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Abstract:    Segmenting a complex 3D surface model into some visually meaningful sub-parts is one of the fundamental problems 
in digital geometry processing. In this paper, a novel segmentation approach of point-sampled surfaces is proposed, which is based 
on the level set evolution scheme. To segment the model so as to align the patch boundaries with high curvature zones, the driven 
speed function for the zero level set inside narrow band is defined by the extended curvature field, which approaches zero speed as 
the propagating front approaches high curvature zone. The effectiveness of the proposed approach is demonstrated by our 
experimental results.  Furthermore, two applications of model segmentation are illustrated, such as piecewise parameterization and 
local editing for point-sampled geometry. 
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INTRODUCTION 
 

With the rapid development of 3D digital 
photographic and scanning devices, large-scale 
point-sampled surfaces are now becoming substantial 
increased and popular in computer graphics. Many 
researcher efforts were dedicated to the investigation 
of surface reconstruction, efficient processing and 
modelling, and rendering for point-sampled geometry 
(Alexa et al., 2001, 2003; Adamson and Alexa, 2003, 
2006a, 2006b; Amenta and Kil, 2004; Fleishman et 
al., 2005; Kobbelt et al., 2004; Liu et al., 2006; Pauly 
et al., 2002, 2003, 2006; Zwicker et al., 2002, 2004). 
For 3D surface model, extracting distinct features is 
crucial for several applications like shape recognition 
and matching (Mangan and Whitaker, 1999; Page et 
al. 2003; Liu and Zhang, 2004), texture mapping 
(Levy et al., 2002), surface parameterization 
(Yamauchi et al., 2005b),  metamorphosis (Shlafman 
et al., 2002), shape modelling and editing 
(Funkhouser et al., 2004), etc. Model features can be 
regarded as its distinct sub-parts that can characterize 
the model, such as, tail of a bunny, eyes of a dinosaur, 
etc. In computer graphics, part-type model 
segmentation always refers to the partitioning of a 

given model (a complex mesh or point-sampled 
geometry) into distinct meaningful sub-parts 
according to its geometric features (Shamir, 2004). 
Unfortunately, current approaches to part-type model 
segmentation typically assume the surface model to 
be represented by mesh (Mangan and Whitaker, 1999; 
Katz and Tal, 2003; Page et al., 2003; Shamir, 2004; 
Liu and Zhang, 2004; Yamauchi et al., 2005a, 2005b; 
Katz et al., 2005; Attene et al., 2006). It is necessary 
to develop new technique for partitioning a given 
point-sampled geometry into different components 
without explicit construction of triangle mesh. 

In this paper, based on the level set evolution 
scheme, a novel segmentation approach for 
point-sampled geometry is proposed. In order to 
segment the given model along high curvature zones, 
driven speed function for the level set evolution is 
defined by the extended curvature field, which 
approaches zero speed as the propagating front 
approaches high curvature zone. As a result, our 
approach can decompose the point-sampled model 
into meaningful components. The contributions of 
this paper include: 

 segmentation of point-sampled surfaces directly  
without explicit construction of mesh; 

 estimation of local surface differentials for 
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sample points by projection method; 
 evolution of propagating front on the narrow 
band of manifold; 
 illustration of two direct applications for model    
segmentation. 
The rest of this paper is organized as follows. 

The related works about model segmentation are 
briefly reviewed in Section 2, and some preliminary 
knowledge about the level set method is given in 
Section 3. In Section 4, an overview of our 
segmentation approach is described. Section 5 
describes the details of evolving the propagating 
fronts under the extensive curvature field. Section 6 
shows some experimental results. Two applications 
of our approach are illustrated in Section 7. Finally, 
Section 8 summarizes our method, and discusses 
some directions for further research. 
 
 
RELATED WORK 
 

Recently, various approaches for model 
segmentation have been used successfully in digital 
geometry processing, such as clustering methods, 
region-growing methods, watershed segmentation, 
geometric snake, etc. However, these approaches 
always assume that the model is provided explicitly 
via triangle mesh. 

