2 presents the constrained 
deformation model based on convolution 
surfaces. Section 3 presents the computation of 
convolution surfaces for line segment, arc and 
quadratic curve skeletons with polynomial 
weight distribution. Some experimental results 
are shown in Section 4. Conclusions and future 
work are discussed in section 5. 

2. Constrained deformation model 
based on convolution surfaces 
Convolution surfaces are regarded as a flexible 
technique for implicit surface modeling. A 
convolution surface is an isosurface in a scalar 
field defined by convolving a skeleton, which 
can comprise points, line segments, curves, 
surfaces, or volumes, with a potential function. 
This approach overcomes the drawbacks of 
bulges and curvature discontinuity in distance 
surfaces. Convolution surfaces offer many 
desirable advantages, such as intuitive shape 
design, well-behaved blending and fluid 
topology changes with the underlying skeleton. 
Thus, they provide a very powerful and 
flexible representation for modeling complex 
objects.

Bloomenthal and Shoemake proposed 
convolution surfaces as a natural and powerful 
tool for implicit surface modeling in [21]. By 
convolving these skeletons with a three-
dimensional (3D) low-pass Gaussian filter 
kernel, convolution surfaces overcome the 
problem of bulges and curvature discontinuity 
in distance surfaces. But Bloomenthal and 
Shoemake calculated the field function 
numerically based on point-sampling method, 
which unfortunately suffers from potential 
under-sampling artifacts and large storage. 
McCormack and Sherstyuk deduced analytical 
solutions for points, line segments, polygons, 
arcs and planes by employing a kernel function 
called Cauchy function [22, 23]. The analytical 
model for line-segment primitives derived by 
McCormack and Sherstyuk treats the weight 
distribution along the skeleton uniformly, thus 
modeling tapering or generalized cylindrical 
shapes requires specifying multiple line 
segments. 

Jin et al. presented an analytical solution for 
line-segment skeletons convolved with the 
Cauchy function modulated by polynomial 
weighted distributions [24]. Later Jin and Tai 



presented analytical solutions for line-segment, 
arc and quadratic curve skeletons with 
polynomial weighted distributions for most 
kernel functions [25, 26]. 

Let be a space point in ),,( zyxP 3R , and let 
be a potential function describing 

the field generated by a single point Q  in a 
skeleton

RR3:f

g , then the field function of the 
convolution surface for the skeleton g  is 

g
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where  is the differential length of the 
skeleton, and  is called the convolution 
kernel function. 

ds
f

The kernel functions used for convolution 
surfaces include Gaussian, inverse linear, 
inverse squared, Cauchy, and polynomial 
functions. In this paper, we adopt quartic 
polynomial as kernel function because it leads 
to simplest computation. The quartic 
polynomial kernel is defined as 
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where R  is the effective radius of the kernel, 
r  is the distance from the space point  to the 
skeleton.

P

By using a cubic control curve to define a 
polynomial distribution function 

 along a skeleton, and 
multiplying the field function of a point Q  in 
the skeleton by , the convolution model 
in Eq.(1) now becomes a weighted convolution 
surface model with polynomial weight 
distribution: 
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Computer vision research has shown that 
any 3D object can be defined entirely from a 
geometric skeleton [27], which implies that 
skeletons are natural abstractions for 3D 
objects. Convolution surfaces also provide us 
with a means to control the shape of an 
underlying modeling object by controlling its 
skeleton.

We extend the usage of convolution surface 
to local space deformation. The field function 
of a space point is taken as the weight of 
displacement. By interactively specifying the 

one dimensional constraints and their effective 
radii, we can achieve various deformation 
effects. The constraints are taken as the 
skeletons for convolution surfaces. 

