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Free-form deformation is a powerful shape
modification tool. How to approximate or
compute the real deformation of a polygo-
nal object is still problematic. In this paper,
a new solution is proposed for this prob-
lem. First, a special initial B-spline volume
is defined whose Jacobian is an identity ma-
trix. The accurate deformation is as trimmed
tensor-product Bézier surfaces. The descrip-
tion of the trimmed surfaces is consistent
with that in the industrial standard, STEP.
The degrees of the Bézier surfaces are lower
than the theoretical results. Compared with
previous algorithms, the proposed algorithm
has the advantages of both storage and run-
time.
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Free-form deformation, abbreviated as FFD, was
first proposed by Sederberg and Parry [23]. It is an
effective tool for geometric shape modification, and
it is independent of the representation and topology
of object. The FFD can be concisely described as fol-
lows. Firstly, the object is frozen into an intermediate
flexible space, such that when the shape of the inter-
mediate space is changed, the object will follow its
change. The 3D tensor-product Bézier volume was
adopted as an appropriate flexible space by Seder-
berg and Parry. Its initial shape is an orthogonal par-
allelepiped. Later the FFD was extended to include
the B-spline FFD [13], extended FFD [4], rational
FFD [16], direct manipulation FFD [15], NURBS
FFD [17], continuous FFD [1], arbitrary topological
lattice FFD [19], and Dirichlet FFD [20]. It has been
applied to geometric modelling [6, 14] and computer
animation [3, 5, 16]. Bechmann produced a survey
about the various space deformation techniques [2].
The problem of sampling for the polygonal object
deformation is unsolved as yet. Theoretically, the de-
formation should act upon the whole polygonal ob-
ject. However, this can not be achieved, since the
polygonal object can be only represented discretely.
Thus, the deformation can only act on the sampling
points of the polygonal object. If the number of sam-
pling points is insufficient, aliasing phenomena will
occur in the deformation result, and this will degrade
the final deformation effect. Heretofore, there were
three types of solutions to the problem. They are
the uniform subdivision approach, the error-test ap-
proach and the accurate FFD approach.

1.1 Uniform subdivision approach

The polygonal object is uniformly subdivided on the
midpoint of each edge recursively. This subdivision
occurs regardless of the geometric shape of the ob-
ject, and the stop criterion is decided by the user. All
of the meshes in the object will be treated equally,
and therefore it is a brute-force solution; but it is the
solution that is adopted for most popular 3D com-
puter animation software. The drawback of the solu-
tion is obvious: many tiny meshes must be generated
if a perfect deformation result is required, and this
increases the rendering and storage burden.

1.2 Error-test approach

Parry first proposed an adaptive subdivision algo-
rithm for solving the sampling problem [22]. The
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two triangles that share a common “long side” are
halved. The long side for a triangle is defined as fol-
lows. Initially, an arbitrary edge of the triangle is
labelled, and then, after subdivision, the other two
undivided edges are labelled as the long sides for
the two newly generated triangles. Parry adopted two
criteria to decide the subdivision of a triangle: the
size of the triangle as projected on a screen and the
triangle’s “curvature”. Griessmair and Purgathofer
proposed another solution for the polygonal object
deformation [13]. In their method, the middle point
of an edge after deformation is checked to deter-
mine whether it is far away from its true position.
If the disparity is greater than a predefined thresh-
old, the edge will be halved. Inspired by the existing
work on domain discretisation in finite element anal-
ysis, Nimscheck proposed an advancing-front mesh-
ing algorithm for FFD [21]. Each edge of the initial
polygon is recursively subdivided based on either
its post-deformation length or the disparity between
its endpoint tangents. Then a new vertex is inserted
for triangulation, which approximates the ideal de-
formation result. Besides subdivision, Gain merged
the triangles that are approximately coplanar [12].
This method can decrease the number of meshes in
the deformed object. All of the four methods de-
scribed above follow a similar strategy: sampling,
testing and subdivision. According to the sampling
theory, some singular cases cannot be avoided [12].
These are inappropriate for processing by the above
methods. For example, for a wave-shaped curve, if
the normals to both its ends are the same, the above
methods may detect it falsely.

1.3 Accurate FFD approach

The accurate FFD methods proposed by the present
authors can avoid the problems of the error-test
approach [10, 11]. Traditionally, the FFD acts on
a point, whereas accurate FFD acts on each trian-
gle. The deformation result is a triangular Bézier
surface according to the Bernstein polynomial com-
position [8]. There are two weaknesses in accurate
FFD methods. Firstly, a triangular Bézier surface is
not directly supported by current modelling systems
and rendering pipelines. In general, these support
tensor-product Bézier surfaces. Sometimes the ren-
dering procedure can be accelerated by the hardware.
To make full use of the graphics hardware ability and
make it compatible with the current modelling sys-
tem, the triangular Bézier surface needs to be tessel-

