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Abstract

Free-form deformation is an important geometric shape modification method in computer animation and
geometric modeling. We explore it by means of functional composition via shifting operators. Our method
takes a polygonal model as input but yields a curved model described by triangular Bézier patches as output.
The proposed method also solves the sample problem of free-form deformation.
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1 Introduction

In geometric modeling and computer animation, modification of geometric shape is an industrially important
research topic. When an object is described by a small number of vertex or control points, the user can
modify shapes by such means as pulling points, conducting transformations,etc. When the number of vertices
or control points increases, direct manipulation methods no longer suffice. Space deformation can solve the
problem well [2].

Barr[1] first proposed the global and local deformation concept, in which the transformation matrix is
not constant, but varies according to the space position. That is to say, the deformation is represented as a
matrix function of space position, independent of the geometric representation of object. In this setting Free-
form Deformation (FFD) was first proposed by Sederberg and Parry[21]. It supplies a general deformation
frame. The object is embedded into an intermediate space, regarded as a deformation tool. To deform the
object, the user first deforms the embedding space; then the deformation is passed to the object. In [21]
the intermediate space was a trivariate tensor product Bézier volume. After that, many extensions were
proposed, such as B-spline FFD[14], Extended FFD[8], Rational FFD[16], NURBS FFD[17], continuous
FFD[3], etc. All FFD methods share the same four processing steps:

1. Define a parametric volume, including parametric space and lattice,

2. Map object into parametric space of volume,

3. Modify shape of volume through editing control points in lattice,

4. Deform the object embedded in volume.

Other extensions include AFFD[9], direct manipulation FFD[15], arbitrary topological lattice FFD[19],
Dirichlet FFD[20], which have minor differences in the above steps.

Unlike above FFD methods, which have 3D deformation tool, surface deformation[13], axial deformation
[18, 7, 22] and constraints-based space deformation [5] adopt parametric surfaces, axial curve, points and
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their displacements as deformation control tools respectively. Bechmann gives a detailed survey of FFD
methods with different dimensional tools[4].

All of the space deformation methods mentioned above are independent of the geometric representation.
Theoretically, the deformation should act on every point of object. But this is impossible, since the object
can only be represented as discrete forms in the computer. In fact, only representative vertices or control
points of the object are deformed. For an object described by parametric surface, the result object will still
appear smooth when the deformation is conducted on the control points. But for a polyhedral object, when
too few points are sampled, the actual deformation will be far from the theoretical result. In the worst case,
the deformed object remains unchanged. Thus the sampling problem is important for practical use of FFD
methods. Unfortunately, little research FFD addresses this problem, except for[14] on B-spline FFD. This
work checks the middle point of each triangle mesh edge and evaluates the error between true deformation
and linear interpolation. If the error is not less than a given threshold, the triangle is further subdivided
at the midpoints. However, such a solution may fail at singular points, which are usually important to the
deformation result.

In this paper, for objects represented by triangular meshes we solve this problem through functional
composition via shifting operators, where the deformation tool is a B-spline volume. In the proposed method,
the B-spline volume is first converted (using cutting planes determined by its knot vectors) to a piecewise
continuous Bézier volume, in whose parametric space the object is then subdivided and re-triangulated. In
the re-triangulated result, each triangle of the object mesh is within a Bézier volume. Finally, we conduct
the functional composition via shifting operators for each Bézier volume. The result of the deformation is a
set of triangular Bézier patches, whose degree is the sum of three directional degrees of the B-spline volume,
coinciding exactly with the theoretical result of B-spline FFD. Thus the sample problem is solved at the
same time.

The rest of this paper is organized as follows. Section 2 establishes notation, and introduces shifting
operators, generalized de Casteljau algorithm and the definition of the B-spline volume is used as deformation
tool. Section 3 gives the subdivision and re-triangulation algorithm for preprocessing the object to be
deformed. In Section 4 a functional composition algorithm is introduced, which depends on shifting operators
and the generalized de Casteljau algorithm. Finally, we give implementation results and our conclusions.