The general constrained deformation model 
based on convolution surfaces can then be 
defined. Let  be a point in ),,( zyxP 3R ,

 be a deformation 
function which maps  to . Let 
be a constraint skeleton,  be its 
displacement,  be the field function of 
the convolution surface for the skeleton .
The deformation function controlled by 
constraint  is defined as 

33:)( RRPDeform
P )(PDeform ig

ideltD
)(PF

ig

ig
)(*)( PPP FdeltDDeform i           (4) 

Because of the finite support of the kernel 
function in Eq.(2), deformation function 

 yields a local deformation. For 
any point on the skeleton whose distance to a 
point  is larger than

)(PDeform

P R , its field function 
contribution to  is zero. So we haveP

PPPP )(*)( FdeltDDeform i      (5) 
To make the maximum displacement of the 

deformation coincides with , which is 
defined by the user, we sample the skeleton 
uniformly by some points and take the 
maximum field of these points as the 
approximate maximum field of the whole 
skeleton. The field function generated by the 
skeleton is normalized using this maximum 
field. Then, for the point with maximum field, 
we have 
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Because of  the superposition property of 

convolution surfaces, which means summing 
the convolution surfaces generated by two 
separate skeletons yields the same surface as 
that generated by their combined skeleton, we 
can easily extend Eq.(4) to deal with multiple 
constraints. The deformation function for n
constraints is defined as 

n

i
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By adjusting the shape of the constraint 
skeletons, their effective radii and desired 
displacements, the required deformation can be 
achieved intuitively and interactively. 



3. Field computation for 
convolution surface 
From Eq.(7) we can see that the key for 
calculating the deformation function lies in the 
computation of the convolution function .)(PF

In the following, we give the computation 
methods of convolution surfaces for some 
typical skeletons, which are presented in [26]. 
3.1 Weight distribution control with cubic 
control curve 
The cubic control curve used here is a one-
dimensional Bézier curve. Assuming that the 

control points are ,3,2,1,0),,( iq
n
i

i  and 
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are Bernstein polynomials, the curve 

can be rewritten as . The 

user can change the control curve by adjusting 
the   Bézier control vertices . With 
the kernel and the polynomial weight 
distribution function defined, for a one-
dimensional skeleton with parameter , we can 
now write the field of a point P of interest as 
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By modulating the weight of the integration 
kernel along the skeleton, a convolution 
surface with varying radius can be achieved. 
3.2 Line segment constraint 
A line segment of length l  with start point b
and unit direction n  can be represented 
parametrically as  

lttt 0,)( nbL                       (9) 
Letting , the squared distance from 
the point  to a point on the line  is given 
by 
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where   and |||| dd ndh
Due to the finite-support of the convolution 

kernel function, we need to calculate the 
effective span of the line segment first. If the 

effective span is , where , the 
field of a point  is as follows

],[ 21 ll 21 ll
P

)(')('

)(')(')(
32

32

1
1

0

PP

PPP
t
line

t
line

t
linelineline

FqFq

FqFqF
      (11) 

where
00' qq ,

)33(1' 101 qq
l

q ,

)363(1' 21022 qqq
l

q

)33(1' 321033 qqqq
l

q ,

and , are the field functions 
of the line segment  with weight 
distribution  defined as 
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By applying integration techniques, 
can be calculated easily [25]. 
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Figure 2(a) shows the deformation result 
adopting one line segment constraint located 
on the back of the undeformed horse. By 
controlling the weight distribution along the 
line kernel, we can easily create the humps 
using just one line constraint, which would be 
difficult for deformation model based on 
distance field. Figure 2(b) shows the 
deformation result adopting two line segment 
constraints located on the ear of the bunny.

(a) undeformed horse  and deformed horse 

(b)  undeformed bunny  and deformed bunny  
Figure 2 : The deformation results adopting line 

segment constraints 



3.3 Arc constraint 
Let  be an arc defined in the arc’s local 

-aligned coordinate system, 
)(tA

z
2100 ),0,sin,cos()( ttRtRtA     (12) 

where  is the radius of the arc, and 0R 1 and

2  are the starting and ending angles of the arc. 
For an arbitrary arc in space, since the field 

is coordinate system independent, we may first 
transform a point  into the arc’s local 

-aligned coordinate system and then perform 
the field computation. 
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z

Similar to line segment constraint, we 
should first calculate the effective spans of the 
arc skeleton. The number of effective spans of 
the arc may be zero, one or two. 

