
Noname manuscript No.
(will be inserted by the editor)

Adaptive disparity computation using local and
non-local cost aggregations

Qicong Dong · Jieqing Feng*

Received: date / Accepted: date

Abstract A new method is proposed to adaptively compute the disparity of stere-
o matching by choosing one of the alternative disparities from local and non-local
disparity maps. The initial two disparity maps can be obtained from state-of-the-
art local and non-local stereo algorithms. Then, the more reasonable disparity is
selected. We propose two strategies to select the disparity. One is based on the
magnitude of the gradient in the left image, which is simple and fast. The other u-
tilizes the fusion move to combine the two proposal labelings (disparity maps) in a
theoretically sound manner, which is more accurate. Finally, we propose a texture-
based sub-pixel refinement to refine the disparity map. Experimental results using
Middlebury datasets demonstrate that the two proposed selection strategies both
perform better than individual local or non-local algorithms. Moreover, the pro-
posed method is compatible with many local and non-local algorithms that are
widely used in stereo matching.

Keywords stereo matching · adaptive disparity computation · fusion move ·
disparity selection · texture-based sub-pixel refinement

1 Introduction

Stereo matching is one of the fundamental problems in stereo vision. Three dimen-
sional (3D) objects or scenes can be reconstructed with stereo matching, which
is widely applied in navigation, robotics, and autonomous driving. The disparity
map generated from stereo matching is useful in many application fields. Aug-
mented reality [29] and tracking [24] have shown a particular interest for disparity
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maps for occlusion tolerance [39] or for the problem of hand segmentation from
the scene and gesture recognition [35,21,6]. Consider two images captured by two
horizontal cameras, where one image is regarded as the reference image and the
other image is the target image, and the camera parameters are known. The goal
is to obtain the disparity d of a pixel at position (x, y) in the reference image so
that the same pixel appears at position (x − d, y) in the target image. Once the
disparity d is obtained, we can compute the depth of the pixel in the 3D scene as
z = fB/d, where f is the focal length of the cameras and B is the baseline length
(the distance between the centers of the two cameras).

According to the survey in [33], a general process of stereo matching primar-
ily consists of four steps: 1. matching cost computation, 2. cost aggregation, 3.
disparity computation, and 4. disparity refinement. An important class of stereo
matching algorithms is called the local approach [18,52,9]. The local approach
primarily focuses on the cost aggregation step. A local support window is usually
determined for each pixel and the costs are aggregated in the window to obtain
more accurate results. There is another class of methods called the non-local ap-
proach [44,17,41] which also focuses on the cost aggregation step, but each pixel
can receive information concerning the entire image. The latter class of methods
addresses the matching problem more globally because the “support window” is
non-local. The main difference between the local cost aggregation and the non-
local cost aggregation is the size of the support window. Local methods aggregate
the matching costs in a finite local window, while non-local methods aggregate the
matching costs considering all pixels in the whole image.

The methods above have their own advantages and disadvantages and are
suitable for different types of scenes. If the regions are rich in local details such
as abundant colors and textures, local methods will generally generate a superior
stereo matching result. The goal of local methods is to find an accurate estimation
in these regions. Conversely, if the regions are textureless, local methods suffer from
weaknesses [8], and non-local methods will perform superior to local algorithms in
this case. The goal of non-local methods is to evaluate disparities in these regions
more reasonably. Conversely, the contribution of far-away pixels will sometimes
produce an error propagation problem for sharp edges and thin objects in non-
local methods [41]. Fig. 1 shows some results from local and non-local algorithms.
In Fig. 1(a), the green square region on the left is textureless. A local algorithm
may generate incorrect matches as shown in Fig. 1(b), whereas the blue square
regions in Fig. 1(a) contain abundant local structure information, which may often
cause problems for non-local algorithms, as shown in Fig. 1(c).

This observation inspires us to utilize both local and non-local methods to
achieve improved stereo matching performance. We propose a method to compute
disparities via both local and non-local algorithms and adaptively select the supe-
rior disparities for different regions of a scene. The same example is shown in Fig.
1(d), where the disparities in the rectangular regions are computed more robust-
ly. In the cost aggregation step, both local and non-local algorithms are applied
simultaneously. Then, two disparity maps are generated using the winner-take-all
(WTA) computation.

