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Abstract Owing to the manifold harmonics analysis, a ro-
bust non-blind spectral watermarking algorithm for a two-
manifold mesh is presented, which can be confirmed by
a trusted third party. Derived from the Laplace–Beltrami op-
erator, a set of orthogonal manifold harmonics basis func-
tions is first adopted to span the spectral space of the under-
lying three-dimensional (3D) mesh. The minimal number of
the basis functions required in the proposed algorithm is also
determined, which can effectively accelerate the spectrum
computations. Then, to assert ownership and resist 3D mesh
forging, a digital signature algorithm is adopted to sign the
watermark in the embedding phase and to verify the signa-
ture in the extraction phase, which could optimize the ro-
bust non-blind spectral watermarking algorithm framework.
To improve the robustness of the embedded watermark sig-
nature, the input 3D mesh will be segmented into patches.
The watermark signature bits are embedded into the low-
frequency spectral coefficients of all patches repeatedly and
extracted with regard to the corresponding variations of their
coefficients. Extensive experimental results demonstrate the
efficiency, invisibility, and robustness of the proposed al-
gorithm. Compared with existing watermarking algorithms,
our algorithm exhibits better visual quality and is more ro-
bust to resist various geometric and connectivity attacks.
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1 Introduction

With the rapid development of acquisition facilities and pro-
cessing techniques, three-dimensional (3D) models nowa-
days are widely applied to digital entertainment, film and
television, 3D games, cultural heritage protection, etc.
Meanwhile, the unauthorized duplication, modification, and
spread of 3D models are becoming common. We are now
facing the problem of protecting the copyright of 3D mod-
els, which is also an important topic in computer graphics
and multimedia. In the cryptography field, digital signature
technique is adopted to assert message ownership [1]. How-
ever, because the 3D model representation is quite different
from the text document, it is not trivial work to extend the
digital signature technique to 3D model copyright protec-
tion [2]. Therefore, as an alternative solution, digital water-
marking techniques for 3D models based on the information
hiding theory are proposed accordingly, which provide an-
other effective means of copyright protection and ownership
assertion [3, 4].

Digital watermarking hides secret message (called wa-
termark) into a digital image, audio, video, or 3D model
for copyright protection and ownership assertion. Recently,
many watermarking algorithms have been proposed for 3D
meshes [3]. Due to their different purposes and applications,
watermarking algorithms can be classified into robust ones
and fragile ones. A robust watermarking algorithm is usu-
ally designed for ownership claim, whereas a fragile one is
designed for integrity verification [5–8]. According to their
different extraction strategies, watermarking algorithms can
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also be classified into non-blind ones and blind ones depend-
ing on whether they require the original 3D mesh or not.

However, there is still no standard benchmark to assess
different 3D mesh watermarking algorithms. For robust wa-
termarking algorithms, it is widely recognized that the fol-
lowing four aspects should be considered in general. Invisi-
bility: The embedded watermark should be almost invisible
and the visual quality of watermarked mesh should be al-
tered as little as possible; Robustness: Enough bits of the em-
bedded watermark can be extracted correctly after the mesh
undergoes geometric processing; Capacity: The amount of
embedded watermark should be large enough to introduce
cryptograph technique for enhancing its security; Computa-
tional efficiency: A large-scale 3D mesh can be watermarked
within a reasonable time.

In this paper, we proposed a robust non-blind confirmable
spectral watermarking algorithm for a two-manifold mesh
based on the manifold harmonics analysis, in which a digital
signature algorithm is introduced. The main contributions of
the proposed algorithm include the following:

– To assert ownership and resist 3D mesh forging, a digi-
tal signature algorithm is incorporated explicitly into both
the watermark embedding and extraction phases, which
could optimize the robust non-blind spectral watermark-
ing framework.

– Without sacrificing of visual quality and robustness of the
3D watermarked mesh, we give the theoretical analysis of
the minimal number of manifold harmonics basis func-
tions required in the proposed algorithm. This can greatly
facilitate the spectral analysis and watermark embedding
of a large-scale 3D mesh with millions of vertices.

– The watermark signature bits are embedded in an abso-
lutely embedding manner and extracted with regard to
the corresponding variations of their coefficients in the
proposed algorithm. Quite extensive experimental results
show that the proposed algorithm is robust and can resist
various geometric and connectivity attacks.

The remainder of the paper is organized as follows. Some
previous works are reviewed in Sect. 2. In Sect. 3, the mani-
fold harmonics analysis for 3D mesh is introduced briefly.
In Sect. 4, the proposed algorithm is described in detail
and automatic selection of the number of basis is given. In
Sect. 5, the implementation results and the detailed com-
parisons with existing watermarking algorithms are given.
Finally, conclusions are drawn and future research are indi-
cated in Sect. 6.

2 Previous works

After the first 3D mesh watermarking algorithm was pro-
posed by Ohbuchi et al. [9], various watermarking algo-
rithms have been proposed for 3D meshes. These algorithms

can be classified into spatial domain ones and spectral do-
main ones. A spatial domain algorithm embeds a watermark
into a mesh by modifying its geometry information or topol-
ogy connectivity information directly, such as vertex posi-
tion and connectivity [9–12], normals [13], and local mo-
ments [14]. The spatial domain algorithm is simple, efficient
and has high capacity. However, it is not robust enough to
resist various attacks, especially for mesh simplification.

A spectral domain algorithm embeds a watermark into its
low-frequency spectral coefficients of a 3D mesh. It exhibits
better robustness than the spatial domain algorithm in gen-
eral. Kanai et al. [15] proposed a blind watermarking algo-
rithm based on wavelet transform and multi-resolution rep-
resentation of 3D mesh. They modified the ratio of the norm
of wavelet coefficient vector to the length of its support edge,
which is invariant to the affine transformation. The water-
marked mesh can resist the attacks of affine transformation,
random noise, etc. However, the algorithm strictly requires
the underlying 3D mesh with one to four subdivision con-
nectivities. Praun et al. [16] presented a robust non-blind wa-
termarking algorithm via multi-resolution analysis. It works
for 3D meshes with arbitrary topology connectivity. Alter-
natively, Yin et al. [17] first performed a multi-resolution
decomposition of a 3D mesh and then embedded the water-
mark into the low resolution components, which correspond
to the global shape information.

