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Abstract

Most camera calibration methods assume that the camera is nearly in-focus for precisely
estimating the intrinsic and extrinsic camera parameters. However, the camera is generally
out-of-focus in real calibration applications. This paper presents a method that is capable
of accurately calibrating an out-of-focus camera. A confidence-based camera calibration
with modified census transform (MCT) is proposed for a checkerboard calibration pattern.
No additional devices or special calibration targets are required. First, the MCT utilizes the
intensity information and local image structure to construct a descriptor. Then, the dissimi-
larity between the control point on the real image and the one on the sharp image is evaluated
using the Hamming distance. This similarity metric is treated as the confidence of each con-
trol point. Finally, the confidence of each control point is added to the calibration energy
minimization procedure to enhance the calibration performance. The experimental results
on real images demonstrate that the proposed method achieves a more accurate calibration
result than conventional methods.

Keywords Camera calibration - Stereo matching - Modified census transform

1 Introduction

Camera calibration is a fundamental problem in computer vision. It is used to estimate the
intrinsic and extrinsic parameters of a camera. The intrinsic parameters describe the internal
geometric and optical characteristics of the camera system, whereas the extrinsic parame-
ters are defined as the rotation and translation transformations between the world coordinate
system and the camera coordinate system [33]. Because camera calibration determines the
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mapping relation between the 3D points in the real world and the observed 2D projec-
tions on the image plane, its accuracy has a significant impact on the overall performance
of computer vision applications. Therefore, improving the camera calibration accuracy
could significantly benefit subsequent tasks in the computer vision workflow, especially for
triangulation-based applications, such as binocular stereo systems [6] and structured light
systems [17].

As one of the most fundamental problems in the field of computer vision, camera calibra-
tion has been extensively studied for decades [34]. Various camera calibration methods have
been proposed, and they can be roughly classified into three categories: three-dimensional
reference-object-based calibration [15, 23, 31], two-dimensional plane-based calibration
[30, 33], and self-calibration [22, 26].

In three-dimensional reference-object-based calibration, a precisely constructed calibra-
tion object with known 3D geometry [9, 29] is required to establish the correspondences
between the 3D points on the object and the associated 2D image points projected on the
image plane. The transformation from the 3D real world to the 2D image plane is approx-
imated by some optimization algorithms. However, the fabrication of accurate 3D targets
is typically difficult. Two-dimensional plane based calibration requires the acquisition of a
few well-planned independent views of a planar pattern. Self-calibration does not use any
specific calibration target. Two-dimensional plane-based calibration has attracted consider-
able attention owing to its flexibility, robustness, and ease of construction. Tsai [31] presents
a calibration method using 2D calibration targets. The calibration procedure is simplified
because the 2D calibration targets are easier to obtain. Zhang [33] further simplifies the cal-
ibration procedure by adding some control points (checkerboard or circular point patterns)
to enable arbitrary poses and orientations of a 2D calibration target. Zhang’s method and its
extensions have been integrated into many software applications, such as the Camera Cali-
bration Toolbox for MATLAB [5] and OpenCV [8], because of its flexibility. The proposed
method also utilize the frame of Zhang’s method. However, we assign each control point
on the checkerboard a confidence in the camera calibration procedure. As shown in Fig. 1,
the confidence of each control point is different, depending on the proposed MCT descrip-
tor. These confidences guide the calibration procedure in a more proper way. As a result,
the calibration performance is enhanced by the confidence-based method with MCT. More-
over, no additional devices or special calibration targets are required in the whole calibration
procedure.

The remainder of this paper is organized as follows. Closely related work is reviewed
in Section 2. The concept of a defocused image and the definition of the traditional census
transform are described in Section 3. The MCT is explained in detail in Section 4. The
confidence-based calibration procedure is presented in Section 5. The experimental results
are presented in Section 6. Finally, conclusions are drawn and future work directions are
discussed in Section 7.

2 Related work

In this section, we review the closely related literature since a large volume of studies on
calibration have been published.

The rapid development of digital imaging devices has led to widespread use of computer-
vision-based methods in measurement applications, resulting in a growing demand for high
accuracy camera calibration techniques [1]. To achieve accurate camera calibration results,
it is important to acquire a set of exact correspondences between the 3D control points in
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Fig. 1 Control points are assigned with different confidences (different colors) according to the proposed
MCT descriptor

the real world and the associated 2D control points projected on the image plane. Under
the assumption that the camera calibration target is known with sufficient precision, it is
worth noting that the localization precision of the control points on the image plane is one
of the main factors affecting the accuracy and stability of camera calibration, and it has been
attracting increasing interest in recent years [14, 27]. Accurate detection of control points
on the 2D image plane is often difficult in real-world scenarios, especially for defocused
images.