One automatic mesh segmentation approach is to 
partition the polygonal mesh into a set of face clusters 
by greedy face clustering (Garland et al., 2001). 
Extending the idea of Garland et al.’s plane fitting for 
each cluster, Attene et al. (2006) segmented the mesh 
hierarchically into some patches that best fit a 
pre-defined set of primitives, such as planes, spheres, 
and cylinders, etc. Using spectral analysis for the 
affinity matrix, Liu and Zhang (2004) applied spectral 
clustering to 3D mesh segmentation, which can 
partition given mesh along concave regions. Inspired 
by Lloyd’s Max quantization method, Shlafman et al. 
(2002) proposed a K-means based clustering 
algorithm to decompose mesh into some meaningful 
components. The decomposition is based on the 
dihedral angle and the ‘physical’ distance between the 
faces. Katz and Tal (2003) decomposed a mesh 
hierarchically using fuzzy clustering approach based 
on geodesic distance and angular distance of the dual 
graph of the surface mesh. Based on the extraction of 
prominent feature point and core component of the 
mesh, Katz et al. (2005) proposed a hierarchical 
segmentation algorithm for generating segmentation 
that are insensitive to pose and proportions. 
Yamauchi et al. (2005a) presented a mean shift 

clustering scheme for clustering mesh normal and 
achieved feature sensitive segmentation result. 

Region-growing is another mesh segmentation 
approach, which is closely related with clustering 
scheme. The generated charts are growing so as to 
align chart boundaries with high curvature feature 
zones (Levy et al., 2002). Aiming at producing charts 
that can be flattened efficiently for low distortion 
parameterization, Yamauchi et al. (2005b) proposed a 
segmentation method based on integrated Gaussian 
curvature. The segmentation approach evenly 
distributes Gaussian curvature over the charts and 
generates close to developable surface charts. 

Inspired by image processing, watershed-based 
scheme can divide a model into sub-parts. The earlier 
watershed segmentation by Mangan and Whitaker 
(1999) favored partition boundaries along high 
curvature regions and did not single out concavity. 
Page et al. (2003) proposed a fast marching 
watersheds algorithm where the height map used for 
their watershed algorithm impeded climbing up 
negative principal curvature hills, honoring the 
minima rule. 

As an extension of the active contour model  
(Kass et al., 1988) for image snake, Yunjin Lee and 
Seungyong Lee (2002) proposed the geometric snake 
as an interactive tool for feature detection and 
segmentation on a triangular mesh, which slithers 
from the user-specified initial position to a nearby 
feature while minimizing an energy functional. 

These segmentation approaches for surface 
meshes always depend heavily upon the globally 
consistent connectivity information between sampled 
vertices (Garland et al., 2001; Yunjin Lee and 
Seungyong Lee, 2002; Katz and Tal, 2003; Page et al., 
2003; Liu and Zhang, 2004; Katz et al., 2005; Attene 
et al., 2006), the related angle measurements and the 
area measurements for the triangle faces (Yamauchi 
et al., 2005a, 2005b). However, point-based 
representation of 3D geometry can be regarded as a 
discrete sampling of a continuous surface and is a 
valuable alternative representation of surface meshes 
for several special applications. Due to lack of 
topological information, it is difficult to segment 
point-sampled geometry efficiently and robustly 
using the above mesh-based approaches. Although 
topological information may be maintained by a 
graph which connects each sample point to its nearest 
neighbors (Zwicke et al., 2002; Kobbelt et al., 2004; 
Zwicker  and  Gotsman, 2004), the highly complex 
connectivity information for the large numbers of 
sample points leads to an inefficient or time- 
consuming segmentation procedure. 
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As far as the authors know, work on 
segmentation of point-sampled surfaces directly is 
rare. One exception is the recent work of Yamazaki et 
al. (2006). Without explicit construction of a mesh, 
they introduced a technique for segmenting a 
point-sampled surface into distinct features through a 
three-phase process. Under their topological 
definition of features, the input surface can be 
coarsened as super-nodes. In order to partition the 
given point set, their method bisects the set of 
super-nodes by graph cut technique. Repeated 
application of the bisection procedure results in a 
hierarchical segmentation of the input point set. 
However, as they mentioned, their method can result 
in some artifacts due to their feature definition. 
 
 
THEORETICAL BACKGROUND  
 

Image segmentation is one of the fundamental 
problems in computer vision and medical image 
processing, i.e. decomposing a 2D image into 
sub-parts or sub-structures according to its visual 
features. Kass et al.(1988) proposed an active contour 
model namely Snake. A snake is represented as a 
parametric curve in an image and its final position can 
be obtained through an energy minimization 
procedure. The snake model can semi-automatically 
detect image features. Recently, image segmentation 
based on level set involves solving active contours 
minimization problem by computing geodesics or 
minimal distance curves (Xu et al., 2004). In the level 
set scheme, a curve is embedded as a zero level set of 
a higher dimensional field. The entire field is evolved 
till minimizing a metric defined by the curvature and 
image gradient (Leventon et al., 2000). 