2 Preliminary

With the help of shifting operators, first introduced by Chang[6], Bernstein polynomials can be concisely
expressed. Some properties of Bézier curves and surfaces can also be easily deduced. Let r(u, v, w) be a
Bézier volume defined as follows:

r(u, v, w) =
nu∑
i=0

nv∑
j=0

nw∑
k=0

rijkBi,nu
(u)Bj,nv

(v)Bk,nw
(w) (1)

where rijk ∈ R3, (u, v, w) ∈ [0, 1]3. Define operators Eu, Ev, Ew, I by:

Eurijk = ri+1,j,k Evrijk = ri,j+1,k Ewrijk = ri,j,k+1 Irijk = rijk

With this definition, (1) can be reformulated via binomial expansion as:

r(u, v, w) = [(1 − u)I + uEu]nu [(1 − v)I + vEv]nv [(1 − w)I + wEw]nwr000 (2)

Let c(u) be a Bézier curve. Its expression in terms of shifting operators is:

c(u) = [(1 − u)I + uE]nc0 u ∈ [0, 1] (3)

Then a portion of the curve restricted on interval [u0, u1] ⊆ [0, 1] is still a Bézier curve. The generalized
de Casteljau algorithm is designed for computing the control points of a sub-curve[12]. Here we express it
via shifting operators. Let interval [u0, u1] be parameterized as:

u(t) = (1 − t)u0 + tu1 t ∈ [0, 1]

Substituting this into (3) gives:

c̃(t) = c(u(t))
= [(1 − u(t))I + u(t)E]nc0

= [((1 − u0)I + u0E)(1 − t) + ((1 − u1)I + u1E)t]nc0

=
n∑

i=0

c̃iBi,n(t)
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where the control points: c̃i = ((1−u0)I +u0E)n−i((1−u1)I +u1E)ic0. This is the generalized de Casteljau
algorithm in terms of shifting operators, fundamental to our proposed accurate FFD.

Next, we define the initial B-spline volume for the FFD. Let [Xmin,Xmax]×[Ymin, Ymax]×[Zmin, Zmax]
be the bounding box of the object to be deformed, in the object coordinate system. Then the user specifies,
or the system automatically generates, knot vectors u,v,w as follows:

u = {u0, · · · , uku
, uku+1, · · · , unu

, · · · , unu+ku
}

where ku is the u-degree of the B-spline volume, nu is the number of its control points along the u-direction,
and u0 = · · · = uku

= Xmin, unu
= · · · = unu+ku

= Xmax. The knot vectors v and w are defined similarly.
The B-spline volume P(u, v, w) determined by u,v,w and with degree ku, kv, kw is:

P(u, v, w) =
nu∑
i=0

nv∑
j=0

nw∑
k=0

PijkNi,ku
(u)Nj,kv

(v)Nk,kw
(w) (4)

An advantage of the bounding box as the parametric domain of B-spline volume is that we need not map
object points into the parametric space of P(u, v, w) while conducting FFD. According to the above definition,
the point coordinates in object space can be used as local coordinates corresponding to P(u, v, w), saving
computation time. Then the B-spline volume is converted to piecewise continuous Bézier volumes through
a knot insertion algorithm[12], which is a black box for the user. In total, (nu − ku) · (nv − kv) · (nw − kw)
Bézier volumes are generated, defined in [ui, ui+1]×[vj , vj+1]×[wk, wk+1], where ku ≤ i < nu, kv ≤ j < nv,
kw ≤ k < nw.

3 Subdivision and re-triangulation of objects

In this paper, the object to be deformed is assumed to be expressed as a triangular mesh, because other
polygonal faces rarely remain planar. Otherwise, the input object is triangulated first. The subdivision
and re-triangulation in this section is performed in the parametric space of B-spline volume. Recalling the
definition of knot vectors of B-spline volume, the parametric space is identical with the object space where
the object is defined. For clarity, we rewrite knot vectors u,v,w as x,y, z and xi = ui, yj = vj , zk = vk for
all possible i, j, k.

