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Abstract Algebraic curve fitting based on the algebraic dis-
tance is simple, but it has the disadvantage of inclining to a
trivial solution. Researchers therefore introduce some con-
straints into the objective function in order to avoid the triv-
ial solution. However, this often causes additional branches.
Fitting based on geometric distance can avoid additional
branches, but it does not offer sufficient fitting precision. In
this paper we present a novel algebraic B-spline curve fitting
method which combines both geometric distance and alge-
braic distance. The method first generates an initial curve by
a distance field fitting that takes geometric distance as the
objective function. Then local topology-preserving calibra-
tions based on algebraic distance are performed so that each
calibration does not produce any additional branches. In this
way, we obtain an additional branch free fitting result whose
precision is close to or even better than that produced by
purely algebraic distance based methods. The adopted pre-
cision criterion is the geometric distance error rather than
the algebraic one. In addition, we find a calibration fatigue
phenomenon about calibrating strategy and propose a hybrid
mode to solve it.
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1 Introduction

With the rapid development of 3D scanning or measure-
ment devices, the acquisition of 3D geometric shape be-
comes more convenient and the cost becomes lower. To
process point cloud or scattered data points, many tech-
niques have been studied. Curve fitting is a fundamental one
that is widely applied in data reconstruction [1], computer
graphics [2], computer vision and pattern recognition [3],
etc. In this paper we study curve fitting using algebraic B-
spline curves.

It is well-known that algebraic curves have a wide repre-
senting domain and B-spline has many nice properties (such
as local control, inherent continuity, etc.) for shape descrip-
tion and modeling. Therefore in this paper we adopt alge-
braic curves based on uniform B-splines with a fixed order
and a fixed basis function number to address the planar point
cloud fitting problem. Let the planar point cloud be denoted
by {Pk}Nk=1, where Pk = (x(k), y(k)) are 2D points called the
raw points. We want to find a K-order algebraic curve C in
terms of the tensor product B-spline:

f (x, y) =
n∑

t=1

m∑

s=1

cstN
[x]
t,K(x)N

[y]
s,K(y) = 0 (1)

to fit the point cloud {Pk}Nk=1, where N
[x]
t,K(x),N

[y]
s,K(y) are

the uniform B-spline basis functions in the X and Y direc-
tions respectively. For the sake of simplicity, we denote them
by Nt(x),Ns(y) instead, omitting the direction flags within
square brackets and order K in subscript. The goal of the
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fitting problem is to seek the “best” tensor product coeffi-
cients c = {cst } that minimize a certain objective function.
Each coefficient cst is also called a Greville ordinate whose
corresponding abscissa is the center point of the support of
basis function Nt(x)Ns(y) [4].

There are two conventional fitting methods. The first one
is to minimize the following objective function:

ϕ(c) =
N∑

k=1

f (Pk)
2 =

N∑

k=1

f (xk, yk)2 (2)

This is the so-called algebraic distance method. However, if
the algebraic distance fitting method is not properly speci-
fied, it tends to converge to a trivial solution where all the
tensor product coefficients are zero. Jüttler minimized the
above objective function by imposing normal constraints
and a smoothing item to avoid the trivial solution. Another
disadvantage of the algebraic distance fitting method is the
frequent appearance of additional branches. Because the re-
lation between the coefficients and the curve topology is not
obvious, the additional branches are difficult to be avoided.
The additional branches may cause unfavorable problems
such as branch separation, correct branch selection, more
complex footpoint calculation, geometric distance distor-
tion, etc. In some cases, we have to reduce fitting precision
to avoid additional branches, which becomes quite an indis-
pensable treatment in curve fitting problem.

The second method is the geometric distance fitting that
minimizes the following objective function:

ψ(c) =
N∑

k=1

d(Pk,C)2 (3)

where

d(Pk,C) = min
a∈C

d(Pk,a)

= min
f (x,y)=0

[
(x(k) − x)2 + (y(k) − y)2]1/2

In general, the geometric distance based fitting approach of-
fers following advantages [5]:

– it has geometry invariability;
– fitting error complies with visional intuition;
– unbiased model parameters;
– and the fitting procedure seldom ends with an unintended

model feature.