Direct spectral analysis of a 3D mesh provides another
kind of spectral domain [18]. Based on the Laplace basis
functions, Ohbuchi et al. [19, 20] proposed a robust non-
blind spectral watermarking algorithm (abbreviated as LBFs
in our paper). They segmented a 3D mesh into patches and
embedded the watermark into the low-frequency spectral co-
efficients of each patch, which can resist a wide class of at-
tacks. However, because its basis functions correspond to
the eigenvectors of a combinational Laplacian matrix, the
visual quality of a watermarked mesh suffers from topology-
based basis functions, especially for a 3D mesh with non-
regular tessellation. The computational cost of the basis
functions is also expensive. Wu et al. [21] proposed a ro-
bust non-blind spectral watermarking algorithm based on
the radial basis functions (abbreviated as RBFs in our pa-
per). They adopted mesh reconstruction difference to im-
prove the visual quality of the watermarked mesh. Since
only a small number of radial basis functions are adopted
and the orthogonal basis functions are computed via singular
value decomposition of a small-scale matrix, the RBFs can
efficiently handle large-scale meshes even with more than
106 vertices. Despite the improvement in computational ef-
ficiency, the invisibility, capacity, and robustness are sacri-
ficed to some extent due to its watermark embedding man-
ner. Wang et al. [22] presented an improved 3D mesh water-
marking algorithm based on radial basis functions. With an
optimized center point set determination method and new
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watermark embedding manner, the algorithm improves the
visual quality of the watermarked mesh.

On the other hand, some interested blind spectral water-
marking algorithms have been proposed in recent years. Liu
et al. [23] presented a robust blind watermarking algorithm
for two-manifold meshes. They modified the low-frequency
amplitudes in an iterative embedding manner to embed the
watermark bits into the mesh. Wang et al. [24] also pro-
posed a blind watermarking algorithm using the manifold
harmonics analysis. They embedded a 16-bit watermark into
the amplitudes of the low-frequency coefficients using the
2-symbol scalar Costa scheme. The above two algorithms
can resist similarity transformation, random noise, simpli-
fication and smoothing attacks. However, they can not re-
sist cropping attacks or any combination attacks that include
cropping. Moreover, these two algorithms are of a low bit-
capacity, for example, only 5 bits in [23] and 16 bits in [24].
With the proposed segmentation method and the Laplace
basis functions, Luo et al. [25] proposed a relatively high
bit-capacity (64 bits) blind watermarking algorithm for 3D
mesh. However, since they compute all eigenvalues and the
eigenvectors of a Laplacian matrix for each patch, the com-
putational costs for their proposed algorithm are expensive.
Moreover, because each patch is embedded one watermark
bit for the highest robustness, its bit-capacity is still low and
it also can not resist cropping attacks.

The watermark extraction of blind spectral watermarking
algorithm is more convenient than that of the non-blind one.
In addition, the robustness is not affected by mesh align-
ment and re-sampling operations, which are essential for
the robust non-blind spectral watermarking algorithm. How-
ever, it is generally believed that the non-blind algorithm can
provide better robustness to various attacks than the blind
one [4, 14].

In this paper, we focus on the robust non-blind spectral
watermarking algorithm for a two-manifold mesh. Further-
more, the proposed algorithm is more suitable for the 3D
meshes in graphics applications than in CAD/ CAM appli-
cations, whereas the latter one requires more efforts on geo-
metric feature preservation.

3 Manifold harmonics analysis

Manifold harmonics basis functions are the eigenfunctions
of the following Laplace–Beltrami operator, which is an
extension of the classical Laplacian operator onto a two-
manifold M with a metric g.

ΔM = div · grad =
∑

i

1√|g|
∂

∂xi

√|g| ∂

∂xi

(1)

where |g| denotes the determinant of g. These eigenfunc-
tions are denoted as pairs {(λk,H

k)} that satisfy the follow-
ing manifold harmonics equation.

−ΔH = λH (2)

Vallet and Levy [26] employed the Finite Element
Method (FEM) to discretize the above eigenfunction prob-
lem for a two-manifold mesh. The harmonics equation (2)
can be re-written as the following generalized eigenvalue
problem.

−QH = λBH (3)

where

Qij =
{

(cotβij + cotβ ′
ij )/2 : edge(i, j)

−∑
j Qij : i = j

,

Bij =
{

(|t | + |t ′|)/12 : edge(i, j)

(
∑

t∈St(i) |t |)/6 : i = j
.

In the above equations, the |t | and |t ′| are the areas of trian-
gles t and t ′, respectively, which share the edge (i, j), and
Q is the stiffness matrix with cotangent weights. The βij

and β ′
ij are two angles corresponding to the edge (i, j) in

the triangles t and t ′, respectively. The term cotβ ′
ij = 0 if the

edge(i, j) is a boundary edge of the mesh. The St(i) denotes
a set of one-ring neighboring triangles around vertex i. By
lumping the mass matrix B , one can obtain a diagonal mass
matrix D, whose elements are

Dii =
∑

j

Bij =
(

∑

t∈St(i)

|t |
)

/3. (4)

If the matrix B in (3) is replaced with the diagonal matrix
D, then (3) can be reformulated as

−QH = λDH . (5)

By solving (5) for the leading m eigenvalues and their
eigenvectors, we can obtain a set of eigenpairs {(λk,H

k)}
(0 ≤ k ≤ m − 1) with λ0 = 0 ≤ λ1 · · · ≤ λm−1. We will
discuss how to determine the number “m” in Sect. 4.3. Fi-
nally, each vector H k is D-relative normalized as: H̄

k =
H k/

√
(H k)T DH k . The orthogonalized vectors {(λk, H̄

k
)|

0 ≤ k ≤ m − 1} are called the Manifold Harmonics Ba-
sis (MHB). With the help of publicly available libraries
APPACK [27] and TAUCS [28], a band-by-band spectrum
computing algorithm [26] is employed to compute the MHB
in our algorithm.

Let the original mesh have n vertices, then the Mani-
fold Harmonics Transformation (MHT) of a coordinate vec-
tor x = [x0, . . . , xn−1]T means the expansion of the vec-
tor x under MHB functions. The spectral coefficient vector
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Fig. 1 The framework of the proposed watermarking algorithm

x̃ = [x̃0, . . . , x̃m−1]T of x in the spectral space can be eval-
uated using the following formula [26].

x̃k = xT DH̄
k =

n−1∑

i=0

xiDiiH̄
k
i (6)

where 0 ≤ k ≤ m − 1. The ỹ and z̃ can be evaluated sim-
ilarly. The Inverse MHT (IMHT) means the reconstruction
of the vertex coordinate vector from its spectral coefficient
vector as follows [26].

x′
i =

m−1∑

k=0

x̃kH̄
k
i (7)

where 0 ≤ i ≤ n − 1. It is similar for the y and z coordinate
vectors.