The level set method was first proposed by 
Osher and Sethian(1988). It describes the propagating 
fronts by a PDE (Malladi et al., 1995; Museth et al., 
2002), and it can solve the topological change of the 
interface robustly. Some numerical methods proposed 
to accelerate the solution (Sethian, 1999), such as 
narrow band method, fast marching method, higher 
order difference schemes. Now, the level set method 
has been successfully applied to image processing, 
computer vision and computer graphics (Osher and 
Fedkiw, 2002), etc. 

The level set method constructs a higher 
dimensional field function, and embeds the 
propagating front as the zero iso-surface of the field 
function. The front is evolved by solving a PDE on a 
regular sampling of the field function (Osher and 
Sethian, 1988). In general, the propagating front 

moves with a specified speed function along its 
normal direction. 

Let Γ(0) be an initial close 2-dimensional 
propagating front (interface surface) in Euclidean 
space R3, and Γ(t) be interface surface at time t which 
results from Γ(0) moving along its normal direction 
with a speed function F. Let Ω be the spatial region 
which Γ encloses. To solve the interface evolution 
robustly, the Γ(t) is embedded into a signed distance 
function Φ(X,t), which is minus/positive when a point 
is inside/outside the spatial region Ω(t). 

The level set method takes the interface Γ(t) as 
the zero level set of Φ(X,t), that is 

3( ) { ( , ) 0}t X R X tΓ Φ= ∈ =  
The problem of propagating the interface is 
equivalent to updating the signed distance function. 
Let X(t) be the particle trajectory on the interface Γ(t), 
which moves with the velocity F = dX(t)/dt. From the 
definition of zero level set, we have Φ(X(t),t)=0. By 
differentiating it with respect to t, then we get: 

0tΦ + ∇Φ =F  
By projecting the velocity vector F on the normal 
direction of the interface = ∇Φ ∇Φn , we can get 

the normal velocity to the interface Fn=F⋅n. The 
evolution equation for the interface may be 
represented as the following initial value problem: 

Hamilton-Jacobi :
0

( ,0)
t nF
X given

⎧Φ + ∇Φ =⎪
⎨
Φ =⎪⎩

 

It is also named as Hamilton-Jacobi equation. 
 
 
OVERVIEW OF OUR SEGMENTATION 
ALGORITHM 
 

Our proposed segmentation approach based on 
the level set method is described as follows. 

1) At the preprocessing step, the local surface 
differential property at each sample point of the 
model is estimated by the projection method for 
adaptive neighboring points (Section 5.1). 

2) A 3D uniform voxel grid is constructed in the 
object space. 

3) The initial seed points on the 3D model are 
interactively specified. Then the corresponding initial 
propagating fronts (interface surfaces) and initial 
partitions are generated. 

4) In order to compute the level set evolution 
efficiently, a narrow band along the interface is 
defined and the signed distance function is evaluated 
only within the narrow band (Section 5.2). 
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5) The level set Φ(X) is updated within the 
narrow band according to the level set equation by 
using the up-wind scheme, where the evolution is 
driven by the speed function F (Section 5.3). 

6) Extracting the interface surface at the zero 
level set of the signed distance function within the 
narrow band. 

7) Update the partition of point-sampled 
geometry, which is ( ) { ( , ) 0}B t X X t S= Φ ≤ ∩ , 
and go back to step 4 for constructing a new narrow 
band according to the new interface and evolving the 
level set repeatedly (Section 5.4), until the interface 
evolution is stop, i.e., the final segmentation is 
obtained. 
 
 
LEVEL SET BASED POINT-SAMPLED 
SEGMENTATION 
 
Estimating differential property by the projection 
method 

The local differential properties of the 
point-sampled geometry, such as surface normal n, 
principal directions e1, e2, principal curvatures k1, k2, 
etc., are estimated according to local neighborhood of 
the sample point (Pauly et al., 2002). For the 
efficiency consideration, the neighbor size for the 
sample point p is determined adaptively, so that the 
local sampling density ρ=k/r2

 a constant, where r is 
the radius of the enclosing sphere of k-nearest 
neighbors of the sample point p. The local surface 
differentials at the sample point can be estimated by 
the projection method. 