Therefore, it is strongly suggested to take geometric distance
as the objective function in curve fitting. The substantial dif-
ficulty in the geometric distance method is the calculation
of precise Euclidean distance from a point to a curve, which
has no analytic expression, even for a quadric curve. There-
fore an iteration method is often adopted to obtain a numer-
ical solution instead, which is time-consuming.

Whatever method we adopt, the fitting error is defined as
the average of the squared geometric distance of raw points
to the curve:

G = 1

N

N∑

k=1

d(Pk,C)2 (4)

In this paper, the above error G is adopted as a fair precision
comparison standard to assess different fitting methods.

This paper presents an additional branch free fitting
method (ABFF, for short) for planar closed raw points with
algebraic B-spline curves, where the order of B-spline is 3
or 4. Section 2 briefly reviews the related works on implicit
curve fitting. Section 3 describes the method in detail. Sec-
tion 4 gives the experimental results, which shows our fitting
method not only has high fitting precision, but also is free of
additional branches. Finally, conclusions are drawn and fu-
ture research problem is indicated.

2 Related work

Implicit curve fitting based on algebraic distance has been
researched since 1987. Pratt proposed a “simple fit” method
which keeps a special coefficient unchanged by linear nor-
malization [6]. However, the process is not a geometric one,
since it depends on the selection of coordination system.
Later, Taubin added a gradient constraints to the objective
function and converted the curve fitting problem into a gen-
eral eigenvalue problem [7]. Jüttler et al. adopted algebraic
curves and surfaces in terms of the tensor product B-spline
to fit 2D and 3D point clouds respectively [8].

Ahn et al. summarized the disadvantage of algebraic dis-
tance fitting, i.e., the error definition does not comply with
the measurement guidelines. They also asserted that geomet-
ric distance fitting is a feasible solution to overcome above
disadvantages caused by algebraic distance [9]. Unfortu-
nately, the geometric distance is highly non-linear about the
model parameters compared with algebraic distance f (x, y)

as in (1). The analytical expression of geometric distance is
astonishingly complex or even impossible. Computational
complexity of finding accurate geometric distance is very
high. Many efforts have been spent to calculate approxi-
mate geometric distance in either a global way or local way
[10, 11]. Aigner and Jüttler proposed a robust method to
compute the footpoint via shrinking circles [12].

Due to the analytical computation difficulty, geometric
distance fitting solution unanimously employs iteration ap-
proaches. Kristek and Anton worked on 2D straight line
fitting based on weighted geometric distance. They reduce
the line fitting to a one-dimensional searching problem. The
real geometric distance is regarded as a special case where
the two direction weights are equal [13]. Ahn et al. worked
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on orthogonal fitting of quadric primitives, such as circle,
sphere, ellipse, hyperbola and parabola. They employed or-
thogonal contacting conditions and Jacobi matrix of coordi-
nate transformation and proposed a fast convergent iteration
method [9]. Wang et al. fitted a parametric B-spline curve to
planar point cloud fitting based on a second order approx-
imation of squared distance. They compared their square
distance minimization methods (SDM) with the point dis-
tance iteration method (PD) and the tangent distance iter-
ation method (TD), declared that SDM’s iteration speed is
faster than those of PD and TD [14].

Sederberg et al. studied approximate implicitization us-
ing monoid curves and surfaces. The use of monoid curves
and surfaces helps eliminate undesirable additional branches
(“phantom” branches) which were normally associated with
implicitization process [15].

To improve algebraic B-spline curve (surface) method,
Jüttler et al. proposed a method by adding norm constraints
and a smoothing item into algebraic distance objective func-
tion [16]. It does avoid the trivial solution, but often pro-
duces additional branches. Their objective function is de-
fined as

g(c) =
N∑

k=1

[
f (x(k), y(k))

