
Accelerating Accurate B-spline Free-form Deformation of
Polygonal Objects

Jieqing Feng∗ Qunsheng Peng
State Key Lab. of CAD&CG, Zhejiang University, Hangzhou, 310027, P.R.China

Email: {jqfeng, peng}@cad.zju.edu.cn Tel: +86-571-7951045 Fax: +86-571-7951780

Abstract A previous paper described an algorithm for accurate B-spline free-form deformation of polygonal
objects to produce triangular Bézier patches. However that algorithm computed the control points of resulting
patches using a generalized de Casteljau algorithm, which is expensive to compute. In this short note, we describe
an algorithm that instead uses polynomial interpolation; both theoretical analysis and implementation results show
that this new algorithm runs faster than the original.

Key words Free-form deformation, B-spline, Bézier curve, triangular Bézier patch, Polynomial interpolation,
Linear equation system

1 Introduction

The accurate B-spline free-form deformation(FFD) of polygonal object was ever proposed in [1] by authors,
where the deformation of polygonal objects is represented as a set of triangular Bézier patches[1], whose degree
is the summation of three directional degrees of B-spline volume. The method is based on Bernstein polynomial
composition and generalized de Casteljau algorithm. Though the accurate FFD solves the sampling problem in
deformation of polygonal objects, the computational burden is heavy because generalized de Casteljau algorithm
is time-consuming.

In this note, we propose a fast accurate B-spline FFD method. The polynomial interpolation is adopted to
expand Bernstein polynomial composition rather than the generalized de Casteljau algorithm. The polynomial
interpolation is just a procedure of solving a linear equations system. By properly choosing sampling points, the
matrix of linear system and its inverse can be computed and saved in advance, thus processing time is saved.

2 Cost of the de Casteljau algorithm

All notations in the rest of paper is same with those in [1]. It is known that the deformations of line segment and
triangular mesh under tensor-product Bézier volume are Bézier curve and triangular Bézier patch, whose degrees
are equal to the summation of three directional degrees of Bézier volume. The control points of the result curve
and patch can be evaluated through the generalized de Casteljau algorithm. The following analysis shows that it
is time-consuming.

To compute a point on a tensor product Bézier volume of degrees nu, nv , nw along three directions, the
numbers of ¤oating multiplication(⊗), addition(⊕) and subtraction(�) involved in the de Casteljau algorithm are:

V (nu, nv, nw) =
3
2

[nu(nu + 1)(nv + 1)(nw + 1) + nv(nv + 1)(nw + 1) + nw(nw + 1)] (2 ⊗ + ⊕ +�) (1)

The computational cost of the procedures Compute Auvwijk (in [1])is just identical with V (nu, nv, nw) except
for loops control. The computational cost Curve(de Casteljau)(nu, nv, nw) for evaluating all control points of
result Bézier curve is:

Curve(de Casteljau)(nu, nv, nw) = (nu + 1)(nv + 1)(nw + 1)V (nu, nv, nw) (2)

∗Corresponding author

1

Here we assume the combinatorial number is pre-computed and saved in a look-up table. Its computational cost
is omitted . Similarly, to evaluate all of the control points of result triangular Bézier patch R(u, v, w), the ¤oating
computational cost Patch(de Casteljau)(nu, nv, nw) is:

Patch(de Casteljau)(nu, nv, nw) =
1
8

[(nu + 1)(nu + 2)(nv + 1)(nv + 2)(nw + 1)(nw + 2)] V (nu, nv, nw)
(3)

Formulae (1)-(3) show that the computation cost of the generalized de Casteljau algorithms is very high. In
the next section, we will give an interpolation algorithm to compute the control points, which can dramatically
decease the computational cost.

3 Computing control points through polynomial interpolation

From numerical analysis, we know that a polynomial of degree n can be reconstructed accurately through inter-
polating (n + 1) different sampling points in its domain. Interpolation can be implemented by solving a linear
equation system, where the matrix is (n + 1)× (n + 1). In the accurate deformation, the deformation of line and
triangle are Bézier curve and patch, which are Bernstein polynomials with 1 and 2 variables respectively. Thus
we can compute the control points of curve and patch through polynomial interpolation according to the above
statement.