The key question is how to select the more reasonable disparities between two
disparity maps. In this paper, we propose two strategies. One strategy selects
disparities based on the magnitude of the gradient of each pixel. If the magnitude
of the gradient of a pixel is higher than a threshold, the disparity computed by
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(a) (b)

(c) (d)

Fig. 1 Examples of local, non-local, and the proposed stereo matching algorithms. (a) Raw
image, (b) Disparity map generated by the local algorithm [52], (c) Disparity map generated
by the non-local algorithm [44], and (d) Disparity map generated by the proposed method.
The disparities in the square regions demonstrate that the proposed method can generate
superior results to individual local or non-local algorithms

the local algorithm is selected; otherwise, the disparity computed by the non-
local algorithm is selected for this pixel. This strategy is based directly on the
observation above and the experimental results demonstrate that this strategy
performs superior to individual local or non-local algorithms. However, there is no
guarantee that this observation is always valid for each pixel. Therefore, we also
propose a more accurate strategy. This strategy considers the local and non-local
disparity maps as two proposal labelings and combines them using the fusion move
algorithm [14]. The fusion move belongs to an important class of optimization
problems that minimizes energies from pairwise Markov random fields (MRFs)
with discrete labels. The fusion move can combine two proposal labelings in a
reasonable manner by employing graph cut based algorithms (also known as the
QPBO-graph cut [11]), which is in practice often globally optimal [14].

Both of these two strategies can achieve results superior to individual local or
non-local algorithms. Furthermore, the proposed method is a general framework
and is also compatible with many local and non-local algorithms. The method can
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exploit either local or non-local algorithms in specific regions and achieves superior
results.

2 Related work

Stereo matching is a well-studied problem in computer vision and many algorithms
have been proposed to address this issue. In this section, we discuss only the most
related algorithms that are widely used in stereo matching.

The commonly used matching cost is usually defined as the Sum of Absolute
Differences (SAD) or the Sum of Squared Differences (SSD) [13]. Hirschmuller
[7] computes mutual information among pixels to define a matching cost. Some
studies apply Gradient Differences (GD) [31,4] or a census transform [48] which
consider the information of pixels’ neighborhoods. Mei et al. [18] combine the
Absolute Differences (AD) and census transform methods to compute a matching
cost, which generates superior results to using the AD or census transform methods
individually. Jiao et al. [9] combine the AD, GD, and census transform methods
to obtain a more robust matching cost. Zhan et al. [50] introduce the concept of
guidance image, which is a filter-based image. Matching costs (the AD, GD and
census transform) are computed on both the raw image and the guidance image,
and then these costs are combined to obtain a more robust matching cost.

Since the above initial matching costs are not sufficiently robust to achieve
accurate stereo matching in general, the costs are often aggregated in a support
region in local methods. In the cost aggregation step, the main problem is how
to determine the shape of the support region and the weights of neighboring pix-
els contributing to the center pixel. The simplest solution is a fixed rectangular
window and constant weights in the window. Yoon and Kweon [46] use adaptive
weights based on color and spatial differences between the neighboring pixel and
the center pixel in a fixed window. Certain algorithms focus on the shape of the
support region, such as cross-based cost aggregation [52], which defines a cross
region for each pixel, and the weights in the cross region are constant. Mei et al.
[18] propose rules that determine the shape of the cross region more strictly and
achieve a superior result. Another study adds a rule called the space constraint
to define the cross region [27]. Rhemann et al. utilize the guided filter [30] to ag-
gregate the initial matching costs. This algorithm provides the weights between
two pixels according to their statistical analogy based on the averages and the
variances of several squared windows on the guided (reference) image [20].

In summary, the cost aggregation techniques used in local methods can gener-
ally be classified into four types: (1) fixed window size and constant weight (in the
support window), (2) fixed window size and adaptive weight, (3) adaptive win-
dow size and constant weight, and (4) adaptive window size and adaptive weight.
However, most local approaches are quite fragile and are prone to experiencing
difficulties within textureless regions [42].