In general, conventional methods for extracting control points require well-focused input
images to achieve localization of the control points with high accuracy. However, few stud-
ies have investigated the out-of-focus blurring effect, which commonly exists in real lens
systems. In practice, input images for camera calibration commonly exhibit varying degrees
of out-of-focus blur, especially for camera systems having a very limited depth of field
(DoF) [3, 7]. Lens focusing for such camera systems is often tedious even if the camera is
equipped with an auto-focus lens. In general, a calibration target is required to be placed at
a number of positions and orientations such that it can span around the 3D space, and it will
be processed in the subsequent vision tasks. Thus, the out-of-focus effect of input images
for camera calibration is practically unavoidable even after fine-tuning the acquisition setup.
The effect of defocus blur tends to be increasingly severe in current high-resolution cameras
with high-density optical sensors, i.e., each pixel has a much smaller physical size in the
optical sensor. Thus, conventional methods for extracting the control points are no longer
suitable for directly application to the out-of-focus areas of the input images.

Baba et al. [2] propose a unified camera calibration method using a thin-lens-based cam-
era model that adds the reprojected blur width error of the control points to the traditional
cost function for camera parameter estimation. Kannala et al. [24] propose a generic cam-
era model that is applicable for conventional cameras, wide-angle lens cameras and fish-eye
lens cameras. This generic model uses a radially symmetric projection assumption that is
more flexible for various camera lenses. Geiger et al. [16] find that for each control point,
the image gradient at a neighboring pixel should be approximately orthogonal to the direc-
tion from the neighboring pixel to the control point. The position of the control point is
estimated according to that rule. The method proposed in [28] finds the saddle point of the
polynomial surface that is estimated around the candidate control point, and it considers the
position of this saddle point to be the accurate location of the control point. Datta et al. [14]
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use the parameters computed by traditional calibration methods for initialization, and then
they refine the positions of the control points in an iterative manner. The reprojection errors
of [14] are considerably lower than those of the traditional calibration methods. Ha et al.
[18] propose a camera calibration method for defocused images using five complementary
binary patterns consecutively displayed on a smartphone. They model the defocus blur as a
convolution of a sharp image with a Gaussian point spread function on the binary patterns,
which simplifies the 2D Gaussian deconvolution problem to a 1D Gaussian deconvolution
problem. Bell et al. [4] propose a calibration method that encodes control points into the car-
rier phase with the fringe patterns obtained by a digital display. Consequently, the accuracy
of the localization of control points is not affected by the amount of defocusing. Chuang
et al. [13] proposes a new calibration method that consider the outliers in the computa-
tion and the focal length in the calibration procedure that enhances the correctness and
robustness. Lopez et al. [25] predict extrinsic and intrinsic parameters from a single image
to handle radial distortion problem, which introduces a new parameterization of radial
distortion tailored for the learning-based method.

Accurate localization of the control points in defocused images is important, and many
studies have focused on this task. However, few studies have investigated the final calibra-
tion energy minimization procedure. The proposed method assigns a confidence to each
control point in the calibration procedure, and this confidence is able to guide the calibra-
tion procedure in a more proper manner. We present a modified census transform (MCT)
to describe each control point on the checkerboard pattern and the dissimilarity between
the MCT of the control point on the real image and the one on the sharp image is evalu-
ated using the Hamming distance. The similarity metric is treated as the confidence of each
control point in the calibration procedure to enhance the calibration performance.

Feature extraction [19, 20] is important for camera calibration. Census transform [32] is
widely used as a similarity metric in stereo matching. It uses one binary string as a descrip-
tor. The census transform encodes local image structures with the relative magnitude of the
pixel intensities. Consequently, the census transform is capable of describing the relation-
ship between a single pixel and its neighboring pixels within the image patch. Given the
special shape of the checkerboard pattern, we modify the traditional census transform by
not only considering the relative magnitude of pixels but also utilizing the pixel’s intensity
information itself. We divide the image patch centered at each control point into two parts:
the cross region and the other regions, which will be described in Section 4. In the cross
region, we compute the intensity similarity between the real image and the sharp image.
In the other regions, we utilize the census transform to consider the structure informa-
tion, and we compute the structure similarity between the real image and the sharp image.
Experiments demonstrate that the MCT achieves superior results compared to the traditional
census transform in the camera calibration procedure.