Due to the truncation of MHB functions, the recon-
structed mesh via IMHT will suffer from the loss of the un-
derlying geometric information. To alleviate this deficiency,
we evaluate the reconstruction difference ΔM between the
original mesh M and the reconstructed mesh M ′ using the
following (8).

ΔM = M − M ′. (8)

The reconstruction difference ΔM is helpful to improve the
visual quality of watermarked mesh in the subsequent sec-
tions.

4 The robust non-blind confirmable watermarking
algorithm

4.1 Framework of the proposed algorithm

The framework of the proposed algorithm is illustrated in
Fig. 1. To resist cropping attack, a large mesh is first seg-
mented into several patches, which helps equilibrate the
MHB computational cost. For each patch, the manifold har-
monics analysis is performed to compute the leading m

MHB functions. The geometric information of each patch
can then be transformed from spatial domain to its spec-
tral domain via MHT. In the present work, the watermark
is signed by the Elliptic Curve Digital Signature Algorithm
(ECDSA) [29]. A signature S is generated with a private key,
and then a modified S is modulated with the low-frequency
spectral coefficients of each patch. Finally, a watermarked
mesh can be reconstructed via IMHT using modulated spec-
tral coefficients. Furthermore, the loss of geometry informa-
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tion in watermarked mesh can be compensated by adding
the reconstruction difference.

As a non-blind watermarking algorithm, the extraction
phase requires the test mesh, the original unwatermarked
mesh, MHB (optional), the patch information, and the pub-
lic key. The test mesh is first aligned with the original mesh
and then re-sampled according to the original mesh. Then
the MHT is applied to the re-sampled test mesh and the
original mesh, respectively, which will generate two spectral
coefficient vectors. The extracted signature is then obtained
by comparing the two coefficient vectors. Finally, after per-
forming the signature verification step with the public key,
we can draw the ownership assertion, i.e., true or false. The
details of these steps are illustrated in Fig. 1.

4.2 Watermark embedding

4.2.1 Mesh segmentation

As described in Sect. 3, the performance bottleneck in the
proposed algorithm is the eigenvalue-eigenvectors decom-
position, which is always expensive for a large-scale mesh.
To reduce the computational cost and to resist cropping at-
tacks, a large-scale mesh is segmented into several patches.
Meanwhile, considering the robustness and visual quality
of watermarked mesh, the watermark signature should be
spread to all patches uniformly. Due to the large-scale of the
underlying mesh which may be up to millions of vertices,
the speed of patch generation should be fast. Thus, we adopt
the MeTiS [30] to segment the mesh such that each patch
contains less than 30 k vertices. Naturally, the users can in-
teractively determine whether a small-scale mesh needs to
be segmented according to whether it can resist the cropping
attacks or not.

4.2.2 Signing watermark

In this step, the ECDSA is applied to the watermark W to
generate an l bits signature S. We will discuss how to deter-
mine the signature length “l” in Sect. 4.3. A digital signature
algorithm proves that a particular message, i.e., watermark
W , is valid. For the selection of hashing function which is
the indispensable component in ECDSA, the IEEE P1363
standard [31] suggests SHA-1 defined by NIST [32]. The
length of its input data should be no more than 264, while
the length of its output data is 160 bits. The signature algo-
rithm is briefly described as follows.

First, two integers a2 and a6 are selected interactively
to create an elliptic curve EC: y2 + xy = x3 + a2x

2 + a6,
which is defined on Galois Field GF(2l/2) [29, 33]. Let the
order d define as the number of points in an elliptic curve
group and A is the base point of order d on the curve EC.
The public key Ke is then determined as: Ke = kdA after
the mesh owner specifies private key kd .

Then a point R = (xR, yR) = rA is computed via a ran-
dom integer r (0 < r < d). The watermark hash is h =
SHA1(W). After the field element xR is converted to an in-
teger x̄R , the first signature component in ECDSA becomes
the modulus of x̄R with respect to the curve order d as

S0 = x̄R mod d. (9)

Here, the second component can be obtained via the follow-
ing formula:

S1 = r−1(h + kdS0) mod d. (10)

Finally, an l bits signature S = (S0, S1) can be obtained,
which is a 0 and 1 bit string.

4.2.3 Signature embedding

In this subsection, the signature S is embedded in the spec-
tral domain of the 3D mesh by slightly modifying the low-
frequency spectral coefficients. According to the spectral
analysis [20], the low-frequency components account for the
global shape information, while the high-frequency com-
ponents contribute to the local shape information. Thus,
a slight disturbance of the low-frequency spectral coeffi-
cients will not obviously introduce shape appearance dis-
tortion.

Assuming that the original mesh M is segmented into np

patches, the patch j (0 ≤ j ≤ np − 1) has a set of 3m spec-
tral coefficients {x̃j , ỹj , z̃j }. These coefficients are modu-
lated with S = (s0, s1, . . . , sl−1) under the chip rate c, the
modulation amplitude α, and the axis-aligned bounding box
size ϕj,x , ϕj,y , ϕj,z of the patch j .

To balance the spectrum energy of each patch, the signa-
ture S composed of {0,1} is converted to another bit string
S′ = (s′

0, s
′
1, . . . , s

′
l−1), where s′

i = −1 if si = 0; otherwise,
s′
i = 1. Then the S′ is duplicated c (chip rate) times to gen-

erate the final embedded signature as follows:

S′′ = (S′, S′, . . . , S′
︸ ︷︷ ︸

c

). (11)

Then we modulate the low-frequency spectral coeffi-
cients of each patch {(x̃j,k, ỹj,k, z̃j,k)|0 ≤ j ≤ np − 1,1 ≤
k ≤ m − 1} beginning from the second (k = 1) three coeffi-
cients. This is because the eigenvalue corresponding to the
first three coefficients is zero and its eigenvector is constant.
The duplicated signature S′′ = (s′′

0 , s′′
1 , . . . , s′′

lc−1) is embed-
ded into all patches repeatedly. The modulating formula are

⎧
⎪⎨

⎪⎩

x̃′
j,k = x̃j,k + αs′′

3(k−1)ϕj,x

ỹ′
j,k = ỹj,k + αs′′

3(k−1)+1ϕj,y

z̃′
j,k = z̃j,k + αs′′

3(k−1)+2ϕj,z

(12)
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for 1 ≤ k ≤ �lc/3�, and
⎧
⎪⎨

⎪⎩

x̃′
j,k = x̃j,k

ỹ′
j,k = ỹj,k

z̃′
j,k = z̃j,k

(13)

for k = 0 or �lc/3� + 1 ≤ k ≤ m − 1.