Yang [44] presents a non-local cost-aggregation method for stereo matching. In
this method, a Minimum Spanning Tree (MST) is built for the entire image based
on color differences among neighboring pixels; then, the costs are aggregated on
that MST. Each node in the MST receives information from all other nodes on
this tree. Mei et al. create a Segment Tree (ST) to aggregate the matching costs
[17]. This method segments the image into regions, and a tree graph is created in
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each segment. Then, these tree graphs are linked to form the ST. The ST enforces
the connectivity within the segment because pixels in the same segment tend to
have similar disparities. Vu et al. [41] extend this algorithm hierarchically with a
hybrid tree to aggregate the costs at the pixel and region levels simultaneously.
The aggregation in the region level MST is a coarse aggregation, whereas the
aggregation in the pixel level MST is a finer aggregation. Psota et al. [28] employ
the MST structure for global optimization by message passing. The disparity map
is represented as a collection of hidden states on some MSTs, and each MST is
modeled as a hidden Markov tree. Li et al. [15] combine MST-based algorithm and
PatchMatch stereo algorithm [1] to obtain an accurate disparity map. The above
methods use more information in stereo matching than local methods, and they do
not become trapped in local optimum. Essentially, the non-local algorithm is an
adaptive weight algorithm whose supporting window is the entire image. However,
this class of algorithms might not perform well in certain regions such as highly
textured regions and at object boundaries.

In addition to the local and non-local methods, there is also an important
class of algorithms called global methods in stereo. These methods solve the stereo
problem by minimizing pairwise MRF energies. In stereo vision, the pairwise MRFs
are usually with either multiple discrete or continuous labels. Thus, this class of
optimization problems is NP-hard in general. Various approximate solutions are
proposed, such as graph cuts [12,19,37,2] and belief propagation [47,22]. In the
proposed method, we utilize fusion moves [14] to fuse the local and non-local
disparity maps into a more accurate disparity map and solve this binary-labeled
MRF minimization problem utilizing the QPBO-graph cut [11]. Some approaches
[23,43] generate several plausible initial proposals and combine these proposals to
obtain a superior disparity map. These approaches use many initial proposals and
conduct a number of fusions because the accuracy of these initial proposals might
not be very high. In the proposed method, we only need to solve a binary-labeled
MRF minimization problem once since we have already obtained two relatively
accurate disparity maps (proposals) after the cost aggregation step. In fact, the
method to balance the accuracy and number of input proposals is a crucial problem
in fusion approaches. We will show in the experimental results that the proposed
method can achieve an accurate disparity map without many input proposals.

Recently many deep learning approaches are utilized to solve depth estima-
tion problems. Žbontar and LeCun [49] define a new matching cost by training
a Convolutional Neural Network (CNN) in a supervised way. The matching cost
is refined with some post-processing steps to give an accurate depth estimation.
Ummenhofer et al. [40] train a CNN end-to-end to compute depth and camera
motion. There are also some approaches that handle the depth problem utilizing
unsupervised learning [53,54]. Shu et al. [34] develop a new network to transfer
labeling information across heterogeneous domains, especially from text domain
to image domain.

3 Adaptive Disparity Computation for Stereo Matching

In this section, we will first introduce our stereo matching framework. The pro-
posed framework is generally consistent with the traditional framework used in
stereo matching [33]. The difference is that the matching costs are aggregated us-
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ing local and non-local cost aggregations simultaneously, and the superior disparity
of each pixel is selected reasonably to generate a disparity map. Fig. 2 illustrates
the proposed framework. The matching cost is initialized by MC-CNN-acrt [49], a
state-of-the-art method. Then, the matching costs are aggregated using two meth-
ods: local cost aggregation and non-local cost aggregation. Two initial disparity
maps are generated using WTA and more reasonable disparities are selected. Fi-
nally, texture-based sub-pixel refinement is performed and the final disparity map
is generated. A detailed description of each step is provided in the following sub-
sections.

Fig. 2 Framework of the proposed method

3.1 Matching Cost Computation

The matching cost is initialized by the state-of-the-art cost predicted by a con-
volution neural network [49]. Let p denote the image coordinates of pixel p in
the image. Let C(p, d) define the cost of the disparity d at position p; the cost is
formulated as follows:

C(p, d) = CCNN (RL(px, py), RR(px − d, py)) (1)

where CCNN (·, ·) predicts the similarity cost. This cost is computed between the
11∗11 image patch RL centered at pixel p of the left image and the image patch
RR centered at the corresponding pixel of the right image.

3.2 Local and Non-local Cost Aggregations

As described above, two cost aggregation approaches, i.e., a local approach and
a non-local approach, are adopted to compute two cost maps in the proposed
method. The two candidate disparity maps will be selected optimally in the sub-
sequent steps.
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3.2.1 Local Cost Aggregation

Local cost aggregation algorithms aggregate the initialized matching costs in a
local window. As stated in Section 2, the weights of neighboring pixels contributing
to the center pixel can be fixed or adaptive, as is the shape of the supporting
window. The general form of the local algorithms can be formulated as follows:

Cl(p, d) =

∑
q∈Sd(p) w(p,q)C(q, d)∑

q∈Sd(p) w(p,q)
(2)

where Cl(p, d) is the aggregated cost and C(q, d) is the initial matching cost of
the neighboring pixel q. Sd(p) is the supporting window of the center pixel p and
w(p,q) is the supporting weight of the neighboring pixel q to the center pixel p.