The projection method is based on the classical 
differential geometry (Do Carmo, 1976). The 
algorithm of estimating the surface differentials at 
regular surface point can be obtained according to 
their definitions and the following fact (Jia et al., 
2006). 

In the tangent plane Пp at sample point p, it is 
supposed that the angle from a chosen tangent 
direction Tα  to the principal direction e1 is θ and the 
angle from Tα to Tβ 

and Tγ are θ1 and θ2, respectively 
(see Fig.1(a)). 

 
                    (a)                                                (b) 
Fig.1  (a) Analysis principal directions and principal 
curvatures in the tangent plane; (b) Covariance analysis. 

The normal curvatures for directions Tα, Tβ and 
Tγ can be expressed in terms of the two principal 
curvatures, respectively: 

      

2 2
1 2

2 2
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2 2
1 2 2 2
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Thus, the relation between angles of tangent direction 
and the corresponding normal curvatures can be 
deduced. 
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So, according to the three normal curvatures kα , kβ , kγ for three sampled directions and corresponding θ1, θ2, 
the angle θ and the principal directions can be 
determined from equation (2). Furthermore, 
substituting θ and θ1, θ2 into the linear system (1), the 
principal curvatures k1 and k2 can be calculated easily. 

Our projection method for estimating surface 
differentials can be performed as follows: 
Step1. For each regular point p, neighboring points 
are determined adaptively, which makes the local 
sampling density a constant. Surface normal n at 
sample point p may be provided, or we can estimate it 
using the principal component analysis (PCA) 
approach to the adaptive neighborhoods (Pauly et al., 
2002),and the tangent plane Пp can easily be obtained. 
Step2. In the tangent plane Пp, three different tangent 
directions Tα, Tβ, Tγ 

are sampled. For each sampled 
tangent direction, a normal plane is defined by the 
surface normal and the tangent direction. 
Step3. The adaptively selected neighboring points of 
p are then projected onto the normal plane. The 
approximated normal curvature for the given tangent 
direction of p can be computed as the discrete 
curvature of the projected curve in the normal plane. 
Such as, the revised principal component analysis 
(revised-PCA) approach is adopted (see Fig.1(b)),  
and  estimates the normal curvature approximately as 
variation λ0/(λ0+λ1), where λ0≤λ1 are two eigenvalues 
of the 2×2 covariance matrix for 2D projection points. 
Step4. According to the three estimated normal 
curvatures kα , kβ , kγ  for three tangent directions Tα, Tβ, 
Tγ respectively, the principal directions and 
corresponding principal curvatures can be determine 
as the above scheme. Thus the Gaussian curvature 
and the mean curvature can be computed directly. 

The example of local differentials estimation for 
Stanford bunny model is illustrated in Fig.2. The 
estimated Gaussian curvature and mean curvature are 
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the second order information of the point-sampled 
geometry which can be used to define the speed 
function in the subsequent level set evolution. 

 
                (a)                                       (b) 

 
(c)                                      (d) 

Fig.2: Local surface differential estimations of Stanford 
bunny model: (a) original bunny model; (b) mean 
curvature map estimated by the projection method; (c) the 
Gaussian curvature map estimated by the projection 
method; (d) the optimized Gaussian curvature map. 
Obtained the narrow band and evaluated the 
distance field 

 
Generally, a level set model is evolved in a 

distance field, which is a scale function Φ: R3→R. 
The propagating front (interface surface) is taken as 
the zero iso-surface of the distance function. Since we 
are only interested in the evolution of zero level set, 
an efficient strategy is to perform the computation in 
the neighborhood of the zero level set, which is also 
called narrow band. 

To compute the distance field, the initial narrow 
band is embedded into a uniform 3D Cartesian grid. 
For each grid point in the narrow band, the signed 
distance value to initial interface can be calculated as 
the Euclidean distance by fast marching method. In 
order to adopt fast marching approach to narrow   
band, Memoli and Sapiro (2001, 2002) pointed out 
that the width of the narrow band ϖ  should be larger 
than d*Step, where d is the dimensional number of the 
Euclidean grid, Step is the maximal grid step among 
three directions, i.e., max( , , )x y zΔ Δ Δ . In fact, 
they proved theoretically that the intrinsic distance of 
the grid point in narrow band to the zero level set on 
the manifold can be approximated by the Euclidean 

distance as the following inequality (Memoli and 
Sapiro, 2001, 2002): 

( , ) ( , )intrinsic Euclideand p q d p q Cϖ− ≤
 

where coefficient C is a constant, dintrinsic(p,q) and 
dEuclidean(p,q) mean the intrinsic distance on the 
manifold and the Euclidean distance between the 
point p and q, respectively. The width of the narrow 
band ϖ  is related to the computation accuracy. 