Let P0P1P2 be a triangle of the object, as shown in Figure 1(a). The edges P0P1, P1P2, P2P0 can be
parametrized as linear combination of its vertices. Unlike normalized [0, 1] parameterization, we parameterize
three edges as:

e0(t) = (1 − t)P0 + tP1 t ∈ [0, 1]
e1(t) = (2 − t)P1 + (t − 1)P2 t ∈ [1, 2]
e2(t) = (3 − t)P2 + (t − 2)P0 t ∈ [2, 3]

Assuming planes x = xi (i = i0, · · · , i1) cross the triangle P0P1P2, our purpose is to subdivide and re-
triangulate the triangle against the planes x = xi. First we compute the intersections between each plane
and triangle. Then we appropriately trace the triangle vertex and intersection points to form loops. Finally,
for loops with more than four edges, we triangulate them. These three steps are then repeated for the y and
z planes successively. We introduce them in detail in the following sections.

3.1 Computing intersections and generating circular linked lists

To make our algorithm clear, we introduce a data structure for both triangle vertices and intersection points:

struct vertex {
float x,y,z; /* space position coordinate */
float t; /* t parameter corresponding to edge parameterization */
short int Vflag; /* "1" if triangle vertex; "2" if intersection points */
struct vertex *link; /* link between two intersections */

/* NULL if triangle vertex */
struct vertex *next; /* for linked list */

}

Before the intersection points are evaluated, the three triangle vertices are made into a circular singly linked
list Vlist according to their “t” values, as follows. Their “Vflag”s are set to “1” and their “link”s to
“NULL”. For each plane which crosses the triangle, we compute the intersections—in general, two different
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P0

P2P1

Q0

Q0’Q1’ Q2’

Q1

Q2

(t=0 or t=3)

(t=1) (t=2)

P0

P2P1

(t=0 or t=3)

(t=1) (t=2)Q0’

Q0

(a) Normal subdivision (b) Singular subdivision

Figure 1: Subdivision of a triangle: (a) There are three pairs of intersections are generated. They are
marked with grey circles and linked by a dark line segment each other. The circular linked list Vlist is
P0 → Q0 → Q1 → P1 → Q′

1 → Q′
0 → Q′

2 → P2 → Q2 → P0. According to our loop generation algorithm,
there are four loops generated. They are P0Q0Q′

0Q
′
2Q2, Q0Q1Q′

1Q
′
0, Q1P1Q′

1 and Q′
2P2Q2. In (b) is a

singular subdivision case, where the original triangle vertex P0 is removed. In such a case, the linked list is
Q0 → P1 → Q′

0 → P2 → Q0. The two loops generated are P1Q′
0Q0 and Q′

0P2Q0.

ones. The two intersections are thus linked each other by entry “link” and their “Vflag”s are set as “2”.
According to the parameterization of triangle edge, the “t” value of such two points should be in [0, 3]. We
then insert the two intersections into Vlist

If the two intersections are identical, that is, their “t” values are equal, the plane is not regarded as
crossing the triangle and no new intersections are inserted into Vlist. Sometimes the plane may cross one
triangle vertex and one edge, as shown in Figure 1(b). When this occurs, first the triangle vertex crossed is
deleted from Vlist, then two intersections are inserted in Vlist. For a plane crossing a triangle edge, we
do not regard the plane as intersecting the triangle, so no intersection are generated.

After all possible intersections are obtained, we generate a circular linked list, in which two intersections
that belong to the same cutting plane are linked to each other. This information is important for us to
generate loops in the following step.