lated into triangular meshes or converted into three
tensor-product Bézier surfaces in advance, which is
an additional cost. Another weakness is the degree of
the triangular Bézier surface. It is equal to the degree
of the B-spline volume. When a triangular Bézier
surface is converted into three tensor-product Bézier
surfaces, the degree of the resulting surfaces is twice
the degree of the triangular Bézier surface. This is
the maximal degree according to the results in [7, 8].
For example, when the degree of the B-spline vol-
ume in the accurate FFD is 2×2×2, the degree of
the triangular Bézier surface is 6. The degree of the
corresponding tensor-product Bézier surface will be
6 × 6. This high degree means high computational,
storage and display costs.
In this paper, a new accurate FFD method is pro-
posed. First, a new definition of the initial B-spline
volume is given. It is an end-interpolation B-spline
volume, whose Jacobian matrix is an identity ma-
trix. Then, a robust subdivision algorithm for the
polygonal object is proposed, which is free of degen-
erate polygons. The deformation result is trimmed
tensor-product Bézier surfaces whose description
is consistent with that in the industrial standard,
STEP [24]. Furthermore the degree of the tensor-
product Bézier surface is always lower than the
theoretical results [8]. Experimental results and the-
oretical analysis show that the new accurate FFD has
advantages both in computational cost and storage,
and can make use of graphics hardware to render the
trimmed surfaces.

2 Overview of the proposed algorithm

This research is inspired by the Bernstein poly-
nomial composition [8]. The composition between
a planar quadrilateral and a Bézier volume is a tensor-
product Bézier surface. With this result, the sampling
problem in the first FFD method can be solved [23].
Since the Bézier volume can only produce global
deformation, the B-spline volume is preferable in
practical use. As we know, the B-spline volume
can be converted into piecewise continuous Bézier
volumes [9]. Thus, the Bernstein polynomial com-
position can be employed here for the B-spline FFD
of the polygonal object. With proper subdivision of
the polygonal object in the parametric space of the
B-spline volume, the B-spline FFD can be converted
as Bézier FFDs. According to the results in [8], the
degree of the resultant tensor-product Bézier surface
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Fig. 1. The flow chart of the proposed algorithm

is equal to the tensor product of the degree of the
Bézier volume. According to our analysis, this de-
gree will never be reached in the work in this paper;
that is, the degrees of the resultant tensor-product
Bézier surfaces are always lower than this. Unlike
the previous algorithms in [8, 18], we proposed a fast
polynomial interpolation algorithm to compute the
control points of the tensor-product Bézier surface.
The flow chart of the proposed algorithm is shown
in Fig. 1.
The initial shape of the B-spline volume can be ei-
ther arbitrary or regular (orthogonal parallelepiped).
An initial B-spline volume with an arbitrary shape is
convenient for interactive shape modification. How-
ever, it is discommodious to define or automatically
generate such an initial B-spline volume with an ar-
bitrary shape. In practical use, an orthogonal paral-
lelepiped is preferable, whose extension is identical
with the object bounding box. Many computer ani-
mation systems adopt such an approach. In this paper
we consider the regular case.
First, a new initial B-spline volume is introduced in
this paper. The proposed initial B-spline volume has
two desirable properties. To start with, the point co-
ordinates in the object space are identical with its
local coordinates corresponding to the B-spline vol-
ume, and the Jacobian of the B-spline is an identity
matrix. After the initial B-spline volume is defined,
the polygonal object is subdivided in the paramet-
ric space according to the knot vectors distribution.
Each sub-polygon in the object after subdivision lies
within a “knot box” (see definition in Sect. 3.2) of the
B-spline volume. In fact, the B-spline volume lim-
ited in a knot box is a Bézier volume. The next step
is to classify the coplanar sub-polygons in each knot
box. At the same time, the degree of the resultant
tensor-product Bézier surface is determined. For the
coplanar sub-polygons in a knot box, it is not neces-
sary to compute each sub-polygon deformation. We

will only compute the deformation of the planar rect-
angular bounding box of the coplanar sub-polygons.
The deformation of the coplanar sub-polygons in
a knot box is the trimmed tensor-product Bézier sur-
faces. The trimmed curves are the edges of the copla-
nar sub-polygons. The control points of the tensor-
product Bézier surface are evaluated through polyno-
mial interpolation, where the interpolation matrix is
constant.

3 B-spline FFD polygonal object as
trimmed Bézier surfaces

The proposed algorithm is described in detail in this
section. The section is organized according to the
flow chart in Fig. 1.

3.1 A new definition of initial B-spline
volume

3.1.1 The initial B-spline volume and local
coordinates

From a mathematical point of view, FFD can be
described as two mappings: �3 → �3. The first map-
ping is from the object space to the parametric space,
and it freezes the object in the B-spline volume. Let
the mapping be noted as L : (x, y, z) → (u, v,w).
The mapping L is computed once after the ini-
tial B-spline volume is defined. During the defor-
mation, (u, v,w) is fixed for the point (x, y, z).
The second mapping is the B-spline volume itself
R : (u, v,w) → (x̃, ỹ, z̃). The relationship between
(x, y, z) and (x̃, ỹ, z̃) is linked by the triple (u, v,w),
namely, the local coordinates of point (x, y, z).
For the given initial B-spline volume, there are two
ways to compute the local coordinates (u, v,w). One
way is called forward mapping, which is a linear
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a b c d