3 Preliminaries

In this section, we describe the phenomenon of defocused images and the traditional census
transform in stereo matching.

3.1 Defocused image

The camera calibration method is generally based on the pinhole camera model. As shown
in Fig. 2, if one point is placed at the focal distance in front of the lens, then all the light rays
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Fig.2 Thin-lens camera model

from the point will ideally converge to a single point on the image plane, which generates
a sharp image point. However, when a point is placed at a distance that is closer or farther
than the focal plane, the light rays from that point will converge before or after reaching
the image plane. Consequently, the rays spread over a small area on the image plane, and
the point will be defocused. As shown in Fig. 3, the images that are closer or farther than
the focal plane are blurred. Thus, the positions of these control points on the image are
blurred and unreliable, thereby influencing the calibration precision. The proposed method
assigns each control point a confidence to resolve this defect. Section 4 presents the details
of defining the confidence.

3.2 Census transform

The census transform is widely used in stereo matching for describing the neighboring
structure of a single pixel. Fig. 4 illustrates the traditional census transform. The census
transform is a nonparametric measure, and it encodes local image structures with the relative
magnitudes of the pixel intensities. For each pixel p, the relative magnitudes of intensities
between p and its neighboring pixels are compared. For each pixel in the neighborhood, if
its intensity is lower than that of the center pixel p, the value of the pixel is defined as zero.
Otherwise, the value of the pixel is defined as one:

0 ifl@ <I(p)
c(p,q) = (D
1 otherwise

o
o
Sy
o
Sy
[
By
)

oo \ofoe®

Fig.3 In-focus and defocused images
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% (0,1,1,0,1,1,0,1,1)

Fig. 4 An illustration of the traditional census transform. The intensities of the center pixel (red) and the
neighboring pixels are compared. The result of the census transform is a binary string

where g is a pixel in p’s neighborhood, and 7 (¢) denotes the intensity of pixel ¢g. Then, the
values in the neighborhood are concatenated as a binary string as the descriptor of pixel p:

cen(p) = ) c(p.q) 2

q<=Wy

where W), is the neighborhood of pixel p, and ) is the concatenate operator.

In stereo matching, the census transform has an advantage over describing the structure
information. For corresponding pixels in the left and right images, the Hamming distance
between the two pixels’ census transform descriptors is defined as a similarity metric. The
proposed method is inspired by this similarity metric definition. We utilize this similarity
metric to compute the dissimilarity between the control point in the real image and the
one in the sharp image. The dissimilarity reflects the confidence of one control point in
the real image, and this confidence can be utilized in the final calibration procedure. The
experimental results demonstrate the effectiveness of this similarity metric.

4 Modified census transform for checkerboard pattern

The flowchart of the proposed method is illustrated in Fig. 5. The proposed method uti-
lizes the MCT to compute the difference of control point between the sharp image and the
real image. The difference is formulated as the confidence of the control points, which is
integrated into the final camera calibration step.

First, for each input defocused image, initial control point detection of the checker-
board pattern is performed using the Harris corner detector [21] as implemented in OpenCV
[8]. The control points are refined with subpixel accuracy with an iterative gradient-based
searching algorithm.

After the initial control points are detected, we assign each control point a confidence by
utilizing the MCT. In (2), the conventional census transform uses a binary string as a pixel’s
descriptor. However, this is a definition for general images. During calibration, the target
in the images is special, such as the checkerboard pattern, and we modify the traditional
census transform. First, we define the MCT of the control point in the sharp image. The
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Fig.5 Flowchart of the proposed
method:
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Image
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MCT Descriptor
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Similarity
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Y