3.2 Generating loops from linked list

Here we show how to generate the loop from the circular linked vlist Vlist(See Figure 1). A loop generation
start from a startV. The startV is selected from the vertices of Vlist whose “Vflag” is 1. If the vertex
is visited, its “Vflag” number minus 1. After all loops are found, all “Vflag”s of vertices in Vlist become
“0”, since each intersection point is used twice and triangle vertice are used once. Traversal of the Vlist
to generate the loop follows a rule: the first loop edge is the triangle edge which is determined by “next”,
then an intersection edge which is determined by “link”. This loop generation algorithm has the property
that every loop generated has the same vertex order as the original triangle, i.e., if the original triangle’s
vertices are clockwise order, so are the loop’s. This is important, for the result triangular mesh to maintain
its normal. The descriptive algorithm is listed as follows:

Generate_all_Loops(Vlist)
{

While( (startV=Get_StartV(Vlist)) != NULL )
Find_A_Loop(startV, loop);

}

Get_StartV(Vlist)
{

if(Vlist->Vflag==1) return Vlist;
ptrV=Vlist->next;
while(ptrV!=Vlist) {

if(ptrV->Vflag==1) return ptrV;
else ptrV=ptrV->next;

}
return NULL;
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}

Find_A_Loop(startV, loop)
{

add_vertex_to_loop(startV, loop);
startV->Vflag--;
ptrV=startV->next;
status=TRIANGLE_EDGE;

while(ptrV!=startV)
{

add_vertex_to_loop(ptrV, loop);
ptrV->Vflag--;
if(status==TRIANGLE_EDGE) {

if(ptrV->link==NULL)
ptrV=ptrV->next;

else {
ptrV=ptrV->link;
status=INTERSECTION_EDGE;

}
}
else if(status==INTERSECTION_EDGE) {

ptrV=ptrV->next;
status=TRIANGLE_EDGE;

}
}

}

3.3 Re-triangulation

A

B

C D

A

B

C D

Ea

b

c d

e

Figure 2: Triangulation of a loop: (Left) choose the diagonal with shorter length; here BD, so that triangles
ABD and BCD are generated; (Right) If minimal sum of diagonals is b + e, the diagonals AC and AD are
selected for triangulation, and triangles ABC, ACD, ADE are generated.

According to the above description, there are in all three kinds of loop generated, whose edge numbers
are 3, 4 or 5. Any loop with 4 or 5 edges will be triangulated (Figure. 2). Here the triangulation criterion
adopted is the minimization of the sum of triangle edge lengths. By this criterion, a 4-edge loop will be
triangulated by using the shorter diagonal. For a 5-edge loop, each vertex emits two diagonals. We choose
the vertex for which the sum of the lengths of these two is least.

4 Functional composition of triangle and Bézier volume

After subdivision and re-triangulation, each triangular mesh of object must lie within the parametric space
of a Bézier volume. Let P0P1P2 be a triangle, whose local coordinates corresponding to the Bézier volume
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within which it lies are (u0, v0, w0), (u1, v1, w1), (u2, v2, w2) respectively. This triangle can be parametrized
by barycentric coordinates as follows:

u(x, y, z) = u0x + u1y + u2z (5)
v(x, y, z) = v0x + v1y + v2z (6)
w(x, y, z) = w0x + w1y + w2z (7)

where x, y, z ≥ 0 and x + y + z = 1. After substituting above equations into (2) and functional composition,
we can get a triangular Bézier surface patch, which is the accurate deformation result of the triangle P0P1P2.

The functional composition for Bernstein polynomials has been studied by DeRose et al.[10, 11]. Unlike
their methods, we explore this problem with shifting operators, with whose help the procedure of functional
composition becomes clear and intuitive. In this section, we study composition of a Bézier volume and a
linear triangle.

By substituting (5-7) into (2), we can get:

R(x, y, z) = r(u(x, y, z), v(x, y, z), w(x, y, z))
= [(1 − u(x, y, z))I + u(x, y, z)Eu]nu [(1 − v(x, y, z))I + v(x, y, z)Ev]nv

[(1 − w(x, y, z))I + w(x, y, z)Ew]nwr000

= [((1 − u0)I + u0Eu)x + ((1 − u1)I + u1Eu)y + ((1 − u2)I + u2Eu)z]nu

[((1 − v0)I + v0Ev)x + ((1 − v1)I + v1Ev)y + ((1 − v2)I + v2Ev)z]nv

[((1 − w0)I + w0Ew)x + ((1 − w1)I + w1Ew)y + ((1 − w2)I + w2Ew)z]nwr000

Note Aui = (1 − ui)I + uiEu, Avi = (1 − vi)I + viEv and Awi = (1 − wi)I + wiEw(i = 0, 1, 2). With help
of these notations, above R(x, y, z) can be simplified as:

R(x, y, z) = [Au0x + Au1y + Au2z]nu [Av0x + Av1y + Av2z]nv [Aw0x + Aw1y + Aw2z]nwr000

=


 ∑

iu+ju+ku=nu

Auiu
0 Auju

1 Auku
2 Bnu

iu,ju,ku
(x, y, z)





 ∑

iv+jv+kv=nv

Aviv
0 Avjv

1 Avkv
2 Bnv

iv,jv,kv
(x, y, z)





 ∑

iw+jw+kw=nw

Awiw
0 Awjw

1 Awkw
2 Bnw

iw,jw,kw
(x, y, z)


 r000

=
∑

i+j+k=N

RijkBN
ijk(x, y, z)

Where N = nu + nv + nw, and Rijk is:
∑

iu + iv + iw = i
ju + jv + jw = j
ku + kv + kw = k

(
Cnu

iu,ju,ku
Cnv

iv,jv,kv
Cnw

iw,jw,kw
Auiu

0 Auju

1 Auku
2 Aviv

0 Avjv

1 Avkv
2 Awiw

0 Awjw

1 Awkw
2 r000

)

CN
i,j,k

(8)

The control points Rijk of the Bézier triangular patch can be evaluated by the generalized de Casteljau
algorithm. We denote the bracketed expression in (8) by Auvwijk. The algorithm to compute control point
Rijk is:

Compute_Rijk()
{

Rijk=0;
for(iu=0; iu<=nu; iu++)
for(ju=0; ju<=(nu-iu); ju++) {

ku=nu-iu-ju;
for(iv=0; iv<=nv; iv++)
for(jv=0; jv<=(nv-iv); jv++) {

kv=nv-iv-jv;
iw=i-iu-iv; jw=j-ju-jv; kw=k-ku-kv;
if(iw>=0 && jw>=0 && kw>=0 )
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Rijk = Rijk+Compute_Auvwijk();
}

}
Rijk=Rijk/C(N,i,j,k);

}

Compute_Auvwijk()
{

for(j=0; j<=nv; j++)
for(k=0; k<=nw; k++)
for(l=1; l<=nu; l++) {

if(l<=iu) u=u0;
else if(l<=(iu+ju)) u=u1;
else u=u2;
for(i=0; i<=(nu-l); i++)

r[i][j][k]=(1-u)*r[i][j][k]+u*r[i+1][j][k];
}

for(k=0; k<=nw; k++)
for(l=1; l<=nv; l++) {

if(l<=iv) v=v0;
else if (l<=(iv+jv)) v=v1;
else v=v2;
for(j=0; j<=(nv-l); j++)

r[0][j][k]=(1-v)*r[0][j][k]+v*r[0][j+1][k];
}

for(l=1; l<=nw; l++) {
if(l<=iw) w=w0;
else if(l<=(iw+jw)) w=w1;
else w=w2;
for(k=0; k<=(nw-l); k++)

r[0][0][k]=(1-w)*r[0][0][k]+w*r[0][0][k+1];
}

Auvwijk=r[0][0][0]*C(nu,iu,ju,ku)*C(nv,iv,jv,kv)*C(nw,iw,jw,kw);
return(Auvwijk);

}

The outward normal of the triangular Bézier patch is determined by the order of P0P1P2. For example,
if P0P1P2 is counter-clockwise seen from outside the object, the normal of result patches also point outside.
This is important for rendering.

5 Discussion and implementation

Our subdivision and re-triangulation are related to knot vectors which are independent of the size of the
triangular mesh. There may be very small triangles produced, for which it is unnecessary to conduct the
composition computation, since there is almost no sample problem. Thus during our implementation of
proposed method, we check the size of each triangle, as measured by maximal edge length. When this is less
than a given threshold, as in the original FFD, only three vertices are deformed. The resulting triangular
mesh can be thought of as a triangular Bézier patch of degree 1. For a triangle parallel to a coordinate plane
in the parametric surface, namely u = u0, the composition can be simplified along the u direction so that
the degree of patch is kv +kw, rather than ku +kv +kw. Secondly, during the user’s interaction, it is enough
that the deformed object is displayed as wire frame. In implementation, this can achieved by deforming the
edges of triangular meshes. The algorithm for composition between Bézier volume and line segments can be
deduced similarly to the procedure in Section 4.