Fig. 2a–d. The degree of the B-spline volume is 2×2×1; its lattice is 4×4×2. a The original object. b The initial B-spline volume
in end interpolation. Its control points are evenly distributed. There is warp in the deformation. c The uniform B-spline volume with
its identity Jacobian. d The end-interpolation B-spline volume converted from (c). The object in both (c) and (d) has no warp when it
is deformed by the initial B-spline volume.

transformation from (x, y, z) to (u, v,w). It is a fast
way since only the linear transformation is com-
puted. However, the object may be warped after it
is deformed by the initial B-spline volume. An ex-
ample of this is given in Fig. 2b, which shows the
deformation of the object in Fig. 2a by the initial
B-spline volume. The reason for this is that the ini-
tial B-spline volume in general is non-linear. The
previous accurate FFD algorithms adopted this map-
ping technique [10, 11]. The second way is called
backward mapping, where for each point (x, y, z) on
the object, a triple (u, v,w) is computed such that
R(u, v,w) = (x, y, z). In general, there is no analyt-
ical solution for this problem and numerical method
is adopted. By using the backward mapping, there
is no warp when the object is deformed by the ini-
tial B-spline volume, but it is a time-consuming pro-
cedure, and the local coordinates are non-linearly
distributed in general. It is not suitable for the ac-
curate FFD algorithms. Could we design an initial
B-spline volume that has the advantages of both of
these two kinds of mapping? The answer is yes.
We will give a constructive method in the following
section.

3.1.2 Definition of uniform B-spline volume
Let the initial B-spline volume R(u, v,w) be noted
as

R(u, v,w)

=
nu−1∑
i=0

nv−1∑
j=0

nw−1∑
k=0

Rijk Ni,ku (u)N j,kv
(v)Nk,kw

(w), (1)

where nu , nv and nw are the numbers of the con-
trol points, ku , kv and kw are the degrees, Ni,ku (u),
N j,kv

(v) and Nk,kw
(w) are the B-spline functions

along the u, v and w directions respectively. Rijk are
the control points, namely, the lattice in general. The
object bounding box aligned to the coordinates axis
is noted as (xmin, ymin, zmin) and (xmax, ymax, zmax).
For simplicity, the x-, y- and z-coordinates are
mapped as u, v and w respectively. Here the uniform
B-spline volume means that both the knot vectors
and the control points are uniformly distributed in
three parametric directions. The knot vectors {ui},
{v j} and {wk} are defined as follows:

ui = xmin + (i − ku)∗ (xmax − xmin)/(nu − ku)
(i = 0, 1, . . . , ku +nu) ;

v j = ymin + ( j − kv)∗ (ymax − ymin)/(nv − kv)
( j = 0, 1, . . . , kv +nv) ;

wk = zmin + (k − kw)∗ (zmax − zmin)/(nw − kw)
(k = 0, 1, . . . , kw +nw) .

From the definition, we know that the valid para-
metric domain is identical with the object bounding
box; that is, [xmin, xmax]× [ymin, ymax]× [zmin, zmax].
Next, the control point Rijk = (x ′

ijk, y′
ijk, z′

ijk) is de-
fined by the following equation:

x ′
ijk = xmin + i ∗ (xmax − xmin)/(nu −1)

(i = 0, 1, . . . , nu −1) ;
y′

ijk = ymin + j ∗ (ymax − ymin)/(nv −1)

( j = 0, 1, . . . , nv −1) ;
z′

ijk = zmin + k ∗ (zmax − zmin)/(nw −1)

(k = 0, 1, . . . , nw −1) .



J. Feng et al.: B-spline free-form deformation of polygonal object as trimmed Bézier surfaces 497

a b c d

Fig. 3a–d. The control point configurations for the end-interpolation B-spline volume of degree 3×3×1. The numbers of the control
points are noted under each subfigure. a 4×4×2; b 5×5×2; c 6×6×2; d 7×7×2

In general, the extension of R(u, v,w) with the
above control points {(x ′

ijk, y′
ijk, z′

ijk)} is smaller
than the object bounding box. If the object is de-
formed by R(u, v,w), there will be no warp intro-
duced except for constrictions. To make the exten-
sion of R(u, v,w) identical with the object bound-
ing box, the control points should be scaled. Let
(x ′

min, y′
min, z′

min) and (x ′
max, y′

max, z′
max) be noted as

the corner points of the R(u, v,w) extension, which
correspond to R(xmin, ymin, zmin) and R(xmax, ymax,
zmax). Three scalars can be computed by the follow-
ing equations:{

sx = (xmax − xmin)/(x ′
max − x ′

min) ;
sy = (ymax − ymin)/(y′

max − y′
min) ;

sz = (zmax − zmin)/(z′
max − z′

min) .

After x ′
ijk, y′

ijk and z′
ijk are scaled by using scalars

sx , sy and sz respectively, the extension of the new
B-spline volume is identical with the object bound-
ing box. Furthermore, its Jacobian is an identity
matrix. This means that when the object is de-
formed by such an initial B-spline volume, the object
will remain unchanged. One example is shown in
the Fig. 2c. It is the deformation of the object in
Fig. 2a by a uniform B-spline volume as defined
above.