In this paper, we implement two local cost aggregation algorithms, i.e., Cross-
based Cost Aggregation [18] and Guided Filter [36], to generate accurate disparity
maps.

3.2.2 Non-local Cost Aggregation

The initial matching cost is also aggregated utilizing the non-local cost aggregation
method. We use Yang’s MST approach in [44] as an example to introduce this type
of method. The method aggregates the cost based on pixel similarity on a tree
structure and is not confined to a local optimum. In this method, the input image
is represented as an undirected graph G = (V,E), where V is the set of nodes
and E is the set of edges in the graph. The nodes in V are pixels in the image
and the edges in E connect neighboring pixels, where a four-connected graph is
adopted in the proposed method. The edge weights are defined according to the
color differences, as follows:

ωe(s, t) = |Is − It| (3)

where s and t are the positions of a pair of neighboring pixels, Is and It are
intensities of pixel s and pixel t, respectively. The weight is computed from the
average absolute difference of three channels of the reference image in the proposed
method. Then, an MST is built based on the edge weights. The distance between
the pixels p and q on this tree is defined as D(p,q), and it is the summation of
the edge weights of the connected edges (shortest path) between them. Then,

W (p,q) = exp(
−D(p,q)

σ
) (4)

denotes the similarity between p and q, where σ is a user-defined parameter. The
matching cost can be aggregated on the tree structure, as follows:

Cn(p, d) =

∑
q
W (p,q)C(q, d)∑

q
W (p,q)

(5)

where Cn(p, d) is the aggregated cost and C(q, d) is the initial matching cost.
This cost is non-local because each pixel receives supporting weights from the
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entire image. The aggregated costs of each pixel can be efficiently computed by
traversing the tree structure in two sequential passes. For detailed information
concerning this algorithm, we refer readers to [44]. Addtionally, in this paper, we
implement a Segment-tree [17] to generate a disparity map.

3.3 Disparity Computation from Two Cost Volumes

We compute two cost volumes in the previous steps and generate two disparity
maps using WTA, i.e., a local map and a non-local map, as follows:

dl(p) = argmin
d

Cl(p, d) (6)

dn(p) = argmin
d

Cn(p, d) (7)

where Cl(p, d) and Cn(p, d) are the aggregated costs computed by local and non-
local cost aggregations.

3.4 Disparity Selection from Two Disparity Maps

In this step, the superior disparity is selected from the two disparity maps obtained
above. The choice of the superior disparity will be important in the proposed stereo
matching framework. Here, two selection strategies are proposed. One utilizes the
texture information of the left image to select the superior disparity, while the other
uses the fusion move [14] to combine the two disparity maps obtained above in a
sound manner. The detailed descriptions of these two strategies will be presented
in the following sub-sections.

3.4.1 Selection via Texture information

We compute the gradient map of the left image via the Sobel gradient operator.
The disparity is selected based on the magnitude of the gradient. For each pixel,
when the magnitude of the gradient is higher than a threshold, we select the
disparity computed by the local algorithm; otherwise, the disparity computed by
the non-local algorithm is selected. Moreover, when one pixel’s local and non-local
disparities are nearly equal (the difference between them is not larger than one),
we compute the average value of the local and non-local disparities and use this
average value as the final disparity to achieve a sub-pixel accuracy disparity. More
formally, the disparity of each pixel is obtained as follows:

d(p) =



dl(p)+dn(p)
2 if

∣∣∣dl(p)− dn(p)
∣∣∣ ≤ 1

dl(p) else if
√
Gx(p)2 +Gy(p)2 ≥ δtex

dn(p) otherwise

(8)

where Gx(p) and Gy(p) denote the gradient components at pixel p along the
x-direction and the y-direction, respectively. dl(p) and dn(p) are two disparity
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maps obtained via local and non-local cost aggregations, respectively. δtex is a
user-defined threshold.