Let 12 , and let SpanNum  be the 
number of effective spans. If there is only one 
effective span, let it be [ ], 21 ; if there are 
two of them, let them be ],[ 21  and ],[ 43 .
Then the arc’s analytical field function for a 
point  is ),,( zyxP

SpanNum

j

t
arcjarcjarc FqFqF

1
1

1
0 )(')(')( PPP

                 (13) )(')('
32

32 PP t
arcj

t
arcj FqFq

The formulae of computing the convolution 
field function for span skeletons can be found 
in [26]. 
3.4 Quadratic curve constraint 
Let the quadratic curve constraint be 
represented as 
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where are vector 
coefficients. Quadratic curves that are 
represented in other parametric schemes, such 
as Bézier or B-spline, can be easily converted 
into this power basis form. 

),,( iziyixi QQQQ

As with line segments and arcs, we should 
first obtain the effective span(s) of the curve. 
Then we will use the arc length as the integral 
parameter in the convolution model. 

Here we also take the convolution formulae 
presented in [26]. 

4. Experimental results 
We have implemented our deformation method 
on an Intel Pentium M 1.0 GHz computer with 
768M main memory under the Windows XP 

operating system. Figure 3 shows some 
deformation results using line, arc and 
quadratic curve constraints. All of them are 
obtained by applying the corresponding 
constraints to a thin plate. Figure 3(a) shows 
the different deformation results adopting one 
line segment constraint with an increasing 
effective radius R. We can see that the whole 
object will be affected if R becomes big 
enough. In figure 3(b), the house is created 
with ten line segment constraints and one 
quadratic curve constraint, and the letters 
“house” are created with nine line segment 
constraints, one arc constraint, one quadratic 
curve constraint and one B-spline constraint.

In figure 4 we demonstrate an interesting 
example, in which an ellipsoid is deformed to a 
man’s head under the interactive control of the 
user. Figure 4(a) is the original ellipsoid. 
Figure 4(b) is deformation result caused by 
three line segments. Figure 4(c) uses one 
quadratic curve and two line segments. Figure 
4(d) uses three B-spline constraints for each 
eye. Figure 4(e) uses one B-spline constraint 
and one quadratic curve for the mouth. Figure 
4(f) uses three line segments to make the chin 
thinner. Figure 4(g) uses three B-spline 
constraints to add hairs for the model. At last 
we get ears by two quadratic curves in figure 
4(h).

(a) Deformation results adopting the same 
constraint with different effective radius. 

(b) Deformation results using line, arc and quadratic 
curve skeletons 

Figure 3 : Some deformation results using line, 
arc and quadratic curve constraints 



(a)                                       (b) 

(c)                                       (d) 

(e)                                        (f) 

(g)                                    (h) 

Figure 4 : The process of deforming an ellipsoid 
to a man’s head 

5. Conclusions and future work 
A new constrained deformation model based 
on convolution surfaces is presented in this 
paper. After a user specifies a series of 
constraints, their effective radii and maximum 
displacement, the deformation model creates a 
set of convolution surfaces taking the 
constraints as the skeletons. Each convolution 
surface determines a local influence region and 
the field function associated with the constraint. 
Different from the constrained deformation 
model based on the distance surfaces, our 
method can effectively reduce the bulges 
appeared in the deformation when the user 
selects some adjacent constraint skeletons. 
Furthermore, the user can finely control the 
deformation result by adjusting the weight 
distribution along the convolution skeleton. 
Experimental results show that our 
deformation method is both powerful and 
intuitive, and can be implemented interactively 
on current PC. 

The deformation model presented in the 
paper is based on line segment, arc and 
quadratic curve constraints. Deformations 
based on surface and volume constraints are 
our future work. We also plan to incorporate 
local rotation and scale constraints into our 
deformation model. 
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