3.1.3 Definition of end-interpolation B-spline
volume

In practical applications, an end-interpolation
B-spline volume is preferable, since its convex hull
of control points is tighter than that of the uniform
B-spline volume. It can be accomplished by using
the knot-insertion algorithm for the end knots [9].

An example is shown in Fig. 2d, which is a con-
version result of Fig. 2c. Besides being free of
warp, another advantage is that the object point co-
ordinates are identical with its local coordinates.
Thus, linear-transformation computational costs are
saved.
Since the above end-interpolation B-spline volume
results from a uniform one, an interesting result
can be derived according to the knot-insertion algo-
rithm. Let us illustrate the result with the 1D case.
Supposing R(u) is an end-interpolation B-spline
curve converted from a uniform one. It has n con-
trol points {Ri}n−1

i=0 and its degree is k. Let R0 R1
be noted as vector u. If n = k + 1, it is a Bézier
curve. The control points are evenly distributed.
Else, the results are described by Eq. (2). Thus the
end-interpolation B-spline volume can be defined in
a straightforward way. Some examples are shown
in Fig. 3.

R0 R1 = Rn−2 Rn−1 = u
R1 R2 = Rn−3 Rn−2 = 2u

... = ... = ...
Rk−1 Rk = Rn−k−1 Rn−k = ku
Rs Rs+1 = ku (other s) .

(2)

With the above steps, we defined an initial B-spline
volume. It has the following properties. Its paramet-
ric domain is identical with the object bounding box.
It has end interpolation, and it is linear. Its Jacobian is
an identity matrix. When the object is embedded into
its parametric domain by using either forward map-
ping or backward mapping, the deformation results
are the same. Each object point coordinate is identi-
cal to its local coordinate.
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Fig. 4. a Original polygon and its cycle-linked list. b Knot plane crosses a polygon vertex P0. The vertex P0 is marked as the
intersection and linked with another intersection point Q1. c The final linked list after all intersection points are evaluated

3.2 Subdivision of a polygonal object in the
parametric space

Before introducing the subdivision algorithm, we
first define the knot box. A knot box is a 3D
knot interval for the B-spline volume. For exam-
ple, [ui, ui+1] × [v j , v j+1] × [wk,wk+1] is a knot
box for Eq. (1). It can be indexed by (i, j, k) for
ku ≤ i < nu , kv ≤ j < nv, kw ≤ k < nw. The B-spline
volume limited on a knot box is a Bézier vol-
ume. The purpose of the subdivision is to make
each polygon in the object lie in a knot box af-
ter subdivision. The polygons after subdivision are
called sub-polygons throughout the rest of paper.
The proposed subdivision algorithm is described as
follows:

for ( each parametric direction u,v,w )
{
for ( each polygon in the object )
{
form the cycle-linked list for the vertex of the
polygon;
find indices i0 and i1 such that knot plane ui
( i0 < i < i1 ) crosses the polygon;
for ( each knot plane ui ( i0 < i < i1 ) )
{
compute the intersections between each
knot plane and polygon;
insert the intersections into
a cycle-linked list;

}
extract the sub-polygons from
the cycle-linked list;
}
}

3.2.1 Computing intersections between the knot
planes and the polygon

We assume that the object is composed of con-
vex polygons. Let {Pi}n−1

i=0 be an n-sided polygon.
It may be from the original object or from previ-
ous subdivision steps. First a cycle-linked list is built
for the polygon vertex. An example is shown in
Fig. 4a. Then the knot indices i0 and i1 are found
such that the plane determined by knot ui , vi or wi
(i0 < i < i1) crosses the current polygon. For each
knot plane crossing the polygon, there are two in-
tersections on the polygon. The two intersections
should be linked to each other for traversal pur-
poses in the next step. If the knot plane crosses
a polygon vertex, then the crossed polygon vertex
is re-marked as an intersection point, and this is
linked with the other intersection point, as shown in
Fig. 4b. When the sub-polygons are extracted from
the linked cycle list, each polygon vertex will be vis-
ited once and each intersection will be visited twice.
Thus each point will be assigned with a Counter:
Counter=1 for the polygon vertex;Counter=2
for the intersection.
Here, if a knot plane crosses a polygon edge or one
intersection is coincident with another, then there is
no intersection between the knot plane and the poly-
gon. Examples of crossing an edge or special vertex
are shown in Fig. 5a,b. If we do not check such sin-
gular cases carefully, degenerate sub-polygons will
be produced. The degenerate polygons can be ne-
glected in our previous methods, since they only
cause some wasteful computations [10, 11]; but, in
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Fig. 5a–d. Singular cases in subdivision, with the knot plan drawn as a bold line: a if the knot plane were not regarded as cross-
ing edge P0 P3 because of a numerical error, then a 0-width polygon P0 Q0 Q1 P3 would be generated; b if the knot plane were
not regarded as crossing an extreme vertex P3, a degenerate triangle Q0 Q1 P3 would be produced; c if the knot plane were not
regarded as crossing vertex P0, the polygon P0 Q0 Q1 P3 will possess a 0-length edge P0 Q0

the method proposed here, they cause fatal errors
in the following process steps. This is the reason
why we check carefully for any singular cases in the
subdivision.