4.2.4 Watermarked mesh compensation

After the signature is embedded, the IMHT is performed to
generate the watermarked mesh via the modulated spectral
coefficients. To compensate for the loss of geometric infor-
mation of watermarked mesh M ′

S , the reconstruction differ-
ence ΔM , defined in (8), is added on the M ′

S . Finally, the
watermarked mesh MS becomes

MS = M ′
S + ΔM. (14)

4.3 Parameters discussion

The parameters in the proposed algorithm include patch in-
formation, digital signature parameters, and embedding pa-
rameters. Patch information includes the patch number np

and the patching topology. In our implementations, the patch
number is np = [n/30000] + 1, where n is the vertex num-
ber of the mesh. Digital signature parameters include the
length of Galois Field and the base point A in an elliptic
curve group. The length of Galois Field is 162 bits, which
is long enough for practical applications and the base point
A is generated in random with regard to the degree d [29].

Embedding parameters include the number of manifold
harmonics basis m, the signature length l, the modulation
amplitude α, and the chip rate c. Theoretically, the embed-
ding signature length l could be no more than 3(m − 1).
However, only low-frequency spectral coefficients are mod-
ulated with the signature for the sake of robustness. Mean-
while, the longer the embedded signature is, the more seri-
ous the distortion of watermarked mesh will be. Owing to
the 162-bith length of Galois Field in Sect. 4.2.2, the sig-
nature length l is adopted as 324 bits in our paper. In the-
ory, a large chip rate c can increase robustness in the case
of exact computation. Similarly, a large α helps extract the
signature and thus increase the robustness, but it tends to
introduce shape distortion. An example of different αs is
shown in Fig. 2. Therefore, we must trade off the robust-
ness and visual quality when choosing the parameters c and
α in practice.

Finally, we discuss the most important embedding pa-
rameter m, i.e., the number of MHB functions. Intuitively,
a large number m may be helpful to increase the robustness
and visual quality of watermarked mesh. However, accord-
ing to the following Theorem 1, the answer is negative.

Fig. 2 Watermarked eros (476 k vertices) using our algorithm with
different parameter αs. The distortion in (b) is more notable than that
in (c)

Theorem 1 Given the chip rate c and modulation amplitude
α, the watermark signature S = (s0, . . . , sl−1) is embedded
into the spectral coefficients {(x̃k, ỹk, z̃k)|1 ≤ k ≤ �lc/3�} by
using the embedding process in (12) and (13). Given two in-
tegers m1 = �lc/3� + 1 and m1 ≤ m2 ≤ n − 1, then the wa-
termarked meshes M

(m1)
S = M

(m2)
S , where M

(m1)
S and M

(m2)
S

are generated using MHB(m1) = {(λk, H̄
k,m1

)|0 ≤ k ≤
m1 − 1} and MHB(m2) = {(λk, H̄

k,m2
)|0 ≤ k ≤ m2 − 1},

respectively.

The proof of Theorem 1 is given in the Appendix. Ac-
cording to Theorem 1, if M

(m1)
S and M

(m2)
S undergo the same

attack, then their extraction signatures are the same. There-
fore, without sacrificing of the robustness and visual quality
of the 3D watermarked mesh, the minimal number of MHB
can be set as m = �lc/3� + 1, i.e., m = 325 in our paper.
Here a small number m will introduce shape distortion in the
reconstructed mesh. However, the distortion can be greatly
compensated by introducing the reconstruction difference as
described in Sect. 4.2.4. Thus, the computational costs for
the MHB are decreased efficiently in our algorithm.

4.4 Watermark extraction

The watermarked mesh MS may be distributed with licenses
and will undergo potential attacks. The extraction phase can
assert ownership of the test mesh MT . As a non-blind wa-
termarking algorithm, the extraction phase requires the test
mesh MT , original mesh M , MHB (optional), the patch in-
formation, and the public key. To extract the watermark sig-
nature from the test mesh MT and verify the signature, we
should recover an intermediate mesh according to the test
mesh using mesh alignment and re-sampling operations.

4.4.1 Mesh alignment and re-sampling

To resist simple but common similarity transformation at-
tacks, the test mesh MT should be first aligned with the orig-
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Fig. 3 Watermarked armadillo (173K) via a cropping attack (left)
and its re-sampled one (right). After mesh re-sampling, the cropping
boundary on the mesh is obvious in the model on the right (enclosed
by a red rectangle)

inal mesh M . The Iterated Closest Point (ICP) method [34],
i.e., a popular alignment technique, is adopted after an ap-
proximate transformation via coarse alignment is defined.
The coarse alignment requires at least three corresponding
point-pairs on the MT and original mesh M , which can
be specified interactively or generated automatically. For
the automatic correspondence, the 4-Points Congruent Sets
(4PCS) can be employed [35]. To speed up the ICP method,
we construct a kd-tree to facilitate the nearest point search-
ing.

After the test mesh MT is aligned with the original mesh
M , MT is re-sampled according to M such that the re-
sampled MT has the same topology as that of M . First,
the normal vector at each vertex of M is estimated as an
angle-weighted average of the neighboring triangle normals.
Then the re-sampled vertex on MT is defined as the intersec-
tion between the mesh MT and each normal vector of M . If
the distance between the re-sampled vertex on MT and the
corresponding vertex on M is greater than a user-defined
threshold or there is no intersection (in the case of crop-
ping attacks), the corresponding vertex on the original mesh
M will be adopted as the intersection. Thus, the alignment
and re-sampling steps can deal with cropping and connectiv-
ity attacks. An example of a cropped watermarked mesh is
shown in Fig. 3. The ray-triangle intersection is accelerated
using the Binary Space Partition (BSP) in our algorithm.