3.1 Reconstruction of Bézier curve

Let Bézier curve C(t) be the accurate deformation of line segment, whose expression is:

C(t) =
N∑

i=0

CiBi,N (t) (4)

where Bi,N (t) is Bernstein polynomial of degree N . Our goal is to compute the control points {Ci}N
i=0. We

choose (n + 1) different sampling points {ti}N
i=0 on it. The points C(ti) on the curve can be evaluated through

traditional FFD algorithm, i.e., deforming a single point. Then we can establish a linear equation system as
follows: 



B0,N (t0) B1,N (t0) · · · BN,N (t0)
B0,N (t1) B1,N (t1) · · · BN,N (t1)

...
...

. . .
...

B0,N (tN) B1,N (tN) · · · BN,N (tN)







C0

C1

...
CN


 =




C(t0)
C(t1)

...
C(tN)


 (5)

We denote the (N + 1) × (N + 1) matrix in (5) as B2. The matrix B2 is non-degenerate if there is no two
identical sampling points among {ti}N

i=0. Of course user can specify the sampling points freely. We will introduce

a standard sampling scheme. We use
{

i
N

}N

i=0
as the sampling points.The control points of the Bézier curve C(t)

can be obtained as follows: 


C0

C1

...
CN


 = B−1

2




C(t0)
C(t1)

...
C(tN)


 (6)

Remember that matrix B−1
2 need to be computed only once. Thus it can be pre-computed and saved for further

use.
As described above, the computational cost consists of (N + 1) sampling points on Bézier volume and a

multiplication between matrix and vector. The total number of ¤oating computation to compute all of control
points of the curve is:

Curveinterpolation(nu, nv, nw) = [(N + 1)V (nu, nv, nw)] +
[
(N + 1)2 ⊗ +N(N + 1)⊕]

(7)

Where N = nu + nv + nw. The £rst squarely bracketed term is for evaluating the (N + 1) sampling points
through traditional FFD method. The second term is for matrix multiplication.

2

3.2 Reconstruction of triangular Bézier patch

Let R(u, v, w) be accurate deformation of a triangular mesh, whose expression is:

R(u, v, w) =
∑

i+j+k=N

RijkBN
ijk(u, v, w) (8)

We sort Bernstein polynomials BN
i,j,N−i−j(u, v, 1− u− v) in equation (8), which are de£ned on the 2D simplex,

in lexicographic order of their subscripts (i, j) as follows:

B0,0,N B0,1,N−1 B0,2,N−2 · · · B0,N,0

B1,0,N−1 B1,1,N−2 · · · B1,N−1,0

· · · · · · . . . · · ·
BN−2,0,2 BN−2,1,1 BN−2,2,0

BN−1,0,1 BN−1,1,0

BN,0,0

Let them be re-noted as
{

B̃i(u)
} (N+1)(N+2)

2

i=0
, where u = (u, v, 1 − u − v). Any (N+1)(N+2)

2 non-degenerate

sampling points in the patch domain can be used to accurately interpolate the triangular Bézier patch R(u, v, w).
We will not discuss the condition of non-degenerate, which is out of scope of this paper. In our implementation,
the standard sampling scheme is adopted to interpolate the triangular Bézier patch. The sampling points are just

the triples of subscripts of base function divided by N , i.e.
(

i
N , j

N , N−i−j
N

)
. From the theory of multi-variable

spline, we know that it is a valid sampling scheme. Thus it is invertible. The ¤oating computation for all control
points of the triangular Bézier patch is:

Patchinterpolation(nu, nv, nw) = [NBV (nu, nv, nw)] +
[
N2

B ⊗ +NB(NB − 1)⊕]
(9)

Where NB = (nu+nv+nw+1)(nu+nv+nw+2)
2 , which is the number of the control points of patch. Similarly the

inverse of matrix related to B̃i(u) need also to be computed once.