]2 + ω1M(c) + ω2G(c) (5)

where M(c) = ∑N
k=1 ‖∇f (x(k), y(k))− nk‖2 is a norm con-

straint item, nk = (n
(k)
x , n

(k)
y ) is the estimated unit outer

norm at Pk = (x(k), y(k)),

G(c) =
∫ ∫

�

(
f 2

xx(s, y) + 2f 2
xy(x, y) + f 2

yy(x, y)
)
dx dy

is a smoothing item, ω1 is the weight of the norm con-
straint, usually between 0.00001 and 1, and ω2 is the weight
of the smoothing item, usually between 0 and 0.01. For a
given point cloud, additional branches can be eliminated
by specifying proper weights ω1 and ω2. However, tun-
ing the weights to eliminate additional branches is an in-
teractive and time-consuming procedure and may result in
precision loss. In general, the smaller ω2 is, the more fre-
quently additional branches appear. For the extreme case
when ω2 = 0, the fitting results for almost all point clouds
even a circle shape have additional branches in our test. On
the contrary, when ω2 becomes large, the fitting curve be-
come more smooth and free of additional branches, but the
fitting precision becomes poor. Thus determining appropri-
ate weights that just eliminate additional branches without
loss of fitting precision is still an open question. Yang et al.
extended above Jüttler’s method to the geometric distance
case [17]. They locally approximate the geometric distance
linearly and solve the non-linear objective function via trust
region algorithm. However the footpoint computation is a
time-consuming.

Li et al. proposed a fitting method using algebraic B-
spline curves based on a signed distance field [18]. It first
creates a high quality distance field from the raw point set
and then fits to this distance field, thus fits to the point cloud
indirectly. Experiments show that the field fitting method
can effectively control the fitting curve’s topology and guar-
antee its shape not deviated from the underlying raw point
set. Therefore it never produces any additional branches.
However, its fitting precision is much lower than Jüttler’s
method.

3 Additional branch free algebraic B-spline curve
fitting

3.1 Direct distance field fitting

In the proposed method, a signed distance field that sur-
rounds the raw point set is constructed. The sampling den-
sity of the signed distance field should be high enough to
depict the shape (potentially determined by the raw point
set) faithfully [18]. Then its objective function for the direct
distance field fitting is defined as:

Err(c) =
Nx∑

j=1

Ny∑

i=1

(f (pij ) − dij )
2 =

Nx∑

j=1

Ny∑

i=1

(f (xj , yi) − dij )
2

(6)

where Nx and Ny are the distance field sampling densi-
ties along the X and Y directions respectively, dij is the
signed distance value at sampling point pij = (xj , yi) =
(x0 + (j − 1)�x,y0 + (i − 1)�y) with (x0, y0) the lower-
left point coordinates of the distance field, �x, �y are the
sampling steps along the X and Y directions respectively.
In our method, the sampling densities along the two direc-
tions are chosen to guarantee that: (1) both �x and �y are
not greater than a half of the minimal estimated curvature
radius from the raw point set [18]; (2) there are at least
two sampling points in every B-spline knot interval, i.e.,
Nx = 2(n − K + 1),Ny = 2(m − K + 1).

Note that the above field fitting converts a geometric dis-
tance fitting to an algebraic distance fitting. Supposing that
the fitting result f (x, y) exactly interpolates the sampled
distance values, i.e., f (xj , yi) = dij for all i, j , then the al-
gebraic distance resulting from fitting the sampled signed
distance field should well approximate geometric distance
resulting from geometric distance fitting the raw point set.
In other words, the direct distance field fitting is an indirect
approach to achieve geometric distance fitting effect with al-
gebraic distance fitting complexity.

Unfortunately, experimental results show that the fitting
precision of direct distance field fitting is poor due to the
following reasons.
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(1) The signed distance value dij is approximate rather than
accurate.

(2) The discrete signed distance field is approximated rather
than interpolated.

(3) The signed distance field of a planar curve is highly non-
linear in general so that it can not be well approximated
via only polynomial fitting.

As indicated in the paper [18], the algebraic B-spline
curve obtained via the direct distance field fitting is free of
additional branches. Although its fitting precision is not sat-
isfied, it is a very good initial start for further refinements
via following local coefficients calibration.

3.2 Local coefficients topology-preserving calibration

Now we refine the algebraic B-spline curve obtained via di-
rect distance field fitting so that it approaches the optimal
solution as much as possible. The refinement is achieved via
calibrating local coefficients {cst } of the algebraic B-spline
curve, whilst preserving the topology of curve. We should
keep the curve free of additional branches in each calibra-
tion step.