In our implementations, the narrow band width 
is ±4 layers, i.e., L-4,L-3,L-2,L-1 and L+1,L+2,L+3,L+4, 
where the subscripts denote the city block distance 
from the nearest active grid point, and the negative 
sign represents the layers inside the zero level set. The 
layer of the active grid points, i.e. zero level set, is L0. 
In order to evolve the propagating front efficiently, 
only signed distance field in the narrow band is 
computed. 
 
Evolving level set according to the extended 
curvature field 

During segmenting the point-sampled geometry, 
the interface surface evolves along its normal 
direction driven by a specified speed function F. In 
order to segment the model along the high curvature 
zones, the driven speed function inside narrow band 
should be defined according to the extended curvature 
field. 

The extended curvature field can be defined as 
follows: First, the Gaussian curvature K(x,y,z) for 
each sample point in the narrow band is estimated. 
Then, for the grid point labelled (i,j,k) inside narrow 
band, its extended Gaussian curvature K*(i,j,k) is 
approximated as K(x,y,z), where the sample point 
(x,y,z) is the closest to the grid point (i,j,k). 
          The speed function F is decomposed into two 
parts FA and FI. Then the level set equation can be 
reformulated as: 

0t A IF FΦ + ∇Φ + ∇Φ =  
The term FA is called the advection term which is 
independent of the curvature field. In general, the 
constant term FA is several multiples of voxel gird 
size. The term FI is dependent on the surface 
curvature field, and is defined as: 

             *{ ( , , )A
I

FF K i j k
M m

}m−
= −

−
 

where M and m are the maximal and minimal 
magnitudes of the extended Gaussian curvature at the 
grid points in the narrow band. From the definition, 
the value of FI ranges from 0 to -FA as the magnitude 
of the curvature varies from m to M. Thus, when the 
magnitude of K*(i,j,k) approaches its maximum M, 
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the front evolution speed gradually tends to zero. As a 
result, the propagating front gets closer to the high 
curvature zones, and eventually comes to a stop. So, 
the point-sampled geometry will be segmented along 
the sharp feature zones. 
 
Solving the level set equation 

During the model segmentation, the interface 
surface evolution is governed by the level set 
equation———Hamilton-Jacobi equation. Several 
numerical schemes for this equation have been 
presented (Osher and Sethian, 1988; Sethian, 1999), 
such as up-wind finite difference scheme, etc. In this 
scheme, the spatial and temporal derivatives are 
approximated as finite differences on a discrete gird, 
and a provably monotone discretization is adopted for 
the Hamilton-Jacobi equation. In a discrete 3D object 
space, the  is denoted as the approximation of the 
distance field solution at the n-th time step for grid 
node (i,j,k) in the narrow band. The numerical 
solution of the Hamilton-Jacobi equation can be 
expressed by using the following up-wind finite 
difference scheme: 

n
ijkΦ

1 [max( ,0) min( ,0) ]n n
ijk ijk ijk ijkt F F+ +Φ = Φ −Δ ∇ + ∇−

−
where Fijk 

means evolution velocity FA+FI at grid 
node (i,j,k) and means: ,+∇ ∇

2 2

2 2

1
2 2 2

[max( ,0) min( ,0)

max( ,0) min( ,0)

max( ,0) min( ,0) ]

x x
ijk ijk

y y
ijk ijk

z z
ijk ijk

D D

D D

D D

+ − +

− +

− +

∇ = Φ + Φ

+ Φ + Φ

+ Φ + Φ

 

2 2

2

1
2 2

[min( ,0) max( ,0)

min( ,0) max( ,0)

min( ,0) max( ,0) ]

x x
ijk ijk

y y
ijk ijk

z z
ijk ijk

D D

D D

D D

− − +

− +

− +

∇ = Φ + Φ

+ Φ + Φ

+ Φ + Φ

2

2

 

where the difference operators x
ijkD+ and x

ijkD− are 
defined as: 

1, , , ,( )x
ijk i j k i j kD+

+Φ = Φ −Φ Δ/ x

/ x

 

, , 1, ,( )x
ijk i j k i j kD−

−Φ = Φ −Φ Δ  
       Once the propagating front reaches the boundary 
of the current narrow band, a new narrow band should 
be reconstructed by adopting the old distance values 
at the grid points inside the old narrow band as initial 
values. The distance values at the grid points inside 
the new narrow band can be obtained by the up-wind 
finite difference scheme and the fast marching 
algorithm. 