3.2.2 Extracting the sub-polygons from the linked
cycle list

For convenience of extracting sub-polygons, the data
structure of the polygon vertex and the intersection is
proposed as follows:

class node {
double Position[3];

// vertex or intersection coordinates
short int Counter;

// "1" if vertex ; "2" if intersection
class node *NextNode;

// pointer to the next points:
// vertex or intersection;

class node *Intersection;
// NULL if object vertex

}

The algorithm for extracting sub-polygons begins
from a node whose Counter is 1. The key step
is to determine the next node from the linked cy-
cle list. There will be some degenerate sub-polygons
generated in the old subdivision algorithm [10]. The
traversal algorithm to extract a sub-polygon is de-
scribed in the following. When all sub-polygons
are extracted from the linked list, all Counters
are 0. According to the algorithm, there are three
sub-polygons extracted in Fig. 4c. The three sub-
polygons in correct vertex order are: P1 P2Q1 Q0,
Q0 Q1 Q3 Q2 and Q3 P3 P4 Q2.

ExtractSubPolygon()
{
pHead = GetFirstNode();
pHead->Counter--;
if(pHead->NextNode->Counter == 0) {
pNode = pHead->Intersection;
status = INTERSECTION_EDGE;

}
else {
pNode = pHead->NextNode;
status = POLYGON_EDGE;

}

while(pNode != pHead) {
pNode->Counter--;
if(status == POLYGON_EDGE) {
if(pNode->Intersection == NULL)
pNode = pNode->NextNode;

else {
pNode = pNode->Intersection;
status = INTERSECTION_EDGE;

}
}
else {
pNode = pNode->NextNode;
status = POLYGON_EDGE

}
}
}

Compared with the subdivision algorithm in [10],
the proposed algorithm has two improvements. The
new algorithm is more robust than the old one. There
are no degenerate sub-polygons produced, which are
“0-area” or “0-edge” sub-polygons. Another im-
provement is that the new algorithm produces fewer
sub-polygons than before since no-triangulation
step is necessary. Some examples are shown in
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Figs. 7–13, and a comparison of the sub-polygon
numbers is shown in Table 2 in Sect. 4.

3.3 Marking coplanar sub-polygons and
determining surface degrees

3.3.1 B-spline deformation of a quadrilateral rather
than a triangle

After subdivision, each sub-polygon lies in a knot
box. In the previous results [10, 11], all sub-polygons
are triangles. The accurate deformation of a triangle
is a triangular Bézier surface, whose degree equals
the degree of the B-spline volume. Unfortunately,
most graphics APIs (such as OpenGL and Direct3D)
and graphics hardware cannot support the display of
a triangular Bézier surface directly. The triangular
Bézier surface needs to be tessellated into triangular
meshes or converted into three tensor-product Bézier
surfaces in advance. Another inconvenience is that
the triangular Bézier surface cannot be integrated
into the current systems because most current geo-
metric modelling and computer animation systems
do not support the data structure of triangular Bézier
surfaces directly. To overcome the above problems,
it is necessary to consider tensor-product Bézier sur-
faces as an accurate deformation result.
According to the results in [8], the B-spline defor-
mation of a quadrilateral in a knot box is a tensor-
product Bézier surface, whose degree is the tensor
product of the degree of the B-spline volume. The
brute-force solution is that the sub-polygons are tes-
sellated into quadrilaterals, and then the quadrilater-
als are deformed as tensor-product Bézier surfaces.
This is an inefficient solution. Firstly, there are many
triangles among the sub-polygons in general. Each
triangle will be tessellated as three quadrilaterals;
that is, there will be three tensor-product Bézier sur-
faces generated. This is a heavy burden in terms
of both computation and storage space. Secondly,
some sub-polygons in a knot box may be coplanar,
and it is inefficient to deform them one by one. In
fact they are parts of a “large” tensor-product Bézier
surface. If such a “large” surface can be computed,
trimmed surfaces can be adopted for representation
of the coplanar sub-polygons deformation. Thus,
both computational cost and storage space are saved.

3.3.2 Marking coplanar sub-polygons in a knot box

To mark coplanar sub-polygons, the data structure
Normalis defined as follows. The coplanar sub-

polygons in a knot box will be marked and then clas-
sified into the Normal structure.
class Normal
{
short i,j,k;
// The index of the knot box;
double n[3], d;
// Plane equation of coplanar polygons;
double s[3], t[3];
// Local frames for the bounding box;
short ns, nt;
// Degree of resulting Bezier surface.
RECTANGLE box;
// 2D bounding box of sub-polygons in s-t plane.
POLYGON *List;
// Pointer to the coplanar sub-polygon list

}

Each sub-polygon has a plane equation. It can be
described by a normalized normal (nx, ny, nz) and
scalar d as follows:

xnx + yny + znz +d = 0.