Before calibrating the coefficients, we describe two ob-
vious facts. If geometric distance is adopted as the objec-
tive function, which has no analytic expression, the Gauss–
Newton iteration cannot be applied trivially. If algebraic dis-
tance is adopted as the objective function, the calibrated
curve will tend to contain additional branches. According to
these observations, we propose a local coefficient calibration
scheme whilst preserving the curve topology as follows.

(1) The algebraic distance of initial field fitting result
f (x, y) is an approximation of the geometric distance.
Thus the special algebraic distance could be adopted to
define our calibration objective function.

(2) The Gauss–Newton scheme is adopted to calibrate the
coefficients locally.

(3) Only the calibration that do not change the curve topol-
ogy are fully accepted and the others will be modified
or discarded.

In each calibration, one or more coefficients are adjusted
in order to reduce the special algebraic distance objective
function. Here a coefficient is over-adjusted if its sign is
changed before and after calibration. The over-adjusted co-
efficients may influence the curve topology potentially. Thus
its corresponding calibration should be modified and dis-
carded. If all coefficients are refined in each calibration,
i.e. a global scheme, there always exist a coefficients over-
adjusted. The calibration is discarded or modified and only
local optimal solution is obtained. Thus we prefer the local
calibration scheme since most calibrations are valid.

Fig. 1 1-1 mode calibration: the algebraic distance of one raw point
Pk∗ is minimized by calibrating one coefficient cs∗t∗ . The dashed
square is the influence region of cs∗t∗ . Because Pk∗ lies in the influ-
ence region of cs∗t∗ , the calibration can always reach the optimization,
i.e., the algebraic distance of Pk∗ becomes 0

The calibration is performed for each raw point Pk∗ =
(x(k∗), y(k∗)) so that the following algebraic distance to im-
plicit curve f (x, y) is optimized to be zero.

f
(
x(k∗), y(k∗)) =

m∑

s=1

n∑

t=1

cstNs

(
y(k∗))Nt

(
x(k∗)) (7)

If only one coefficient cs∗t∗ is selected, its adjustment can be
computed as:

c′
s∗t∗ = cs∗t∗ − f (x(k∗), y(k∗))

Ns∗(y(k∗))Nt∗(x(k∗))
(8)

To make the calibration valid, the raw point Pk∗ must
lie in the influence region of the coefficient cs∗t∗ so that
Ns∗(y(k∗)) Nt∗(x(k∗)) �= 0. After cs∗t∗ is calibrated to c′

s∗t∗ ,
if cs∗t∗c′

s∗t∗ < 0, we keep the original value cs∗t∗ unchanged,
i.e. c′

s∗t∗ = cs∗t∗ , or set the new coefficient to zero, i.e.
c′
s∗t∗ = 0. The former process is to discard the calibration

and the later one is to modify calibration. This calibration
scheme is called the 1-1 mode, which is illustrated in Fig. 1.

Of course, we can also adjust only one coefficient cs∗t∗ to
minimize the following total algebraic distances of all raw
points in the influence region of the coefficient cs∗t∗ , as il-
lustrated in Fig. 2(a):

D =
∑

k∈K

[
(c′

s∗t∗ − cs∗t∗)Ns∗(y(k))Nt∗(x
(k)) + f (x(k), y(k))

]2

(9)
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Fig. 2 1-N model and M-N
mode calibrations. (a) 1-N
mode: the algebraic distance
squares sum of 3 raw points Pki

(i = 1,2,3) in the influence
region of cs∗t∗ is minimized.
The dashed square represents
the influence region of cs∗t∗ . (b)
M-N mode: the algebraic
distance squares sum of 7 raw
points in the joint influence
regions of two coefficients cs1t1

and cs2t2 is minimized

where K is an index set of the raw points that lie in the
influence region of cs∗t∗ . The minimization can be reached
by solving equation ∂D

∂c′
s∗t∗

= 0. The result is

c′
s∗t∗ = cs∗t∗ −

∑
k∈K f (x(k), y(k))Ns∗(y(k))Nt∗(x(k))∑

k∈K Ns∗(y(k))2Nt∗(x(k))2
(10)

If c′
s∗t∗ satisfies cs∗t∗c′

s∗t∗ < 0, we modify or discard it sim-
ilar with that in 1-1 mode. We call this calibration the 1-N
mode.