The local algorithm usually successfully processes a region that contains abun-
dant texture information. In general, the magnitude of the gradient is large in
these regions because the color variation is great. Thus, when the region is rich
in texture, the disparity computed by the local algorithm is selected; otherwise,
when the region is textureless or has weak texture, the magnitude of the gradient
is generally small. The local algorithm cannot address the disparity well; thus, the
disparity computed by the non-local algorithm is selected to alleviate this problem.
Additionally, when the difference between the local disparity and the non-local dis-
parity is small, we consider these two disparities to be both reasonable and use
their average value to achieve a sub-pixel accuracy disparity. In Section 4, the
experimental results show that this strategy can generate a satisfactory disparity
map.

3.4.2 Selection via Fusion Move

Selecting reasonable disparities via the texture information is simple and fast.
However, there is no guarantee that a local algorithm always successfully process-
es highly textured regions superior to a non-local algorithm, and vice versa. In
this sub-section, we propose a more elaborate approach to combine the local dis-
parity map and the non-local disparity map in a sound manner to generate a more
accurate disparity map.

First, we introduce the concept of the optimization problem in stereo vision.
Let xp denote the value x at pixel p. The stereo problem can be considered as
solving energies associated with pairwise MRFs, which take the following form:

E(x) =
∑
p∈ν

Up(xp) +
∑
p,q∈τ

Vpq(xp, xq), x ∈ Lν (9)

where ν is a set of nodes that correspond to the pixels in the image and τ is a
set of undirected edges connecting pairs of nodes that contain pairs of adjacent
pixels in four-connected neighborhoods. The labeling x assigns a label (disparity)
xp from the label space L to each node p ∈ ν. In stereo, the function Up : L→ R
is called the unary term, which usually corresponds to the matching costs. The
function Vp,q : L2 → R is called the pairwise term, which usually corresponds
to the costs of disparity changes. However, we have obtained two cost volumes
aggregated by the local and the non-local algorithms, which is different from the
majority of stereo algorithms. We use the combined aggregated costs as the unary
term in our stereo method. The unary term is reformulated as follows:

Up(xp) = αtCl(p, xp) + (1− αt)Cn(p, xp) (10)

and

αt =

√
Gx(p)2 +Gy(p)2

Ttex
(11)

where Cl(p, xp) and Cn(p, xp) are normalized as defined in Equations (2) and
(5). Ttex is a user-defined threshold but we limit Ttex to be slightly larger than
the maximum gradient of the image to ensure that αt is between zero and one.
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Here, we add the weight αt to consider the texture information. When the pixel’s
gradient is large, the cost of the local aggregation will have a larger proportion in
the unary term since the cost of the local aggregation may be more accurate, and
vice versa. Note that the weight αt only plays a guided role but not a dominant
role in this algorithm, which is distinct from selecting disparities based on the
texture information in Section 3.4.1.

The pairwise term is also called the smooth term, which penalizes the change
in disparities between neighboring pixels. We use the first-order smooth prior as
the pairwise term in our algorithm, as follows:

Vpq(xp, xq) = min(|xp − xq| , λs) (12)

where λs is a constant positive penalty.

Then we utilize the fusion move algorithm in [14] to combine the local and non-
local disparity maps. Given two labelings (disparity maps) dl ∈ Lν and dn ∈ Lν ,
which are obtained from Section 3.3, the fusion move combines these two labelings
by using the label (disparity) of each pixel either from dl or dn. In this case, the
fusion move can be expressed as a binary-labeled MRF minimization problem. This
auxiliary binary-labeled MRF can be optimized efficiently using non-submodular
graph cuts, yielding a new combined labeling with decreased energy, i.e., a superior
solution (disparity map). Moreover, the problem is a binary-labeled one, which is
more efficient than a traditional multiple-labeled MRF problem.

To formulate the problem more formally, a combination dc is defined by an
auxiliary binary vector y ∈ {0, 1}ν , such that the following:

dc(y) = dl · (1− y) + dn · y (13)

where · denotes the Hadamard product, and 1 denotes the full one vector. For
instance, for each pixel p, if yp = 0, then dcp(yp) = dlp, and if yp = 1, then
dcp(yp) = dnp . Equation (9) can be reformulated as the following [14]:

Ef (d) = E(dc(y)) =
∑
p∈ν

Ufp (yp) +
∑
p,q∈τ

V fpq(yp, yq) (14)

where Ufp (i) = Up(dip), V fpq(i, j) = Vpq(d
i
p, d

j
q). We minimize Equation (14) using

QPBO-graph cuts [11] and compute the resulting labeling ŷ. Once ŷ is obtained,
the new disparity map d̂(p) is obtained based on Equation (13), as follows:

d̂(p) = dl(p) · (1− ŷp) + dn(p) · ŷp (15)