Calibration
Parameters

end

sharp image has sharp edges that have no degree of blurring, as shown in Fig. 6a. The
control point and the edge points at the four adjacent sharp edges define the cross region, as
shown in Fig. 6b (the gray pixels). Note that in practice, the direction of the sharp edge is
defined as the line connecting the detected control points. In the checkerboard pattern, the
positions of the pixels in the cross region (sharp edges) should have subpixel accuracy, and
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Fig. 6 The modified census transform. a For each control point, the neighborhood of the control point is
defined (the red square). b The magnified pixels in the red square region (5 x 5, for instance), where each
small square denotes a pixel. ¢ The traditional census transform result of (b). d The definition of MCT in the
sharp image

we define the intensities of the pixels in the cross region as the average of the neighboring
pixels’ intensities. The definition of the conventional census transform of the control point
in the sharp image is illustrated in Fig. 6¢. In the cross region in Fig. 6¢ (the gray pixels in
Fig. 6b), the values are all ones according to the census transform definition (the intensities
of the pixels in the cross region and the center pixel are equal). Consequently, the census
transform of the center pixel explores the same information in the cross region as in the
white regions, which have higher intensity than the center pixel. This approach clearly has a
negative effect on describing the control points in the checkerboard patterns. To distinguish
the information between the cross region and the white regions, we modify the traditional
census transform. For each pixel in the cross region, the relative intensity magnitude is
not compared with the center pixel. Rather, we retain the intensity values for the pixels in
the cross region. Figure 6d illustrates the descriptor of the MCT. In the sharp image, the
intensity /; of the cross region is defined as the average of the intensities of the neighboring
pixels. The size of the window is defined as 11 x 11 here. Then, the value is divided by 255
to be controlled in the range of zero to one. For the real image, the definition of the MCT is
similar to that for the sharp image. The only difference is that the pixel intensity in the real
image is the real sampled pixel intensity.

Then, the computation of similarity between the control points in the real image and
those in the sharp image can be divided into two parts: the dissimilarity in the cross region,
and the dissimilarity in other regions. For the pixels in the cross region, we compute
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the sum of absolute intensity difference between the real image and the sharp image as
follows:

ngRPrqngm |Ir - Ivl

3)

Deyoss (pr P ps) =

Imax

where p, is the control point in the real image; p; is the control point with the same position
in the sharp image; R, and R, are the cross region of p, and py, respectively; I, denotes
the intensity of real image pixels in the cross region, /5 denotes the intensity of sharp image
pixel in the cross region; and /4, denotes the maximum intensity value, i.e., 255.

For pixels in other regions, the census transform values are concatenated as a binary
string, and the Hamming distance between the descriptors of the real image and the sharp
image is computed as the dissimilarity of the two points in other regions, as follows:

Dother (pr» ps) = cen(py) @ cen(ps) 4

where cen(p,) denotes the census transform values of the control point in the real image,
cen(ps) denotes the census transform values of the control point in the sharp image, and 5
denotes the Hamming distance operator.

Finally, the dissimilarity between p, and p; is defined as the sum of the two dissimilari-
ties in (3) and (4), as follows:

D(Pr, ps) = D¢ross (Pr, ps) + Dother (Pr, ps) (5)

5 Confidence-based calibration procedure

First, we introduce the definition of the Mean Reprojection Errors (MRE):

M N
MRE:ZZHP,-j—ﬁ,-jH 6)

i=1 j=1

where M is the number of images and N is the number of control points in each image,
P;; is the projection of the control point in the 3D world coordinate system and P j is the
corresponding 2D image point.

After the similarity metric is defined, we can obtain the dissimilarity between the con-
trol points in the real image and the ones in the sharp image. The dissimilarity measures
the confidence of the detected control point localization. Intuitively, the localization error
of the control point increases as the dissimilarity increases. The modified census transform
is adopted to define the weight for each control point, which depicts the confidence of the
detected control point localization. In this way, the out-of-focus problem in camera cali-
bration is alleviated by adding the weights for each control point. For the jth control point
in the ith image, the dissimilarity from the corresponding control point in the sharp image
is defined as D;j, where D = D(p,, p,) for short. The confidence ¢;; in the calibration
procedure is defined as follows:

cij = et ™

where ¢ is a constant value and will be discussed in Section 6.5. The confidence reflects the
importance of each control point, and this confidence is normalized as follows:

Cij = cij/c ®)
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and
1 M N
c=o 21: X;cij 9)
i=1 j=

The normalized confidence of each control point reflects its confidence in the defocused
image, which determines the relative importance of the control point when minimizing the
energy function of the camera calibration.