For modeling environments that do not support Bézier patches, the computed curved model can be
tesselated back to polygons through deCastejau algorithm[12]. Though the result is no longer completely
accurate, it still avoids tearing and other sampling problem. For the environments that do support Bézier
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patches, this technique is still useful, both for objects whose rest shape is naturally polygonal, and for
polygonal models that are acquired externally.

As a direct extension, the continuous FFD proposed by Bechmann[3] can be processed similarly. This is
omitted here. The main drawback of the proposed algorithm is that it will take more time to deform an
object compared to the direct method. It can be balanced by rendering wireframe of deformed object for
interactive modeling. Another problem is that the proposed technique can not be used on curved model
directly unless the deformation tool is a Bézier volume. In such a situation, it is difficult to get accurate
result of curved object subdivision against the knot vectors.

We have implemented the proposed algorithm on an SGI Indy workstation. In each example from Figure. 3
to Figure. 9, (a) displays an object to be deformed, represented as triangular mesh. Part (b) gives the result
when FFD acts on the vertex of object. The B-spline control lattice is shown by points and dashed lines.
Part (c) shows the object after subdivision and re-triangulation. If the B-spline volume is identical with a
Bézier volume, no subdivision is performed. The parametric space of B-spline volume is described by dashed
lines. Part (d) is the accurate FFD result, where each mesh is a triangular Bézier surface patch.

6 Conclusion

In this paper, B-spline FFD is explored by means of functional composition via shifting operators. The
object is first subdivided and triangulated so that each triangular mesh must lie within a Bézier volume.
Since the deformation result is precise, there is no sample problem any more. The proposed method can be
easily integrated into existing geometric modeling and computer animation system.
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Appendix: Implementation Results

                                                

(a) Original object (b) Rough FFD (c) Object in paramet-
ric space

(d) Accurate FFD

Figure 3: The degree of the B-spline volume is 1×3×1, with 2×4×2 control points.
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(a) Original object (b) Rough FFD (c) Subdivision and re-
triangulation

(d) Accurate FFD

Figure 4: The degree of the B-spline volume is 1×2×1, with 2×4×2 control points. Since there are not
enough sample points on the object, the deformed version (b) created by the original FFD method remains
unchanged.

                                                

(a) Original object (b) Rough FFD (c) Object in paramet-
ric space

(d) Accurate FFD

Figure 5: The degree of the B-spline volume is 3×1×3, with 4×2×4 control points.

                                                

(a) Original object (b) Rough FFD (c) Subdivision and re-
triangulation

(d) Accurate FFD

Figure 6: The degree of the B-spline volume is 2×1×2, with 4×2×4 control points. The faces which are
towards us in the three blocks begin as coplanar neighbours in (a). Because of the sample problem, they are
disconnected in the rough FFD result (b).
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(a) Original object (b) Rough FFD (c) Object in paramet-
ric space

(d) Accurate FFD

Figure 7: The degree of the B-spline volume is 1×3×1, with 2×4×2 control points.

                                                

(a) Original object (b) Rough FFD (c) Subdivision and re-
triangulation

(d) Accurate FFD

Figure 8: The degree of the B-spline volume is 1×2×1, with 2×4×2 control points.

                                                

(a) Original object (b) Rough FFD (c) Subdivision (d) Accurate FFD

Figure 9: The degree of the B-spline volume is 1×2×2, with 2×8×4 control points.
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(a) Original object (b) Rough FFD                        

(c) Subdivision and re-triangulation (d) Accurate FFD

Figure 10: The degree of the B-spline volume is 2×1×1, with 4×2×2 control points.
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