In general, we can adjust two or more coefficients si-
multaneously. It is called 2-N mode or M-N mode as il-
lustrated in Fig. 2(b). Let cs1t1, . . . , csMtM be the calibrated
coefficients. By using the Gauss–Newton method, �c =
(c′

s1t1
− cs1t1, . . . , c

′
sM tM

− csMtM )T should satisfy the normal
equation

UTU�c = −UTb (11)

where

U =
⎛

⎝
Ns1(y

(k1))Nt1(x
(k1)) · · · NsM (y(k1))NtM (x(k1))

· · · · · · · · ·
Ns1(y

(kK))Nt1(x
(kK)) · · · NsM (y(kK))NtM (x(kK))

⎞

⎠

and

b =
⎛

⎜⎝
f (x(k1), y(k1))

...

f (x(kK), y(kK))

⎞

⎟⎠

By solving the normal equation, we can obtain coeffi-
cient calibrations. Finally, we modify or discard calibrations
where at least one coefficient’s sign is changed. Apparently,
if M = 1, it degenerates to 1-N mode and the normal equa-
tion degenerates to a single-variable linear equation.

In above 1-N mode or M-N mode calibrations, the coef-
ficient selection is critical to the calibration effects. Accord-
ing to our experiments, there are following typical selection
methods (refer to Fig. 3).

(1) Selecting only one coefficient cs∗t∗ corresponding to the
raw point Pk∗ = (x(k∗), y(k∗)). The Greville abscissa of
the coefficient cs∗t∗ , i.e. center of support domain of the
basis function, is determined as follows:
(1a) (1Out case) the nearest point in a π/2 fan region

which is emitted from (x(k∗), y(k∗)) and whose
center direction is coincided with the outer curva-
ture normal of f (x, y) at (x(k∗), y(k∗)).

(1b) (1Inner case) the nearest point in a π/2 fan region
which is emitted from (x(k∗), y(k∗)) and whose
center direction is coincided with the inner curva-
ture normal of f (x, y) at (x(k∗), y(k∗)).

(1c) (1Random case) a random point that influences the
f (x(k∗), y(k∗)).

(1d) (1Highest case) the point that influences f (x(k∗),
y(k∗)) most.

(2) (Multiple case) Selecting all coefficients that have influ-
ences on f (x(k∗), y(k∗)) except for the coefficients near
the boundary of the influence region.

(3) (2InnerOuter case) Selecting two coefficients: one from
1O case and the other one from 1I case.

(4) (4InnerInnerOuterOuter case) Selecting four adjacent
coefficients that influence f (x(k∗), y(k∗)): two or less
points lie inside of the curve f (x, y) and the rest lie
outside of the curve f (x, y).

(5) (4InnerOutLeftRight case) Choose four adjacent coeffi-
cients that influence f (x(k∗), y(k∗)) and whose Greville
abscissae surround the point (x(k∗), y(k∗)).

3.3 Calibration strategy

To perform above calibrations, some important parameters
should be determined. They are a proper calibration round
number, a raw point calibrating order, a coefficient selec-
tion method, a local objective function and modifying-or-
discarding decision of each round. A complete calibration
strategy is as follows:
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Fig. 3 Coefficient selection method: in (e) M case, 3 coefficients (dash
circled) are not selected because they lie near the boundary of influ-
ence region of B-spline function. In (g) 4IIOO method, one coefficient
(dash circled) is not selected because it lies outside the influence region

(1) The calibration round number: how many Gauss–
Newton iteration steps are adopted for the initial alge-
braic B-spline curve f (x, y). According to our experi-
ments, 6 is a suitable number.

(2) The calibrating order of raw points in each round. There
are two options: a static error order and a dynamic er-
ror order. For the static error order option, we calibrate
all raw points in a descending order of their algebraic
distance errors; and for the dynamic error order option,
we always calibrate the raw point with the highest al-
gebraic distance error corresponding to currently cali-
brated curve f (x, y).

(3) For each raw point, there are 8 coefficient selection
methods. They are 1O, 1I, 1R, 1H, 2IO, 2O, 2I, 4IIOO,
4IOLR, M cases, as shown in Fig. 3.

(4) The objective functions for locally calibration: in each
calibration step, we can compute the algebraic distance
error for the currently processing raw point or all influ-
enced raw points.