4.4.2 Signature extraction

After the alignment and re-sampling steps, the MHT step is
performed for each patch-pair of the original mesh M and
the re-sampled test mesh MT . Then we can obtain two sets
of 3m spectral coefficients {x̃j , ỹj , z̃j } and {x̃′

j , ỹ
′
j , z̃

′
j } for

patch-pair j . The parameter m is set as �lc/3� + 1 which is
discussed in Sect. 4.3.

Next, the signature bits are extracted with regard to the
corresponding variations of their coefficients. The summa-

tions of the coefficient variations for the signature bits s3k ,
s3k+1, s3k+2 (0 ≤ k ≤ �l/3� − 1) are defined as follows:
⎧
⎪⎪⎨

⎪⎪⎩

q3k = ∑np−1
j=0

∑c−1
i=0 (x̃′

j,k+1+il/3 − x̃j,k+1+il/3)

q3k+1 = ∑np−1
j=0

∑c−1
i=0 (ỹ′

j,k+1+il/3 − ỹj,k+1+il/3)

q3k+2 = ∑np−1
j=0

∑c−1
i=0 (z̃′

j,k+1+il/3 − z̃j,k+1+il/3).

(15)

Ideally, if there is no attack for the test mesh MT and no
numerical error in the computations, the above q3k , q3k+1,
q3k+2 should equal
⎧
⎨

⎩

q3k = cαϕxs3k

q3k+1 = cαϕys3k+1

q3k+2 = cαϕzs3k+2,

(16)

where 0 ≤ k ≤ �l/3� − 1 and ϕx = ∑np−1
j=0 ϕj,x , ϕy =

∑np−1
j=0 ϕj,y , ϕz = ∑np−1

j=0 ϕj,z. Since c, α, ϕx , ϕy , ϕz are
always positive, and s3k ∈ {−1,1}, thus the extracted signa-
ture bit e3k can be determined as

e3k =
{

1 : q3k ≥ 0
0 : q3k < 0

(17)

which is similar for e3k+1 and e3k+2.
To evaluate the robustness of watermarking algorithms,

the Extraction Rate (ER) between the watermark signa-
ture S = (s0, s1, . . . , sl−1) and the extracted signature E =
(E0,E1) = (e0, e1, . . . , el−1) is defined as

ER = 1

l

l−1∑

i=0

(ei = si). (18)

If each signature bit is extracted successfully, ER is 100%.

4.4.3 Signature verification

To verify the extraction signature E = (E0,E1) on the wa-
termark W , according to the IEEE P1363 standard [31], we
should compute three integers, t , t1, t2 after we obtain the
hash h = SHA1(W) as follows:

t = E−1
1 mod d

t1 = ht mod d

t2 = tE0 mod d

. (19)

Then a point R′ on the public elliptic curve EC (in
Sect. 4.2.2) is computed using t1, t2:

R′ = t1A + t2Ke. (20)

Finally, the x coordinate xR′ of R′ is converted to an inte-
ger x̄R′ . If the modulus of x̄R′ to the curve order d equals
the integer E0, then the extraction signature E = (E0,E1)

equals the embedded signature S = (S0, S1) and the result
of verification is true; otherwise, the result of verification is
false.
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5 Experimental results and discussion

Each watermark bit should be blindly embedded into several
spectral coefficients for the watermark extraction, hence, the
blind spectral watermarking algorithms [23–25] need more
spectral coefficients to embed the same length watermark
bits (such as 324 bits in our paper) than our algorithm. It
will be difficult to balance computational efficiency, visual
quality, and robustness. Thus, compared with the three algo-
rithms, our algorithm has advantages of computational ef-
ficiency, high bit-capacity, and well-balanced visual quality
and robustness, especially for the cropping attacks.

Therefore, we have implemented the proposed algorithm
(noted as MHBs) and the other two robust non-blind spectral
watermarking algorithms, i.e., LBFs [20] and RBFs [21],
for various scales of 3D meshes. We compare three algo-
rithms comprehensively in terms of their efficiency, visual
qualities, and robustness under various attacks. All of the
examples are implemented on a PC with Intel CPU i7 (920)
processor, 2.67 GHz, 4 G RAM, and Window 7 (64 bits).

According to the parameters discussion in Sect. 4.3, and
also for the sake of fair comparison, the embedding parame-
ters are set as follows: l = 324 for all algorithms; for LBFs:
α = 0.001, c = 1; for RBFs: α = 0.01, c = 1; for MHBs:
c = 3, and α = 5 × 10−6 for bunny model, α = 0.0002 for
teddy model, α = 0.001 for the other models. Note that the
chip rates c = 3 for MHBs and c = 1 for LBFs mean the
same length of embedded signature due to the different em-
bedding mechanism. For RBFs, if α < 0.01 or c > 1, the
robustness of the algorithm will worsen.

5.1 Security discussion

In the proposed algorithm, to assert ownership and resist 3D
mesh forging, the robust non-blind spectral watermarking
framework is optimized by introducing the ECDSA both in
the embedding phase and in the extraction phase. The pri-
vate key kd is uniquely held by the mesh owner, then only
the owner can embed the watermark W into the 3D mesh
validly. The trusted third party (confirmer) can then con-
firm with the mesh owner of watermarked mesh using the
owner’s public key Ke and watermark W . The signatures in
different watermarked meshes even via the same private key
may be different because of a random value r in signing the
watermark. Therefore, our algorithm can both assert owner-
ship and resist forging.

In the proposed algorithm, if ER is 100%, the signature
verification is true, and the ownership is claimed. This is the
strictest ownership assertion. Of course, we can define dif-
ferent security grades according to different ER values. For
example, if the ER is greater than a threshold (e.g., 56.1%,
it will be discussed in Sect. 5.5), we can also affirm that the
test mesh contains the originally embedded watermark sig-
nature.

Table 1 Runtime statistics of MHBs, where the number m of MHB
computed is 325. The table includes vertex number n, patch number
np , runtime for computing MHB (MHB), embedding runtime (Emb.)
and extraction runtime (Ext.)