       For each seed point on the point-sampled 
geometry, the corresponding interface surface is 
constructed. Then the interface is evolved separately. 
According to the definition of the speed function F, 
the propagating fronts will keep evolving at the low 
curvature zones, and will eventually terminate at the 
high curvature zones. The whole model will be 
segmented completely after all propagating fronts 
come to a stop. 
 
Discussions 
 
Selecting seed points interactively.  In order to 
decompose the given point-sampled geometry into 
some meaningful components, seed points should be 
chosen by user. For example, one seed point for each 
meaningful sub-part is chosen. Then, for each seed 
point, an initial propagating front for subsequent level 
set evolution can be obtained as an iso-surface with 
small distance from the seed point. 
Optimizing curvature field.  For evolving the 
propagating front with the extended curvature field 
effectively, a preprocessing step for building 
curvature field should be performed (see Fig.2(d)). 
The following Gaussian-weighted average of the 
curvature can smooth the curvature field, i.e. the 
smooth curvature for the sample point p can be 
computed as: 

         

2

2

2

2

( ) exp( )
2

( )
exp( )

2

p

p

q N

q N

q p
K p

G p
q p

σ

σ

∈

∈

− −

=
− −

∑

∑
 

Optimizing partition boundaries.  With the level set 
evolution eventually terminating at high curvature 
zones (such as, the red region of the optimized 
Gaussian curvature map in Fig.2(d)), the patches for 
two sides of the region were generated, however, the 
optimized split boundary should be found further. 
Similar to Katz and Tal (2003) and Zhou et al. (2004), 
this problem can be formulated as a graph cutting 
problem. After defining the high curvature zones as a 
medial region, an undirected flow network graph can 
be built from the medial region using the neighboring 
relationship similar to the method in Katz and Tal 
(2003). To ensure that the model is segmented along 
the sharp feature zones, the capacity between adjacent 
sample points p and q can be defined as: 

1
( , )( , ) 1

( )
norm

norm

d p qC p q
Avg d

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 

where angular distance dnorm(p,q)=1-cosα, and α 
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means the angle between normal directions of sample 
points p and q, and Avg(dnorm) means the average of 
angular distance between neighboring sample points. 
Then, the optimized partition boundary can be 
constructed by applying graph cut technique to the 
network graph, which makes the cut through sharp 
feature zones without being too jaggy. 
 
EXPERIMENTAL RESULTS 
 

Fig.3 shows an example of segmenting one chart 
on the bunny model. After one seed point is chosen 
interactively at back-leg of the bunny, an initial 
signed distance field and initial propagating front for 
the seed point are constructed. Then the distance field 
is evolved governed by the level set equation. For 
illustration purpose, some intermediate interfaces are 
extracted, and the corresponding segmented partitions 
of the back-leg are shown in Fig.3(b-e). While the 
propagating front approaches the high curvature 
zones, the evolving speed will approach to zero. 

 
           (a)                             (b)                             (c) 

 
(d)                            (e)                              (f) 

Fig.3  Evolving one chart of the bunny model: (a) bunny 
model, (b)-(e) evolving one of chart of bunny model, (f ) 
final partition for back-leg. 
 
Finally, the propagating front comes to a stop, and 
one sub-patch for the back-leg is obtained which is 
shown in Fig.3(f). 

The example of whole bunny model segmen- 
tation is shown in Fig.4. In order to decompose bunny 
model into some meaningful components, for 
example, bunny face, bunny left ear, bunny right ear, 
bunny tail, etc. At each meaningful sub-part, one seed 
point is chosen interactively. For whole bunny model, 
a total 12 seed points are selected, then accordingly 12 
meaningful sub-patches are generated. Fig.5 is 
another example of segmenting a dinosaur head into 
several charts. For dinosaur head model, a total 8 seed 
points are chosen, and the model is segmented into 8 
meaningful components. 

APPLICATIONS 
 

Segmenting a surface model into several sub- 
patches or charts is a fundamental problem in digital 
geometry processing. In this section, two examples 
are given as illustration of the potential applications 
of model segmentation. They are piecewise 
parameterization and local geometry editing. 
 