(5) We modify or discard the calibration when there is at
least one coefficient’s sign changed.

The calibration strategy can be described as a five-tuple
〈N , R[N ], C[N ], O[N ], D[N ]〉, where N is the calibration
round number, R[N ], C[N ], O[N ] and D[N ] are the raw
points calibration order, the coefficient selection methods,
the local objective function and the discarding-or-modifying
calibration, respectively.

3.4 Fitting and calibration algorithm

Now we describe our fitting and calibration algorithm,
which consists of the following steps:

(1) Perform the direct distance field fitting method to gen-
erate the initial algebraic B-spline curve;

(2) set the calibration strategy 〈N , R[N ], C[N ], O[N ],
D[N ]〉;

(3) for (i = 0; i < N ; i++) {

while (loop for raw points according to order R[i]) {
choose B-spline coefficients ci1j1, . . . , ciMjM

ac-
cording to C[i];
if (all selected coefficients were calibrated in cur-
rent round)

continue;
calibrate ci1j1 , . . . , ciMjM

to c′
i1j1

, . . . , c′
iMjM

ac-
cording to O[i];
if (there exists c′

ikjk
such that c′

ikjk
cikjk

< 0)
discard or modify this calibration according to
D[i]

}

}

Experiments show that if all round calibrations adopt the
same strategy, e.g., “4IIOO” coefficients selection method
+ “discarding” topology-preserving method, then there will
be many coefficient signs changed in the later calibrations.
In this case, the calibrations will be discarded or modified,
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Fig. 4 Fitting CNCV2 data by using AF, ABFF and DFF

thus the fitting precision will remain almost without change.
The phenomenon is called “calibration fatigue”. Therefore,
in practice we prefer to use different coefficient selection
strategies in the successive rounds in order to rapidly im-
prove the fitting precision.

4 Experimental results and discussion

The algorithm has been implemented on a PC with Intel P4
2.4 GHz CPU, 1.5 GB Memory and Windows XP. For the
sake of comparison, the proposed additional branch free fit-
ting method, Jüttler’s method [16] and Li’s distance field fit-
ting method [18] are abbreviated as ABFF, AF, and DFF
respectively. In ABFF, the calibration strategy is set as:

< N = 6,
R[N ] = dynamic algebraic error order,
C[N ] = {4IOLR, 4IIOO, 1R, 4IOLR, 4IIOO, 2IO },
O[N ] = all influenced raw points,
D[N ] = { discard, discard, modify, discard, discard, dis-

card } >

4.1 Comparison with AF

4.1.1 Visual effects

Figures 4, 5, 6(a)–(d) are fitting results for three raw point
sets visual by using AF and ABFF, where B-spline order

Fig. 5 Fitting rectangle data by using AF, ABFF and DFF

is K = 3, tensor product coefficient numbers m = n = 17.
For AF, normal constraints weight ω1 is 10−4, and smooth-
ing term weight ω2 is 10−10, 10−6, and 10−2 respectively.
If the ω2 is not set carefully in AF, there will be additional
branches generated. However, our method is free of addi-
tional branches and shape parameter setting. Furthermore,
the visual quality of fitting curves is similar for both AF and
ABFF in the case of free of additional branches.

In these examples, AF always produces additional
branches when ω2 = 10−10. Figure 5(a) even contains many
un-separable additional branches. Increasing ω2 can elimi-
nate additional branches. However, the fitting precision will
drop with the increase of ω2. As in Fig. 5, when ω2 is
4.4 × 10−5, AF just eliminates all additional branches, but
its global average error is about (≈1/0.163) times of ABFF
as shown in Table 1.