In addition, when the difference between the local disparity and the non-local
disparity of each pixel is less than or equal to one, we compute the average value of
these two disparities as stated in Section 3.4.1. Considering this case and Equation
(15), the final disparity of each pixel is computed as follows:

d̂(p) =


dl(p)+dn(p)

2 if
∣∣∣dl(p)− dn(p)

∣∣∣ ≤ 1

dl(p) else if ŷp = 0
dn(p) else if ŷp = 1

(16)
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3.5 Texture-based Sub-pixel Refinement

The disparity map obtained in Section 3.4 will be refined to improve the accuracy
of the stereo matching. The sub-pixel refinement is used to compute the disparities
with a floating-point precision. A quadratic curve is fitted through the neighboring
costs and the new disparity map is obtained as follows [3]:

d∗(p) = d− Ctex+(p, d)− Ctex−(p, d)

2(Ctex+(p, d)− 2Ctex(p, d) + Ctex−(p, d))
(17)

where d = d̂(p) and

Ctex(p, d) = αtCl(p, d) + (1− αt)Cn(p, d) (18)

In this refinement, we also consider the texture information to compute the re-
fined disparity map, where αt is defined as in Equation (11) and Ctex+(p, d) =
Ctex(p, d + 1) and Ctex−(p, d) = Ctex(p, d − 1). The final disparity map of the
proposed method is d∗(p), and no other postprocessing refinement is conducted.

4 Experimental Results and Discussion

The MC-CNN-acrt matching cost computation [49] is executed on a desktop per-
sonal computer equipped with an Nvidia Titan X graphics card. The other compo-
nents of our stereo algorithm are executed on a personal computer with an Intel(R)
Core(TM) i5-4590 CPU with 3.30 GHz and 16 GB of RAM. The Middlebury [32]
training dataset is used. This dataset contains 15 high-resolution image pairs.
It contains different types of challenging problems for stereo matching. Different
aspects of the proposed method are evaluated in the following sub-sections.

4.1 Robustness of the Proposed Method

In this paper, the proposed method utilizes local and non-local algorithms and
combines these two disparity maps to generate a more accurate disparity map. Due
to the limited space, we compare the proposed method with state-of-the-art local
and non-local algorithms against Middlebury benchmark 3.0 [32]. We implement
four individual stereo algorithms that can generate accurate disparity maps, i.e.,
local ones, Cross-based Cost Aggregation (CBCA) in [18], Guided Filter (GF) in
[36], and non-local ones, Non-local cost aggregation (NL) in [44], and Segment-tree-
based cost aggregation (ST) in [17]. We collect the abbreviation of these algorithms
in Table 1 for clarity. These algorithms can form four combinations in our adaptive
disparity computation frame: (1) CBCA and NL, (2) CBCA and ST, (3) GF and
NL, and (4) GF and ST. The source code for these four algorithms is provided
by the authors. To compare the effect of the adaptive computation, no refinement
steps are included in this experiment.

We tabulate the data based on the default criterion “bad 2.0” in non-occluded
regions for our evaluation. In this performance measure, the lower the value, the
more superior the result. The individual local and non-local algorithms, the adap-
tive disparity computation based on texture information (Section 3.4.1), and the
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Table 1: Abbreviation for different algorithms

CBCA Cross-based Cost Aggregation
GF Guide Filter
NL Non-local Cost Aggregation
ST Segment-tree-based Cost Aggregation

(T) Disparity selection via texture information
(F) Disparity selection via fusion move

adaptive disparity computation based on the fusion move (Section 3.4.2) are im-
plemented and tested, and the results are collected in Table 2. For instance, CB-
CA+NL(T) denotes the adaptive disparity computation that utilizes the combi-
nation of CBCA and NL, and selects disparities based on the texture information,
while CBCA+NL(F) denotes the adaptive disparity computation that selects dis-
parities based on the fusion move. It is clear that regardless of which disparity
selection strategy is used, the adaptive disparity computation can always gener-
ate more accurate results than the individual local or non-local algorithms. The
adaptive disparity computation based on texture information generates slightly
less accurate results than that based on the fusion move, but this strategy is sim-
ple and efficient. The selection strategy based on the fusion move can generate a
more accurate disparity map because this strategy minimizes an energy function
defined on the entire image, providing a more sound result.