Piecewise parameterization for point-sampled 
geometry 

The problem of computing low-distortion 
parameterization for a point-sampled surface is 
essential to many applications (Floater and Hormann, 
2004), such as texture mapping and texture synthesis, 
surface remeshing and multiresolution analysis, 
surface morphing and editing, etc. Since most of the 
complex point-sampled surfaces are non-developable, 
the piecewise approach is regarded as an efficient 
strategy to achieve low-distortion parameterization. 
       The piecewise parameterization approach first 
partitions the surface model into a set of patches, each 
of which is homeomorphic to a disc. They are also 
called charts. Each chart is flattened onto the plane, i.e. 
a parameterization. Finally, all parameterized charts 
are packed into a rectangular   texture parametric 
domain, and the operation of texture mapping is 
applied at texture parametric domain (Levy et al., 
2002; Zhou et al., 2004). 

The example of piecewise texture mapping is 
shown in Fig.6. 
 
Local editing for point-sampled surfaces 

Local editing and deformation are necessary for 
many shape modelling applications (Zwicker et al., 
2002; Pauly et al., 2003). The operations usually 
include local twisting, stretching, bending and 
constrained texture mapping, etc. 

Namely, the user always should define a region 
of interest (ROI) and a subset of the region, called 
handles. After the user drags the handles to a new 
location in 3D space, within the ROI, the shape 
should follow this manipulation in a natural way or 
satisfy some specific constraints. 

Recently, many researchers are interested in 
manipulating and modifying 3D shape while 
preserving geometric details. Geometric detail is an 
intrinsic property of a surface and can be expressed as 
an intrinsic surface representation, such as 
multiresolution representation (Zorin et al., 1997; 
Kobbelt et al., 1998; Pauly et al., 2006), Laplacian 
coordinates (Sorkine et al., 2004), Poisson-based 
gradient field (Yu et al., 2004), discrete differential 
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forms(Lipman et al.,2005), etc. For local surface 
editing, the 3D shape within the ROI should be 
reconstructed with respect to new configuration of the 
handles under preservation of intrinsic surface 
property as much as possible. This aim can be 
reconstructed in a least-squares sense, and usually can 
be translated into solving a linear system to minimize 
shape distortion. 

The example of detail-preserving local editing   
is shown in Fig.7. The local editing results of right 
hand of santa model are shown in Fig.7(a,b). The 
local editing results for nose of human face are shown 
in Fig.7(c,d). 
 
CONCLUSIONS AND REMARKS 
 

A novel segmentation approach for the point- 
sampled surfaces is proposed, which is based on the 
level set method. The approach simulates the 
propagating fronts starting from some seed points. 
The propagating fronts evolved with the specified 
speed function. In order to align such patch 
boundaries with high curvature zones, the speed 
function is defined according to the extended 
curvature field, which can drive the front to approach 
high curvature zones. Finally the front comes to a stop 
when the speed is zero. Compared with other 
segmentation approaches, our approach can 
decompose the given point-sampled geometry into 
some meaningful components. Two applications of 
our approach, i.e. piecewise parameterization and 
local editing for point-sampled geometry are given. 
      Based on the proposed segmentation approach, 
future researches should focus on geometry 
processing of point-sampled models, such as local 
texture mapping, local editing, morphing, 
compression, etc. 
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                    (a)                                             (b)                                         (c)                                            (d) 
Fig.4  Segmenting the whole bunny model: (a) Stanford bunny model; (b) curvature estimation for bunny model; 
(c) a 3D uniform voxel grid for bunny model; (d) segmentation result for bunny model. 
 

 
(a)                                             (b)                                          (c)                                             (d) 

Fig.5  Segmenting the dinosaur-head model: (a) dinosaur-head model; (b) curvature estimation for dinosaur-head model; 
(c) a 3D uniform voxel grid for dinosaur-head model; (d) segmentation result for dinosaur-head model. 
 

                    
(a)                                                               (b)                                                            (c) 

Fig.6  Piecewise texture mapping of bunny model: (a) original bunny model; (b)segment the bunny model; (c) final texture 
mapping result of bunny model. 

   
(a)                                                  (b)                                              (c)                                   (d) 

Fig.7  Local editing for 3d model: (a) original santa model; (b) local editing for right hand of the santa model; (c) original 
face model; (d) local editing for nose of the face model. 