4.1.2 Fitting precision

For the given B-spline order K = 3 or K = 4, the fitting er-
rors of ABFF are comparable to or better than that of AF
when ω2 = 10−6. Some errors of test data are even only
1/10 of AF. When ω2 = 10−8 in AF, although errors of some
test data by ABFF are greater than those of AF, e.g., Rectan-
gle, AF fitting results tend to contain additional branches
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Table 1 Trade-off between AF precision and additional branches, where K = 3, ω1 = 10−4. GAG represents average of geometric errors for 16
test raw point sets and CAB represents the number of raw point sets that have additional branches

ω2 10−2 10−4 4.4×10−5 10−5 10−6 1.2×10−7 10−7 10−9 10−11

GAGABFF (10−6) 0.392

GAGAF (10−6) 242.4 4.320 2.411 1.069 0.556 0.391 0.381 0.261 0.238

GAGABFF /GAGAF 0.002 0.091 0.163 0.367 0.705 1.003 1.029 1.502 1.647

CAB 0 0 0 1 2 5 6 13 16

Fig. 6 Fitting Vers1 data by using AF, ABFF and DFF

(5 among 16 examples). When ω2 = 10−4, the global aver-
age error of ABFF surpasses that of AF.

From Table 1, we can also investigate the overall fitting
precision comparison for 16 test raw point sets between AF
and ABFF. Let GAG be noted as global average error, and
CAB be noted as number of raw point sets with additional
branches. It shows that if ω2 is greater than 10−3, the AF fit-
ting precision is poor; and when ω2 decreases to 1.2×10−7,
GAG of AF just equals to that of ABFF, but among 16
raw point sets there are 5 point sets containing additional
branches, i.e. CAB. When ω2 decreases continuously, addi-
tional branches appear more and more frequently, whereas
its GAG is only about 60% (≈0.238/0.392) that of ABFF.
Thus we assert that AF will suffer from additional branches
problem seriously in order to improve its fitting precision.

Furthermore, the precision has not enough room to be im-
proved.

4.1.3 Fitting speed

The fitting time of AF is obviously faster than ABFF, espe-
cially when numbers of coefficients m(or n) is greater than
20. First the discrete distance field construction is very fast
and occupies one small part of total fitting procedure. In the
direct distance field fitting, it is performed direction-wise
due the tensor product property of the algebraic B-spline
curve. Finally, our calibrations are local operations. How-
ever, the AF should solve a large linear equation system
whose size is (mn)2. The detailed runtime statistic compar-
ison is shown in Fig. 7.

4.2 Comparison with DFF

4.2.1 Visual effects

Three examples are shown in Figs. 4–6(d) and (e), where
the B-spline order K = 3, tensor product coefficient number
m = n = 17. As illustrated in the figures, although DFF free
of additional branches, its fitting results apparently deviate
from the raw point set. ABFF not only has no additional
branches, but also always fits the raw point sets faithfully.

4.2.2 Fitting precision

The detailed fitting precision data can be found in the
Appendix, where the error G is defined by (4). In the cases
of K = 3 or K = 4, the fitting precision of ABFF is conspic-
uously better than that of DFF.

4.3 Calibration fatigue phenomenon

In ABFF calibration strategy, the coefficient selection meth-
od is hybrid. If a fixed coefficient selection method is
adopted thoroughly in all calibration rounds, the fitting pre-
cision improvements will become smaller and smaller. Fi-
nally the improvement ratios approach 1.0. It is called “cal-
ibration fatigue”. If we define “fatigue” as the case that the
improvement ratio is less than 1.25, 1I and 1H will fatigue
after the 1st round calibration, 1O, 2IO, 4IOLR and M will
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Fig. 7 Fitting time comparison
between AF and ABFF: the
tensor product coefficients
number m and n ranged from 12
to 30. The data are total fitting
times (sec) for 16 raw point sets

Table 2 Calibration fatigue phenomenon statistics: the precision improvement ratios are the average of 16 raw point set

Coefficient choosing method Discard/Modify Precision improving ratio ri of round i

r1 r2 r3 r4 r5 r6

1O Modify 3.221 1.658 1.099 1.048 1.019 1.016

1I Modify 1.883 1.077 1.026 1.004 1.002 1.002

1H Modify 2.553 1.134 1.092 1.033 1.007 1.012

1R Modify 4.912 2.896 1.833 1.390 1.228 1.145

2IO Discard 7.174 1.872 1.218 1.068 1.061 1.045

4IIOO Discard 17.775 1.832 1.294 1.158 1.095 1.083

4IOLR Discard 11.387 2.238 1.161 1.133 1.049 1.045

M Discard 4.279 1.374 1.114 1.021 1.014 1.009

Hybrid mode 17.775 2.248 1.596 1.543 1.307 1.208

Fig. 8 Calibration fatigue
phenomenon: the horizontal
axis is the number of the
calibration round and the
vertical axis is the precision
improvement ratio

fatigue after the 2nd round calibration, 4IIOO will fatigue
after the 3rd round calibration, 1R will fatigue after the 4th

round calibration. By adopting our hybrid modes, the fa-
tigues could be postponed after the 5th round calibration so
that it can improve the fitting precision effectively. The de-
tailed statistics are shown in Table 2 or Fig. 8.