To intuitively show the results achieved by the proposed approach, some visu-
alized results are shown in Fig. 3. Here the results of the GF local method, the NL
non-local method, and the combination of GF+NL(F) are compared for instance.
As shown in Fig. 3, the local method does not handle well in the regions which
are with weak textures, and the non-local method tends to compute disparities
wrongly in the regions which have abundant local details. The proposed method
gives more reasonable disparities in these regions.

Fig. 3 Some qualitative results of Middlebury dataset 2014. From left to right: left images,
disparity maps of the local method, disparity maps of the non-local method, disparity maps
of the proposed method, disparity maps of ground truth.
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Table 2: Comparison of the local algorithm, the non-local algorithm, and the re-
lated combinations in the proposed method against the Middlebury benchmark
3.0. The best performance is boldfaced, where the error criterion of “bad 2.0” is
adopted

Andiron ArtL Jadepl Motor MotorE Piano PianoL Pipes
CBCA 4.83 6.90 16.4 4.23 4.62 13.8 19.4 4.67
GF 4.57 6.86 16.3 4.18 4.55 13.7 19.1 4.48
NL 4.78 6.90 16.4 4.22 4.58 13.9 19.3 4.57
ST 4.81 6.89 16.4 4.23 4.58 13.9 19.3 4.56
CBCA+NL(T) 4.57 6.87 16.4 4.17 4.54 13.7 19.1 4.60
GF+NL(T) 4.41 6.84 16.3 4.14 4.50 13.7 19.0 4.44
CBCA+ST(T) 4.51 6.88 16.3 4.14 4.50 13.7 19.1 4.57
GF+ST(T) 4.38 6.87 16.3 4.12 4.47 13.7 19.0 4.42
CBCA+NL(F) 4.52 6.77 16.3 4.12 4.50 13.7 19.1 4.51
GF+NL(F) 4.35 6.98 16.3 4.14 4.50 13.7 18.9 4.38
CBCA+ST(F) 4.41 6.69 16.2 4.05 4.40 13.7 19.0 4.39
GF+ST(F) 4.33 6.84 16.3 4.06 4.41 13.6 18.9 4.32

Playrm Playt PlaytP Recyc Shelvs Teddy Vintge Average

CBCA 16.4 16.5 14.8 8.04 32.1 3.67 25.8 11.0
GF 16.2 16.3 14.5 7.85 31.9 3.67 25.4 10.8
NL 16.4 16.5 14.8 7.97 31.9 3.66 26.6 11.0
ST 16.4 16.5 14.8 7.99 31.9 3.66 26.9 11.0
CBCA+NL(T) 16.2 16.3 14.6 7.79 31.8 3.65 25.7 10.8
GF+NL(T) 16.1 16.2 14.4 7.74 31.7 3.66 25.3 10.7
CBCA+ST(T) 16.1 16.3 14.6 7.74 31.6 3.63 26.3 10.8
GF+ST(T) 16.1 16.2 14.4 7.69 31.5 3.64 25.9 10.7
CBCA+NL(F) 16.1 16.3 14.5 7.76 31.8 3.64 25.7 10.8
GF+NL(F) 16.1 16.1 14.3 7.70 31.6 3.70 25.3 10.7
CBCA+ST(F) 16.1 16.3 14.5 7.69 31.5 3.59 26.4 10.7
GF+ST(F) 16.1 16.2 14.4 7.66 31.5 3.62 26.0 10.7

4.2 Comparison with Conventional Stereo Methods

The proposed method is also compared with some state-of-the-art stereo methods
listed in the Middlebury benchmark 3.0. The results are shown in Table 3. Here,
we use the combination GF+NL(F) as the representative algorithm of the pro-
posed frame, and utilize the disparity refinement in Section 3.5 to obtain the final
disparity map. The criteria “bad 0.5”, “bad 1.0”, “bad 2.0”, and “bad 4.0” are
adopted for evaluations. The proposed method achieves a state-of-the-art result
and currently ranks tenth in the criterion “bad 4.0”, ninth in “bad 2.0” , eighth in
“bad 1.0”, and seventh in “bad 0.5” among 67 algorithms. When the error toler-
ance between the disparity obtained by the stereo algorithm and the ground truth
is low, i.e., the performance measure of the stereo algorithm is strict, the proposed
method ranks higher, indicating the proposed method is compatible with accu-
rate stereo matching. Fig. 4 illustrates some qualitative results of the proposed
method under the error of “bad 2.0”. The result of MotorE ranks second among
all the algorithms, demonstrating that the proposed method can generate robust
stereo matching in the presence of large exposure variations. The result of Pipes
ranks fourth among all the algorithms, demonstrating that the method is able to
successfully process depth discontinuities and slim foreground objects.
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Table 3: Comparison of the proposed method with the state-of-the-art stereo
methods against the Middlebury benchmark 3.0