4 Discussion and implementation

The generalized de Casteljau algorithm is numerically stable, but it takes more time than the interpolation method.
Users can choose one between them: if they pursue accuracy, the generalized de Casteljau algorithm is suitable; if
they pursue fast interaction, the interpolation algorithm is preferable. Some examples of theoretical comparisons
are listed in table 1.

Curve(de Casteljau)(2, 2, 2) = 2106 ⊗ +1053 ⊕ +1053�
Curve(interpolation)(2, 2, 2) = 595 ⊗ +315 ⊕ +273�
Curve(de Casteljau)(3, 3, 3) = 16128 ⊗ +8064 ⊕ +8064�
Curve(interpolation)(3, 3, 3) = 2620 ⊗ +1350 ⊕ +1260�
Patch(de Casteljau)(2, 2, 2) = 16848 ⊗ +8424 ⊕ +8424�
Patch(interpolation)(2, 2, 2) = 2968 ⊗ +1848 ⊕ +1092�
Patch(de Casteljau)(3, 3, 3) = 252000 ⊗ +126000 ⊕ +126000�
Patch(interpolation)(3, 3, 3) = 16885 ⊗ +9900 ⊕ +6930�

Table 1: Some examples of calculation comparisons of two methods in theory

We have implemented the proposed algorithm on an SGI Octane workstation. In each example from Figure 1
to Figure 6, Part(a) displays an object to be deformed, represented as triangular meshes. Part (b) gives the result
when FFD acts on the vertex of object. The B-spline control lattice is shown by points and dashed lines. Part (c)
shows the object after subdivision and re-triangulation. If the B-spline volume is identical with a Bézier volume,

3

no subdivision is performed. The parametric space of B-spline volume is described by dashed lines. Part (d) is the
accurate FFD result, where each mesh is a triangular Bézier surface patch. Time comparisons of implementations
are listed in table 2.

Figure Triangles Degree of B-spline Patch(sec): de Casteljau
interpolation Curve(sec): de Casteljau

interpolation

1 376 2 × 2 × 1 1.25sec/0.24sec = 5.21 0.57sec/0.16sec = 3.56
2 2910 2 × 2 × 2 25.36sec/3.25sec = 7.80 8.78sec/1.80sec = 4.88
3 1188 2 × 1 × 1 1.37sec/0.39sec = 3.51 0.84sec/0.30sec = 2.80
4 722 1 × 2 × 2 2.37sec/0.47sec = 5.04 1.10sec/0.30sec = 3.67
5 6558 2 × 2 × 2 57.43sec/7.35sec = 7.81 19.84sec/4.07sec = 3.56
6 1024 3 × 3 × 3 87.99sec/4.62sec = 19.04 15.81sec/1.79sec = 8.83

Table 2: Implementation time comparison

5 Conclusion

In this note, B-spline FFD is explored by means of polynomial interpolation. Both theoretical analysis and imple-
mentations show that the proposed method is faster than previous one[1].

References

[1] J. Feng, P. Heng et al., “Accurate B-spline Free-Form Deformation of Plygonal Objects”. Journal of Graph-
ics Tools, Vol.3, No.3, pp. 11-27, 1998.

Figure 1: The degree of the B-spline volume is 2×2×1, with 4×4×2 control points. Original object contains 200
triangles, after subdivision and re-triangulation it has 376 triangles.

4

Figure 2: The degree of the B-spline volume is 2×2×2, with 4×4×4 control points. Original object contains
1766 triangles, after subdivision and re-triangulation it has 2910 triangles.

Figure 3: The degree of the B-spline volume is 2×2×1, with 4×4×2 control points. Original object contains
1032 triangles, after subdivision and re-triangulation it has 1188 triangles.

Figure 4: The degree of the B-spline volume is 1×2×2, with 4×4×2 control points. Original object contains 214
triangles, after subdivision and re-triangulation it has 722 triangles.

5

Figure 5: The degree of the B-spline volume is 2×2×2, with 5×5×5 control points. Original object contains
3878 triangles, after subdivision and re-triangulation it has 6558 triangles.

Figure 6: The degree of the B-spline volume is 3×3×3, with 4×4×4 control points. Original object contains
1024 triangles.

6