Finally, the energy function is defined as follows:

M N R
E=Y 3¢y HP,, .y

i=1 j=1

10)

6 Experimental results

The experiments are all conducted on a desktop equipped with an Intel(R) Core(TM)
17-3770K CPU at 3.50 GHz and 16 GB of RAM. Real images are used to evaluate the per-
formance of the proposed method. The camera is a Canon EOS 600D DSLR with a Canon
EF 50 mm /1.8 STM lens. The resolution of the captured images is 5184 x 3456 pixels.
The camera system is focused at a distance of approximately 1.5 m. For each dataset, 30
input images are taken from different positions and orientations. Three other test images
for each dataset are used for the calibration accuracy measurement in Section 6.2. Note that
the three test images are well placed in the focal plane. For each dataset, 21 images were
randomly selected from the 30 input images as the training input images under various blur
conditions. A 24 x 14 checkerboard pattern is used. The size of the neighborhood of MCT
is defined as 11 x 11. The mean reprojection error is used as the criterion for evaluating the
calibration performance.

The proposed method is evaluated from various perspectives, including the improvement
over traditional calibration methods in Section 6.1, the evaluation of the accuracy of camera
parameters in Section 6.2, the effectiveness of the MCT in Section 6.3, the evaluation of
the neighborhood definition in Section 6.4, the evaluation of sharp image construction in
Section 6.5, and the parameter and time analysis in Section 6.6.

6.1 Improvement over traditional calibration methods

First, the improvements from applying the confidence-based calibration method over the
traditional calibration methods are evaluated. The control points are extracted using three
traditional localization methods: the control point refinement procedure in OpenCV [8],
the algorithm presented by Geiger et al. [16], and ROCHADE [28]. The mean reprojec-
tion errors are shown in Table 1. The percentage denotes the improvement in the calibration
accuracy. As shown in Table 1, the calibration accuracy of the proposed method is higher
than those of the conventional methods. Compared to the method in [16], there is a consid-
erable improvement in the calibration performance. The confidences of the control points
guide the calibration procedure in a more proper way.

6.2 Evaluation of the accuracy of camera parameters

In this subsection, we further evaluate the accuracy of the camera parameters by using
three additional test images captured around the focal plane that were not included in the
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Table 1 Mean reprojection errors of the camera calibration with and without confidences

Without confidences

OpenCV Geiger ROCHADE
Datal 0.56080 1.00017 0.56012
Data2 0.58262 1.21417 0.58006
Data3 0.56579 1.01078 0.56466
Data4 0.56272 1.00281 0.56341
Data5 0.56302 1.00673 0.56320

With confidences
Datal 0.46757 (16.62%) 0.50203 (49.81%) 0.50524 (9.80%)
Data2 0.50043 (14.11%) 0.50527 (58.39%) 0.47577 (17.98%)
Data3 0.47956 (15.24%) 0.49964 (50.57%) 0.51537 (8.73%)
Data4 0.50122 (10.93%) 0.52747 (47.40%) 0.48697 (13.57%)
Data5 0.51928 (7.77%) 0.50834 (49.51%) 0.48536 (13.82%)

calibration process. The OpenCV [8] control point extraction method is used in this experi-
ment. The performances of the calibration with and without the confidences are compared.
As shown in Table 2, the mean reprojection errors are clearly reduced by the proposed
confidence-based camera calibration method. The trained parameters are robust and perform
well in the calibration procedure of test images.

6.3 Effectiveness of the MCT

We also compare the similarity metric performances of the conventional census transform
and the proposed MCT. The result is shown in Fig. 7, where the mean reprojection error
is lower when using the MCT as the similarity metric. The conventional census transform
cannot explore the information in the cross region well, as stated in Section 4, which has a
negative effect on defining the confidences of the control points. However, the MCT pro-
cesses the information of the cross region more effectively, and the confidences are defined
more reasonably.

6.4 Evaluation of the sampling strategy
The MCT uses binary strings as the descriptor of neighboring sampling pixels, and the

sampling strategy of the proposed method is as follows: for each location pair, we choose
the center pixel p and the pixel ¢ in p’s neighborhood (except for the cross region). In

Table 2 Quantitative analysis on test images using OpenCV [8] control point extraction

Without confidences With confidences

Dataset1 0.482997 0.458526 (5.07%)
Dataset2 0.547746 0.505966 (7.63%)
Dataset3 0.604864 0.566243 (6.38%)
Dataset4 0.668804 0.606188 (9.36%)
Dataset5 0.502463 0.454530 (9.54%)
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Fig.7 The comparison of the performances between the traditional census transform and the proposed MCT

other fields, there is also a binary string descriptor called binary robust independent ele-
mentary features (BRIEF) [10]. In [10], there are five sampling strategies for generating the
binary string. These five sampling strategies are random sampling methods with different
probability distributions. In other words, for each location pair, the positions of p and ¢
are randomly chosen according to some probability distributions. Details of five sampling
strategies can refer to the reference [10]. We also evaluate the performances when applying
these five sampling strategies to generate the binary strings in our confidence-based camera
calibration procedure. Table 3 shows the mean reprojection errors when choosing different
sampling strategies. For most datasets, the sampling strategy of the proposed MCT performs
the best. The sampling strategy of the MCT is more suitable for the checkerboard pattern
since the information of the center pixel (control point) is fully considered.