If a sub-polygon is degenerate, there will be no
plane equation. In practical implementations, this
will cause the algorithm to become unstable, since its
normal will be the zero-vector. Thus, a robust sub-
division algorithm is necessary in the previous step.
If two sub-polygons are coplanar, their normalized
normals (nx, ny, nz) and scalars d should be equal.
Because of numerical error, equal comparisons are
implemented as the following equations:{‖n1 ·n2 −1‖< εn
‖d1 −d2‖ < εd .

In our implementation, εn = 2.2 × 10−8 and εd =
1.1 × 10−6. By using these two thresholds, if two
polygons in the original object are coplanar, then
the sub-polygons generated from them will be also
coplanar. No visual artefact will occur because of the
numerical error. By using the above two criteria, the
coplanar sub-polygons in a knot box will be clas-
sified into the same Normal structure. In general,
there are many Normal structures in a knot box,
whose number is smaller than the number of sub-
polygons in the knot box.

3.3.3 Determining the degree of the tensor-product
Bézier surface according to the normal

In this section, the degree of the “large” tensor-
product Bézier surface is determined for each
Normal structure in a knot box. According to the
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Fig. 6. The local coordinate system (s, t,n) and the 2D
bounding box of the sub-polygons in the s-t plane

theoretical results in [8], the degree of the tensor-
product Bézier surface, which is the accurate de-
formation of a quadrilateral by the R(u, v,w) in
Eq. (1), is (ku + kv + kw)× (ku + kv + kw). In our al-
gorithm, the degrees of large surfaces are always
lower than this value, and it could be known for
special cases. For example, if a quadrilateral lies in
the knot plane u = ũ, with its normal (nx, ny, nz) =
(1, 0, 0), then the degree of its corresponding tensor-
product Bézier surface is kv × kw or kw × kv. In fact,
the surface is the part of the iso-parameter sur-
face u = ũ.
How can we reduce the surface degrees for general
cases? Let us illustrate this with Fig. 6. Supposing
the normal n = (nx, ny, nz) has no zero component,
or nx · ny · nz �= 0, and the degree of the B-spline

Table 1. Determining the local coordinate system and the degrees of the Bézier surface according to the normal surface

Normal n s t degrees

(±1, 0, 0) (0, 1, 0) (0, 0, ±1) kv × kw

(0,±1, 0) (0, 0, 1) (±1, 0, 0) kw × ku
(0, 0, ±1) (1, 0, 0) (0,±1, 0) ku × kv

(0, ny, nz) (1, 0, 0) (0, nz, −ny) ku × (kv +kw)
(nx, 0, nz) (0, 1, 0) (nz, 0, −nx) kv × (ku +kw)
(nx, ny, 0) (0, 0, 1) (ny,−nx, 0) kw × (ku +kv)

(0,−nz, ny)

‖(0, −nz, ny)‖ if (ku ≥ kv, ku ≥ kw) (kv +kw)× (ku +kv +kw)

(nx, ny, nz)
(nz, 0, −nx)‖(nz, 0, −nx)‖ if (kv ≥ ku, kv ≥ kw) n×s (ku +kw)× (ku +kv +kw)

(−ny, nx, 0)

‖(−ny, nx, 0)‖ if (kw ≥ ku, kw ≥ kv) (ku +kv)× (ku +kv +kw)

volume is satisfied: ku ≤ kv ≤ kw. Then a normal-
ized vector s orthogonal to the normal n can be de-
fined as

s = (sx, sy, 0) = (−ny, nx, 0)

‖(−ny, nx, 0)‖ .

Together with another normalized vector t = n× s,
the three vectors (s, t, n) define a local coordinate
system. The sub-polygons in the Normal structure
lie in the s-t plane of the local coordinate system. In
the s-t plane, we can compute a 2D bounding box
for sub-polygons in the Normalstructure, which is
shown as the yellow rectangle in Fig. 6. We can prove
that the degree of the Bézier surface is (ku + kv)×
(ku + kv + kw), which is the accurate deformation of
the rectangle. The reason is that along the s-direction
in the local coordinate system, the degree of the sur-
face is independent of the parametric w-direction of
B-spline volume.
For a given B-spline volume, the accurate deforma-
tion results can be classified by seven cases. The
local coordinate system (s, t, n) and surface degree
are listed in Table 1. This covers all possible con-
figurations of sub-polygons in a Normalstructure.
Till now, we have determined the degree of Bézier
surfaces and the rectangle (2D bounding box of the
coplanar sub-polygons in the s-t plane) for each
Normalstructure. The Bézier surface accompany-
ing the sub-polygons forms the trimmed-surface rep-
resentation of the accurate B-spline deformation.

3.4 Sampling and interpolation

So far, the preprocessing mechanisms have been
introduced. These can be implemented once. The
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work described here, which is to compute the control
points of the tensor-product Bézier surface, is pro-
cessed by an interactive method.