Models n np MHB Emb. Ext.

bunny 35 k 1 31.331 s 0.140 s 1.341 s

teddy 46 k 1 42.021 s 0.218 s 1.132 s

Chinese lion 153 k 5 129.786 s 0.546 s 3.291 s

armadillo 173 k 6 149.170 s 0.577 s 4.164 s

eros 476 k 16 409.096 s 1.607 s 12.039 s

Asia dragon 1 M 33 845.477 s 2.978 s 23.034 s

Table 2 Runtime statistics for LBFs, which include patch number np ,
the number m of LBF computed, runtime for computing LBF (LBF),
embedding runtime (Emb.), and extraction runtime (Ext.)

Models np m LBF Emb. Ext.

bunny 1 5 k 6 m 19 s 1.576 s 3.480 s

teddy 1 3.5 k 7 m 19 s 4.290 s 1.430 s

Chinese lion 5 4 k 26 m 49 s 14.602 s 4.396 s

armadillo 6 4 k 30 m 16 s 16.567 s 5.347 s

eros 16 4 k 1 h 26 m 3 s 45.536 s 15.283 s

Asia dragon 33 4 k 2 h 53 m 39 s 102.779 s 30.932 s

5.2 Computational efficiency

Computational costs of the spectral algorithms are mainly
determined by the construction of spectral spaces. The com-
putational efficiency is largely improved because we give
a method to determine the minimal number of basis func-
tions without scarifying the visual quality and robustness
of the watermarked mesh. Table 1 shows the runtime statis-
tics of the proposed algorithm for various scale 3D meshes.
Compared with dominated runtime for computing MHB, the
runtimes for signing watermark and signature verification
can almost be neglected. Even for the mesh with over 1 M
vertices, the whole watermarking embedding runtime is less
than 15 minutes because only a minimal number of MHB
are computed under the same security conditions. In com-
parison, for the LBFs, it will take about 3 hours as shown in
Table 2. For the RBFs algorithm, it will take about 16 min-
utes for m = 108 (m = 325 in our algorithm) as shown in
Table 3. Thus, the proposed algorithm have the advantage
on computational efficiency compared with LBFs.

5.3 Visual quality comparison

Owing to the adoption of the manifold harmonics analy-
sis and the new watermark embedding manner, the loss of
visual quality of the watermarked mesh made by the pro-
posed algorithm is decreased. The geometry disturbance or
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Table 3 Runtime statistics for RBFs, where the number m of radial
basis functions computed is 108 and patch number np = 1. The ta-
ble includes runtime for computing RBF (RBF), embedding runtime
(Emb.) and extraction runtime (Ext.). “*” means the out-of-core ap-
proach is adopted to compute RBF for the large-scale of mesh

Models n RBF Emb. Ext.

bunny 35 k 1.482 s 0.031 s 1.011 s

teddy 46 k 1.966 s 0.063 s 1.102 s

Chinese lion 153 k 6.614 s 0.172 s 3.229 s

armadillo 173 k 7.504 s 0.156 s 4.053 s

eros 476 k 19.513 s 0.430 s 11.873 s

Asia dragon 1 M 949.330 s(∗) 4.568 s 22.973 s

shape distortion in the watermarked mesh compared with the
original mesh is an important factor to assess a mesh wa-
termarking algorithm. To evaluate the small difference be-
tween two meshes, there are two criteria: subjective and ob-
jective. The subjective criterion is related to psychology and
cognition of human being. Some interesting objective meth-
ods for watermarked mesh quality assessment are proposed,
such as Hausdorff metric [36, 37], surface roughness met-
ric [38], structural similarity metric [39] and Shape-DNA
metric [40]. Due to space constraints, we will access the vi-
sual qualities of the watermarked meshes generated by dif-
ferent algorithms in terms of visual appearance, Hausdorff
metric, and Shape-DNA metric.

The root mean square error of the forward Hausdorff dis-
tance between two meshes MS and M is defined as [37]

drmse(MS,M) =
√

1

|MS |
∫ ∫

p∈MS

d(p,M)2 dMS (21)

where |MS | denotes the area of MS , and d(p,M) is the min-
imum Euclidean distance from a sampling point p on MS to
M . The sampling interval is 0.05% of the major bounding
box diagonal length of MS in our paper. The detailed statis-
tics of drmse between the mesh and the watermarked meshes
via LBFs, RBFs, and MHBs can be found in Table 4.

Reuter et al. [40] proposed a method to measure simi-
larity between two meshes by taking the eigenvalues of its
Laplace–Beltrami operator into account. Let M be a two-
manifold mesh with a metric g. The spectrum of (M ,g) is

spec(M,g) = {λ0 ≤ λ1 ≤ · · ·}, (22)

where λi is the eigenvalue of (3). The cropped spectrum con-
tains only the leading m + 1 eigenvalues

cspecm(M,g) = {λ0 ≤ λ1 ≤ · · · ≤ λm} (23)

which is called Shape-DNA of (M ,g). Let λ =
(λ1, λ2, . . . , λm) and λ(S) = (λ

(S)
1 , λ

(S)
2 , . . . , λ

(S)
m ) are two

Fig. 4 Watermarked teddy (46 k vertices). (a) is the original mesh,
(b)–(d) are watermarked meshes using LBFs with α = 0.001, RBFs
with α = 0.01, and MHBs with α = 0.0002, respectively and their
robustness values can be found in Table 4. (e) is the reconstructed
mesh using LBF with m = 3500. The d2,50 for (b)–(d) are: 4.131043,
0.616213, and 0.238395. (f)–(h) are the mesh difference color maps
(blue minimum and red maximum) of (b)–(d), which are coded ac-
cording to relative distances between the watermarked ones and origi-
nal ones

m-dimensional normalized Shape-DNAs for M and MS , re-
spectively, where λi and λ

(S)
i are normalized by dividing

their first non-zero eigenvalue. To evaluate the shape sim-
ilarity between the original mesh M and its watermarked
mesh MS , the similarity metric between two meshes can be
defined as

dp,m(MS,M) =
(

m∑

i=1

(λ
(S)
i − λi)

p

)1/p

. (24)

Using the Euclidean distance d2,50 of the normalized lead-
ing 50-dimensional vectors of eigenvalues, we can assess the
geometry loss in the watermarked mesh. The detailed statis-
tics of d2,50 between the mesh and the watermarked meshes
via LBFs, RBFs, and MHBs can be found in Table 4.