bad 0.5 bad 1.0 bad 2.0 bad 4.0
Proposed method 40.0 18.4 9.89 6.10
LocalExp [38] 36.8 13.7 6.52 4.07
3DMST [15] 38.0 15.1 7.08 4.43
APAP-Stereo [26] 49.5 20.9 7.53 4.50
FEN-D2DRR [45] 40.1 16.7 7.89 3.98
PMSC [16] 39.5 16.4 8.20 5.15
LW-CNN [25] 40.0 16.6 8.31 4.89
MeshStereoExt [51] 41.5 18.4 9.32 5.53
MCCNN-Layout 39.1 18.0 9.34 5.21
NTDE [10] 41.7 18.1 9.94 6.13
MC-CNN-acrt [49] 39.8 18.4 10.1 6.34
MC-CNN+TDSR [5] 42.1 19.8 10.2 5.99

Fig. 4 Some implementation results against the Middlebury benchmark 3.0. From left to
right: left images, right images, disparity maps of ground truth, disparity maps of the
proposed method, and “bad 2.0” error maps of the proposed method. From top to bottom:
MotorcycleE, Pipes, Recycle, and Teddy

4.3 Efficiency of Fusion Moves

In this sub-section, we evaluate the results of different numbers of fusions. We
use four disparity maps generated by CBCA, GF, NL, and ST as the inputs.
The first two disparity maps are chosen randomly, but we require that one be
a local disparity map and the other a non-local disparity map. The unary term
is computed in the first fusion step and is kept invariant in the following fusion
steps. Next, the remaining disparity maps are visited in a random order, and each
of them is fused with the current disparity map in sequence. Finally, several fusion
strategies are obtained and their accuracies are tested. The criterion “bad 2.0” is
used to compare the results of different fusion strategies. As illustrated in Fig. 5, it
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is clear that the accuracy of fusing two disparity maps and fusing more disparity
maps is similar. This result shows that the proposed method is efficient in the
fusion move step since it can generate a reasonable disparity map without fusing
many disparity maps.
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Fig. 5 Comparison of different fusion strategies. The proposed method can achieve
satisfactory results with only one fusion step

4.4 Effect of Texture-based Sub-pixel Refinement

In Section 3.5, the costs with textured information are used in the sub-pixel re-
finement step. The effect of texture-based sub-pixel refinement is tested in this
sub-section. We replace Ctex in Equation (18) with the costs obtained via the
local and non-local algorithms. Let FL denote sub-pixel refinement with the costs
obtained by the local algorithm and FN denote sub-pixel refinement with the costs
obtained by the non-local algorithm. The average error rates “bad 2.0” of the three
sub-pixel refinement methods are illustrated in Fig. 6. The texture-based sub-pixel
refinement always achieves superior performances among the three approaches s-
ince the costs with texture information are more robust, which is crucial in the
sub-pixel refinement step.

4.5 Runtime

The runtime of each section of our stereo algorithm is also tested. The average
runtime of the 15 training datasets of the Middlebury 2014 dataset is 103.22s for
the CBCA, 146.40s for the GF, 15.0s for the MST, 15.5s for the ST, and 10.34s for
the sub-pixel refinement. The average runtime for selection via texture information
is 0.0029s, and 5.27s for selection via the fusion move.

5 Conclusion

An adaptive disparity computation algorithm based on local and non-local cost ag-
gregations is proposed and shown to enhance the performance of stereo matching.
Experimental results show that our algorithm achieves superior results to those of
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Fig. 6 Effect of the texture-based sub-pixel refinement. The proposed method always
achieves the most accurate results with different stereo algorithms

local or non-local algorithms individually. Moreover, our algorithm is a framework
for local and non-local algorithms, and the experimental results show that the
proposed method can enhance performance independent of the cost aggregation
functions. For different local and non-local algorithms, the proposed method is
always able to combine them in a sound manner and select the more reasonable
disparity to achieve accurate stereo matching. The questions of how to select the
superior disparity and how to balance the accuracy and number of initial propos-
als for fusion moves remain unanswered questions, and we will study these aspects
more deeply in the future.
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