In addition, we also find that among all coefficient se-
lection methods, 1I is the poorest, 4IIOO and 4IOLR are
the best. 1R has the most anti-fatigue feature than the oth-
ers except for our hybrid method. In other experiments we
also find that modifying scheme is better than discarding one
for 1-M calibration and discarding scheme is better than the
modifying scheme for N -M calibration.

5 Conclusion

We proposed a novel algebraic B-spline curve fitting method
which is composed of direct distance field fitting initializa-
tion and local topology-preserving calibrations. The method
not only is free of additional branches as the direct distance
field fitting [18] but also has high fitting precision as the Jüt-
tler’s method [16]. It is a non-iterative approach with a high
fitting speed. Furthermore it does not need any manual tun-
ing of fitting parameters.

In future, we will study the relation between calibration
strategy and fitting performance further.
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Appendix

Table 3 Fitting precision comparison between AF and ABFF for 16
raw point sets: Item data are geometric errors (unit: 10−6). The last
row GAG is the average of geometric errors for all 16 raw point sets.

The shaded items indicate the corresponding fitting results that contain
additional branches

Raw point sets Shape K = 3, m = n = 17 K = 4, m = n = 17

AF AF AF ABFF DFF AF AF AF ABFF DFF

ω2 = 10−8 ω2 = 10−6 ω2 = 10−4 ω2 = 10−8 ω2 = 10−6 ω2 = 10−4

(1) (2) (3) (4) (5) (6) (7) (9) (9) (10)

Bigcycle 0.0060 0.0363 0.3676 0.0027 2.0240 0.0028 0.0079 0.0559 0.0017 2.6453

Circle 0.0080 0.0170 0.2780 0.0022 1.5160 0.0026 0.0074 0.0670 0.0007 2.5804

Cncvl (300) 0.6159 0.3899 1.9007 2.8129 253.41 0.3989 0.3899 1.3411 1.0627 415.09

Cncv2 1.0829 1.1511 1.6717 1.3163 91.216 1.0484 1.0712 1.5556 1.2218 163.98

Concave 0.0852 0.1339 0.7525 0.4577 114.08 0.0881 0.0874 0.4811 0.2929 321.07

Crown 1 2.3480 3.3631 41.268 1.3335 1107.4 0.8684 2.6970 41.337 1.4342 2297.4

Crown2 1.6149 1.5684 10.522 1.0767 658.93 0.8209 0.8505 8.8124 0.2222 846.98

Fork 2.2422 2.2187 6.4363 1.8434 224.62 0.2475 0.8134 4.9885 0.3452 251.10

Leftcycle (54) 0.0020 0.0088 0.2718 0.0004 5.4689 0.0007 0.0021 0.1143 0.0004 6.2464

Littlecycle 0.0125 0.0445 0.5891 0.0080 3.3058 0.0024 0.0101 0.1097 0.0006 4.3326

Rectangle 1.2137 3.7518 18.920 2.5754 107.35 1.2919 2.6916 11.120 3.0983 266.24

Revs 0.6588 0.6258 5.9452 0.3045 222.32 0.0871 0.2442 4.6976 0.3208 132.23

Triangle 0.4868 2.0766 28.488 4.8185 768.68 0.3834 2.0004 19.523 0.6875 629.60

Vase 1.5745 1.8620 39.467 7.2132 2137.6 1.9811 4.4398 24.159 13.2176 689.33

Versl 0.7498 0.8799 5.3261 1.1922 200.0821 0.4801 0.5995 2.6494 0.6147 275.33

Xinzang 28.586 30.543 199.63 102.60 1058.1 16.759 21.3059 173.45 4.2653 2142.5

GAG 0.311 0.556 4.320 0.392 104.40 0.148 0.308 2.367 0.164 138.24
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