The visual appearance comparison between the mesh and
the watermarked meshes via LBFs, RBFs, and MHBs can
be found in Figs. 4 and 5. Figure 4 shows the visual quality
comparison of the teddy watermarked using LBFs, RBFs,
and MHBs. According to Fig. 4(b), Fig. 4(e), and Fig. 4(f),
we can observe that the mesh watermarked using LBFs tends
to be distorted because the teddy mesh contains slim trian-
gles on the chest, as shown in Fig. 8(a). As we know, the
LBF depend only on mesh connectivity while the water-
marked meshes using RBFs and MHBs are slightly affected
by the mesh irregularity, as shown in Fig. 4(c) and Fig. 4(d).
The geometry difference color maps in Fig. 4(f)–4(h) also
prove that the proposed algorithm can achieve satisfactory
visual quality for the watermarked mesh. A similar conclu-
sion can be drawn from a segmented mesh model in Fig. 5.
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Table 4 Robustness comparisons, i.e., ER (%) under different attacks,
where “ST” means similarity transformations, “LS5” means Lapla-
cian smoothing for five steps, “TS” means Taubin smoothing, “Loop”

means Loop subdivision for one time. Note that original mesh is used
for the mesh alignment and re-sampling steps in LBFs and MHBs
while watermarked mesh is used in RBFs

Models Types drmse d2,50 ST noise smoothing re-meshing Loop simplification

0.5% 0.1% LS5 TS 50% 10% 5% 1%

bunny RBFs .282 .422 100 67.59 80.56 54.94 76.54 56.79 57.41 75.93 65.43 58.02 55.25

LBFs .030 .457 100 71.60 99.69 60.19 99.69 92.28 59.88 95.68 84.57 73.46 56.79

MHBs .020 .167 100 99.69 100 74.07 100 87.96 62.65 91.67 81.79 75.31 51.23

teddy RBFs .338 .616 100 65.12 75.00 55.86 73.15 68.83 62.35 73.15 63.27 62.35 52.78

LBFs .050 4.131 100 72.53 99.69 62.96 88.89 88.27 81.17 88.27 87.04 82.10 56.48

MHBs .038 .238 100 99.69 100 65.74 84.57 89.20 78.74 90.74 90.74 89.20 71.60

Chinese RBFs 2.822 1.941 100 71.91 88.89 59.88 87.35 79.94 63.58 96.30 81.17 76.54 62.04

lion LBFs .014 .231 100 89.81 100 82.10 100 99.38 72.22 100 96.91 87.96 56.79

MHBs .008 .025 100 95.99 100 86.73 100 98.77 74.38 100 96.60 89.81 57.72

armad- RBFs .146 2.143 100 62.04 74.38 59.26 90.43 78.09 65.43 89.20 74.69 70.99 58.64

illo LBFs .012 .336 100 78.09 100 72.84 100 98.46 76.23 99.69 97.22 89.20 58.33

MHBs .006 .074 100 95.06 100 94.14 100 99.69 80.56 100 98.15 93.21 58.64

eros RBFs 1.781 1.994 100 76.30 86.73 72.84 78.09 81.79 67.90 94.75 87.65 81.79 70.68

LBFs .008 .339 100 94.44 100 98.46 100 100 97.84 100 100 100 70.99

MHBs .006 .021 100 98.15 100 96.30 100 100 92.90 100 100 100 92.28

Asia RBFs .121 2.348 100 67.90 85.19 73.77 95.99 89.20 78.40 96.60 93.21 87.04 72.22

dragon LBFs .164 1.078 100 76.23 100 99.38 100 100 85.19 100 100 95.37 61.42

MHBs .006 .293 100 99.38 100 100 100 100 100 100 100 100 99.07

Fig. 5 Watermarked Chinese lion. (a) is the original segmented model
with 153 k vertices and five patches. (b)–(d) are watermarked meshes
using LBFs with α = 0.001, RBFs with α = 0.01 and MHBs with
α = 0.001 respectively. The d2,50 for (b)–(d) are: 1.941285, 0.230947,
0.025299, respectively. The color maps in (b)–(d) are coded according
to relative distances between original ones and watermarked ones

5.4 Robustness comparison

The proposed algorithm can achieve better robustness than
LBFs and RBFs because the watermark signature bits gener-
ated by ECDSA are embedded into the low-frequency spec-
tral coefficients of all patches repeatedly and extracted with
regard to the corresponding variations of their coefficients.
We compare the robustness of our algorithm with the two
algorithms for different scale meshes under various attacks,
such as similarity transformations, random noise, smooth-
ing, loop subdivision, simplification, re-meshing, cropping,
and their combinations.

In our implementations, mesh simplification attacks are
performed using the quadric error metrics approach [41].
The Laplacian smoothing, Taubin smoothing, Loop subdi-
vision, and mesh cropping operations are performed using
MeshLab [42]. The re-meshing operation is performed by
RapidForm 2006 [43].

From Table 4, our algorithm is more robust under vari-
ous attacks than the LBFs and RBFs in general. Occasion-
ally, our algorithm is not as robust as the LBFs under the
smoothing, re-meshing, Loop subdivision, and simplifica-
tion attacks. However, their ERs are so similar that we can
claim the mesh ownership.

Figure 6 shows the watermarked armadillo meshes at-
tacked by different level simplifications. Figure 7 shows the
partial watermarked Asia dragon meshes attacked by ran-
dom noises. Figure 8 shows the re-meshed watermarked
teddy meshes. Figure 9 shows the watermarked bunny
meshes attacked by the Taubin and Laplacian smoothing
operations. All of the ERs in these figures can be found in
Table 4.

Table 5 is the statistics of robustness of three algorithms
under the combination attacks. Figure 10 shows some at-
tacked examples by cropping or combination operations.
Thanks to the mesh segmentation, the watermarked mesh
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Fig. 6 The watermarked armadillo mesh (173 k vertices) is attacked
by mesh simplification with different levels. The ERs of (c)–(f) are
100%, 98.15%, 93.21%, and 58.64%, respectively

Fig. 7 Partial watermarked Asia dragon mesh (1 M vertices) attacked
by random noises. The ERs of (b) and (c) are 100% and 99.38%, re-
spectively

Fig. 8 Watermarked teddy (46 k vertices) attacked by re-meshing. The
ER of (c) is 89.20%

can resist the cropping attacks well provided there is one
patch not cropped.

In summary, our algorithm exhibits good robustness un-
der various attacks. However, it can not resist global mesh
deformation attacks because the mesh alignment and re-
sampling do not work in that case. This issue will be the
focus in future research.