3.4.1 Solving the functional composition of the
Bernstein polynomial

There are two methods of computing the control
points of the Bézier surface introduced in Sect. 3.3.3.
One solution is through the shifting operators and the
generalized de Casteljau algorithm, which is simi-
lar to the work in [10]. It is a numerically stable but
time-consuming algorithm. Firstly, the generalized
de Casteljau algorithm is time consuming in itself.
Secondly, the B-spline volume must be converted
into piecewise continuous Bézier volumes during the
interaction, and this leads to a heavy computational
burden. Another disadvantage is that the source code
to solve the functional composition is complex when
the resultant surface is of tensor-product form. The
second solution is through polynomial interpolation,
which was used for our previous accurate FFD [11].
This solution is much faster than the first one, is suit-
able for real-time interaction and the source code is
very simple. We will choose it to solve the functional
composition between the rectangle and the B-spline
volume.
From a knowledge of numerical analysis, we know
that a tensor-product Bézier surface R(s, t) of de-
gree ns ×nt can be interpolated if (ns +1)× (nt +1)
sampling points are given on the surface, where the
sampling points are distributed in the same way as
the surface control points. The interpolation can be
accomplished by solving the linear equation system.
There are two interpolation approaches. One ap-
proach is that the sampling points are arranged as in
the 1D case. This is similar to the work for interpolat-
ing the triangular Bézier surface [11]. It is inefficient,
since the equation size of tensor-product surface is
large and many of the submatrices are 0. Another
approach is to convert the tensor-product surface-
interpolation problem into two stages of curve-
interpolation problems. This is more efficient [9], so
we will choose the latter solution.

3.4.2 Polynomial interpolation for tensor-product
Bézier surface

First, the sampling points are computed on the sur-
face. The procedure is to choose sampling points
uniformly distributed in the parametric domain of
the Bézier surface; that is, R(i/ns, j/nt) for i =

0, 1, . . . , ns and j = 0, 1, . . . , nt . In our context,
such sampling points are computed in two steps: the
first step is to compute the sampling points in the
rectangle (2D bounding box in the Sect. 3.3.3) and
then compute the R(i/ns, j/nt) from the B-spline
volume by using the de Boor–Cox algorithm. We
need not convert the B-spline volume into piecewise
Bézier volumes as in [10, 11], and this results in the
need for many fewer computations.
There is a subtlety in the evaluation of the sampling
points on the B-spline volume. Because of the choice
of the local coordinate system (s, t, n) in Sect. 3.3.3,
the 2D bounding box in a Normalstructure may
not lie totally in the corresponding knot box. If we
compute the points on the B-spline volume by us-
ing de Boor–Cox algorithm directly, it may give
a wrong interpolation result. The reason lies in that
the functional composition between a rectangle and
a B-spline volume limited on a knot box is equiv-
alent to a composition between a rectangle and
a Bézier volume. If the rectangle lies partly out-
side of the Bézier volume, we also compute the
sampling points using this Bézier volume for the
sake of consistency. In our algorithm, the de Boor–
Cox algorithm has a slight modification: the sam-
pling points are always evaluated in the same knot
box index by (i,j,k) in the Normalstructure.
This can be viewed as the generalized de Boor–Cox
algorithm.
The two-step polynomial interpolations should be
started from a parametric direction whose degree is
lower than a corresponding one. Without loss of gen-
erality, suppose ns ≤ nt . Then, for j = 0, 1, . . . , nt ,
we should solve the following linear equations:

B0,ns (0) B1,ns (0) · · · Bns,ns (0)

B0,ns
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1

ns
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. (3)

The left-hand (ns +1)× (ns +1) matrix in Eq. (3) is
constant for a given degree ns, which is independent
of the underlying curve and is only related to the de-
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Fig. 7. The degree of the B-spline volume is 2×2×2. The number of control points is 4×4×4

gree. Let this be noted as Bk for degree k. Obviously,
this can be inverted. The inverse matrix of Bk can
be precomputed. In our implementation, B−1

k is eval-
uated for k ≤ 12 in advance. The reason for taking
degree 12 is that we seldom use a B-spline volume
whose degree is greater than 4×4×4. After R̃ij are
obtained, the control points Rij can be obtained for
i = 0, 1, . . . , ns by:(
Ri,0 Ri,1· · · Ri,nt

)T = B−1
nt

(
R̃i,0 R̃i,1· · · R̃i,nt

)T
. (4)

Combining with the sub-polygons, the trimmed
tensor-product Bézier surfaces are the accurate de-
formation result.

4 Implementation, results and
discussions

4.1 Implementation and comparison results

We have implemented the proposed algorithm on
a PC with an AMD Athlon 1 GHz CPU. OpenGL
was adopted as graphics API. The trimmed NURBS

surfaces can be displayed directly by using the func-
tions in the OpenGL Utility Library. In each of
Figs. 7–13, there are 8 subfigures, and these are as
follows:

• The original object with the initial B-spline vol-
ume lattice.

• The traditional free-form deformation result with-
out additional sampling.

• The free-form deformation result where the ob-
ject is uniformly subdivided.

• The previous object subdivision method [10]. The
subdivision results in triangular meshes.

• The previous accurate deformation result [11].
The results are triangular Bézier surfaces that cor-
respond with the triangles in the 4th subfigure

• The object subdivision result by using the pro-
posed method. The coplanar sub-polygons in
a knot box are displayed by using the same color,
which will be deformed as the trimmed surfaces
from a “large” Bézier surface.