6.5 Evaluation of sharp image construction

In Section 4, we demonstrate the method of sharp image construction. For each control
point, the direction of the sharp edge is defined as the line connecting the neighboring

Table3 Comparison of the five sampling strategies in [10] and the sampling strategy in the proposed method,
where the bold number in each row indicates the minimal mean reprojection error among different sampling
strategies

Origin Sampling1 Sampling2 Sampling3 Sampling4 Sampling5 Ours

Dataset1 0.548 0.482 0.543 0.510 0.494 0.484 0.480
Dataset2 0.805 0.763 0.781 0.763 0.763 0.785 0.763
Dataset3 0.747 0.721 0.724 0.727 0.723 0.747 0.723
Dataset4 0.593 0.539 0.543 0.539 0.543 0.593 0.532
Dataset5 0.674 0.654 0.663 0.654 0.663 0.654 0.643
Dataset6 0.668 0.641 0.668 0.665 0.606 0.652 0.606
Dataset? 0.619 0.615 0.598 0.585 0.594 0.595 0.583
Dataset8 0.609 0.574 0.574 0.597 0.570 0.574 0.570
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detected control points. However, the control point detection is not guaranteed to be accu-
rate and as a result, the direction of sharp edges may not be accurate. The dissimilarity
computation is influenced by this fact. To evaluate the degree of this influence, for a cross
region in the sharp image, we add a small random value to the positions of the four adjacent
control points and compute the dissimilarity accordingly. The test is repeated 300 times and
Fig. 8 illustrates the result. k& and kv denote the slope of the horizontal line and the verti-
cal line, respectively. The variance of these dissimilarities is 0.0017, which is considerably
small. The dissimilarity computation is insensitive to the position turbulence of the control
points.

6.6 Parameter and time analysis

In this subsection, the choice of the parameter ¢ in (7) is evaluated. We evaluate the mean
percent improvement in camera calibration on all the datasets when choosing g from 1 to
12, and the result is shown in Fig. 9. When ¢ is small, the mean improvement for all the
datasets increases with ¢ since the control points with a smaller dissimilarity to the sharp
image control points play a more important role in the calibration procedure, and the error
from the control points that indicate a larger control point localization error are suppressed.
However, the mean percent improvement decreases after it reaches the maximum value
since the confidences of the control points with inaccurate positions are too small. Conse-
quently, the number of control points that constrain the calibration procedure is reduced,
and the calibration procedure becomes unstable. Considering the efficiency and stability of
the calibration, we chose ¢ = 7.2 in our experiment.

The window size of the MCT is also evaluated. The neighbor size is chosen from 3 to
19, and the corresponding weight is computed and illustrated in Fig. 10. It shows that the
weight is not sensitive with the range from 11 to 17.

Regarding runtime, each dataset can be completed in 6 min with an Intel(R) Core(TM)
17-3770K CPU at 3.50 GHz and 16 GB of RAM. Because camera calibration is generally
an offline task, the runtime of the proposed method is acceptable in practice. The running
time is also compared with the state-of-the-art methods [11, 12] shown in Table 4.
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Table 4 Comparison of the calibration running time

Method in [11] Method in [12] The proposed method

Time (second per mega-pixel) 0.9766 0.3255 0.2791

7 Conclusion

We propose a confidence-based camera calibration with MCT. The MCT assigns each con-
trol point a reasonable confidence and guides the calibration procedure to achieve superior
performance. Moreover, the proposed method can easily be applied in various fields, such
as out-of-focus detection, control point confidence description, and camera calibration for
stereo or multi-view stereo. The proposed method does not require additional devices or
a special calibration target. The experimental results demonstrate the effectiveness and
robustness of the proposed method. How to define the confidence for each control point in
different calibration patterns might be a future work. The definition of the confidence of the
control points is also an open issue to study with. The information of the blur on the control
points may be considered in the subsequent steps such as the rectification in stereo match-
ing, or the feature extraction in multi-view geometry, to enhance the performance of the 3D
reconstruction system.
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