Fig. 9 The watermarked bunny (35 k vertices) attacked by Taubin and
Laplacian smoothing operations for five steps. The ERs of (c) and (d)
are 100% and 74.07%, respectively

Fig. 10 Combination attacks for watermarked eros (476 k vertices)
and watermarked Asia dragon (1 M vertices) made by MHBs. (a) 255 k
vertices, (d) 371 k vertices. The ERs of (a)–(f) are 100%, 100%,
63.58%, 100%, 100%, and 63.27%

5.5 ROC curve

The false positive rate is acceptable because we adopt the
original unwatermarked mesh, not the watermarked mesh
which is adopted in RBFs for the mesh alignment and re-
sampling operations in watermark extraction. A false posi-
tive occurs when a watermark extractor indicates the pres-
ence of a watermark in an unwatermarked mesh. To assess
the fidelity and determine the appropriate threshold of the
proposed algorithm (i.e., MHBs), we have shown our ex-
perimental results by distributions histogram and Receiver
Operating Characteristic (ROC) curve in Fig. 11. An ROC
curve is a parametric curve that plots the false positive rate
(the x-axis) against the false negative rate (the y-axis) of
extraction rate as a function of the threshold [4]. To plot dis-
tributions of extraction rates and draw the ROC curve, the
extractor of MHBs was applied to 74 watermarked meshes
and 74 unwatermarked meshes to undertake the attacks in
Table 4 and Table 5, respectively. From Fig. 11(a), we can
see that there is a very small overlap of distributions and the
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Fig. 11 Distributions histogram
and ROC curve. (a) shows the
distributions of extraction rates
for the unwatermarked meshes
(dashed blue line) and MHBs
watermarked meshes (solid
green line). (b) shows the ROC
curve in which the x-axis is
plotted in logarithmic scale

Table 5 Robustness comparisons, i.e., ER (%) under combination at-
tacks, where “crop.” means mesh cropping, “0.1 sim.” and “0.3 sim.”
mean 10% and 30% mesh simplification, respectively, “LS” means
Laplacian smoothing for three steps, and “Loop” means Loop subdi-
vision. Note that original mesh is used for the mesh alignment and
re-sampling steps in LBFs and MHBs while watermarked mesh is used
in RBFs

Models Types crop.
+0.1 sim.

0.3 sim.
+Loop

crop.
+0.1 sim.
+Loop

0.3 sim.
+Loop
+LS

eros RBFs 53.09 66.67 54.32 63.58

LBFs 99.69 84.88 52.78 62.65

MHBs 100 87.35 63.58 65.74

Asia RBFs 51.85 62.35 53.09 57.72

dra. LBFs 92.59 66.98 57.41 59.57

MHBs 100 95.99 63.27 80.56

appropriate threshold can be chosen as 56.1%. Figure 11(b)
shows the ROC curve in which the x-axis is plotted in log-
arithmic scale. Therefore, Fig. 11 shows that the proposed
algorithm has a good performance.

6 Conclusions and future work

In this paper,we proposed a robust non-blind confirmable
spectral watermarking algorithm of two-manifold mesh by
combining manifold harmonics basis and elliptic curve dig-
ital signature algorithm. Meanwhile, because only a mini-
mal number of MHB functions for watermark embedding
is computed, our algorithm can watermark a large-scale 3D
mesh with millions of vertices. To compensate for the shape
distortion introduced by the truncation of frequency spec-
trum, the reconstruction difference is added to the water-
marked mesh. To improve the robustness, the signature bits
are embedded into all segmented patches in an absolute em-
bedding manner and extracted according to the correspond-
ing variations of their coefficients. Through detailed com-
parisons among LBFs, RBFs, and the proposed algorithm
for different scale meshes, the proposed algorithm is shown
to have better visual quality and robustness. The LBFs and
RBFs algorithms can also be improved by fully adopting our
framework.

In the future, we will investigate how to resist global
mesh deformation attacks in our watermarking framework.
It is also interesting to extend our work to the watermark-
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ing algorithm for CAD models and the blind watermarking
algorithm for 3D meshes.

Acknowledgements This work is supported by the National Nat-
ural Science Foundation of China under Grant Nos. 60933007 and
60736019, the 973 program of China under Grant No. 2009CB-
320801, the Program for New Century Excellent Talents in Univer-
sity under Grant No. NCET-10-0728, and the Natural Science Foun-
dation of Zhejiang Province under Grant No. Y1100837. We wish to
thank Sivan Toledo for providing us the latest TAUCS package. The
3D models are courtesy of the Aim@Shape Shape repository and the
Stanford 3D scanning repository.

Appendix: Proof of Theorem 1

Proof For 0 ≤ k ≤ m1 − 1, the corresponding eigenvalues
are equal in MHB(m1) and MHB(m2), and then

H̄
k,m1 = H̄

k,m2
. (25)

Take x̃ component in spectral space as the example, and
let x̃

(m1)
k and x̃

(m2)
k be the spectral coefficients of the mesh

transformed by MHB(m1) and MHB(m2), respectively.
Then

Δx
(m1)
i =

∞∑

k=0

x̃
(m1)
k H̄

k,m1
i −

m1−1∑

k=0

x̃
(m1)
k H̄

k,m1
i

=
∞∑

k=m1

x̃
(m1)
k H̄

k,m1
i

Δx
(m2)
i =

∞∑

k=0

x̃
(m2)
k H̄

k,m2
i −

m2−1∑

k=0

x̃
(m2)
k H̄

k,m2
i

=
∞∑

k=m2

x̃
(m2)
k H̄

k,m2
i .

After the embedding process using (12) and (13), we have

x
(m1)
i = x̃

(m1)
0 H̄

0,m1
i +

m1−1∑

k=1

(x̃
(m1)
k + αs′′

3(k−1)ϕx)H̄
k,m1
i

+Δx
(m1)
i .

By induction,

x
(m1)
i = xi + αϕx

m1−1∑

k=1

s′′
3(k−1)H̄

k,m1
i . (26)

For the same reason, then,

x
(m2)
i = xi + αϕx

m1−1∑

k=1

s′′
3(k−1)H̄

k,m2
i . (27)

According to (25), we have x
(m1)
i = x

(m2)
i (0 ≤ i ≤ n − 1).

It is the same for the y and z coordinate vectors. Thus,
M

(m1)
S = M

(m2)
S . �
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