• The “large” Bézier surface before being trimmed.
• The final result, the trimmed Bézier surfaces.



504 J. Feng et al.: B-spline free-form deformation of polygonal object as trimmed Bézier surfaces

8

9

Fig. 8. The degree of the B-spline volume is 2×2×1. The number of control points is 4×4×2
Fig. 9. The degree of the B-spline volume is 2×2×1. The number of control points is 5×5×2
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Fig. 10. The degree of the B-spline volume is 2×2×2. The number of control points is 6×8×6

Of course, the final result in the 8th subfigure is the
same as the 5th subfigure except for their mathe-
matical expression. A comparison of the numbers of
sub-polygons, the numbers of Bézier triangles and
tensor-product Bézier surfaces and the run-time be-
tween the proposed method and our previous method
[11] is given in Table 2.

Table 2. Implementation comparisons

Fig. Degree of Lattice Triangles Sub-polygons Bézier Run-time (s)
B-spline in original number patches comparison
volume object Old:New Old:New Old:New

7 2×2×2 4×4×4 12 60 : 36 60 : 24 0.071/0.000
8 2×2×1 4×4×2 56 142 : 96 142 : 47 0.070 : 0.010 = 7.0
9 2×2×1 5×5×2 200 518 : 344 518 : 157 0.261 : 0.05 = 5.22

10 2×2×2 6×8×6 260 1436 : 840 1636 : 318 1.442 : 0.060 = 24.03
11 2×2×2 6×9×3 178 814 : 438 814 : 194 0.781 : 0.030 = 26.03
12 2×2×2 6×5×6 96 840 : 390 840 : 207 0.751 : 0.051 = 14.73
13 2×2×2 7×3×6 956 1980 : 1424 1980 : 1154 1.722 : 0.671 = 2.57

4.2 Discussion

From implementation comparisons, we derived that
the proposed algorithm is faster than the algorithm
in [11]. The run-time acceleration results from two
facts. Firstly, the number of tensor-product Bézier
surfaces is much less than that of the triangular
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Fig. 11. The degree of the B-spline volume is 2×2×2. The number of control points is 6×8×3

Bézier surfaces in [11], and secondly, the resultant
tensor-product Bézier surface has a low degree. Of
course, the run-time acceleration times are also in-
fluenced by the initial object configuration. If the

object has many polygons that are parallel to the
coordinate planes or if it has many coplanar poly-
gons, then run-time acceleration will be evident, as
in Figs. 10 and 11. Otherwise, acceleration will be
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Fig. 12. The degree of the B-spline volume is 2×2×2. The number of control points is 6×5×6

less evident, as in Fig. 13. The storage comparison
is approximately equal to the run-time compari-
son, since the polynomial interpolation method is
adopted for both algorithms. The number of sam-
pling points is equal to the number of control points
of the Bézier surfaces or Bézier triangles since ma-
trix multiplication can be omitted, compared with
the evaluation of the sampling points on the B-
spline volume. Thus we can say that the storage
cost of the proposed algorithm is also lower than
that of the previous algorithm [11]. The third ad-
vantage of the proposed algorithm is that the defor-
mation result is a trimmed tensor-product Bézier,
where the trimmed surface description is consis-
tent with that in the industrial standard, STEP. Thus,
the algorithm can be integrated into current geo-
metric modelling systems and computer animation
systems without any difficulty. Finally, the source
code to solve the functional composition between
the rectangle and the B-spline volume is very sim-
ple compared with the generalized de Casteljau
algorithm.
Real-time interaction is always beneficial in com-
puter graphics. For a simple object, the proposed
algorithm is fast enough to achieve real-time edit-
ing. For interactively deforming a complex ob-
ject, however, it may not be such a good choice,
since it is time consuming compared with the tra-

ditional FFD method. For such cases, FFD acting
directly on the vertex should be adopted for the
interaction. If the deformation is far away from
the real deformation result, uniform subdivision
for a polygonal object can be conducted to solve
the sampling problem. An accurate FFD of the
polygonal object is recommended for the final de-
formation result. We chose this strategy in our
implementation.

5 Conclusion

In this paper, a new accurate B-spline free-form
deformation algorithm for a polygonal object is pro-
posed. First, a new initial B-spline volume definition
is given. Its Jacobian is an identity matrix. Then the
object is subdivided in the parametric space of the
B-spline volume. The sub-polygons so obtained are
free of degenerate sub-polygons. After subdivision,
the coplanar sub-polygons are combined, and the
degree of the resulting surface is then determined. Fi-
nally the tensor-product Bézier surface is evaluated
through polynomial interpolation, and the deforma-
tion results in the trimmed tensor-product Bézier
surfaces.
The algorithm has advantages in both run-time and
storage over the previous one [11]. The algorithm
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Fig. 13. The degree of the B-spline volume is 2×2×2. The number of control points is 7×3×6

can also be integrated into geometric modelling
and computer animation systems without difficulty,
since the deformation results are the trimmed tensor-
product Bézier surfaces, whose representation is
in accordance with that of the industrial standard,
STEP. The display of the resultant surface can be
accelerated if the graphics API is supported by
hardware.
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