
A general framework for 3D model co-alignment

Xuanmeng Xie, Shan Luo, Jieqing Feng∗

State Key Lab of CAD&CG, Zhejiang University, Hangzhou 310058, Zhejiang, PR China

Abstract

3D model alignment is a fundamental step in many shape analysis processes, and various algorithms have been proposed
to solve this problem. However, to the best of our knowledge, they are effective only on specific categories of models.
Therefore, we present a novel framework that can align general categories by combining different features together. In
order to align given groups of models, multiple features are evaluated first in this framework, according to three types of
quantified characteristics, i.e., the intensity, the uniqueness and the consistency. Then, the quantified characteristics are
combined into scores and a data-driven model is learned to predict the alignment errors according to the scores. Finally,
the features with the minimum predicted alignment errors are selected to align the given groups. Experimental results
show that our framework can generate consistent alignments on general categories, which are much better than those
generated using single features.
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1. Introduction

Model alignment is a fundamental step in many 3D
shape analysis processes, such as shape matching, re-
trieval, recognition and other applications. In shape
matching, models are aligned for comparison. In mod-5

el retrieval and recognition, 3D shape descriptors play an
important role, but many of them are not rotation invari-
ant, and hence a preprocessing step of model alignment
should be performed before the extraction of the descrip-
tors. When organizing model galleries, the models should10

be aligned so that they are presented in consistent orien-
tations.

The primary goal of model alignment is consistency. For
example, in Figure 2(a), the heads of all the birds point
outward from the paper and their torsos point rightward,15

so they are consistently aligned. In contrary, the 2nd one
in Figure 2(b), the 3rd one in Figure 2(c), the 2nd one in
Figure 2(d) and the 2nd one in Figure 2(e) are all incon-
sistently aligned with their corresponding groups.

However, model alignment is a challenging problem, be-20

cause of the diversity of models. Many algorithms have
been proposed to solve the problem. In one class of the
algorithms, different features are employed for alignment,
such as the slenderness, the reflective symmetry, the rota-
tional symmetry, the rectilinearity, the minimum or max-25

imum projection area, etc. In another class of algorithms,
an orientation relevant function is defined to represent a
model and then models are aligned by minimizing the dis-
tance between the functions. However, all these algorithms
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(a) Walking humans (b) Commercial airplanes

(d) Dogs(c) Rectangular tables

Figure 1: Four exemplar groups of models for alignment.

work well only on specific categories (a small set of cate-30

gories) and they cannot be applied to general categories
(almost all categories) directly.

In order to reduce the “semantic gap” between 3D mod-
els and human understandings, our framework simulates
the alignment procedure performed by human. Accord-35

ing to our observations, when humans are faced with a
group of models, one possible solution for aligning them is
to look for the most significant common feature of them,
and simultaneously consider whether the feature leads to
unique and consistent alignments. For example, in Fig-40

ure 1(a), humans may notice that the models are all slen-
der, and thus employ the principal component analysis (P-
CA) to align them. Motivated by this process, we present
an evaluation-based method of quantifying the extent of
how a feature is suitable for aligning given groups of mod-45

els, based on three types of criteria, i.e., the intensity, the
uniqueness and the consistency.
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Intensity. In Figure 1(a), we observe that the mod-
els are slender but not reflectively symmetric. In other
words, they have high intensity of the slenderness and low50

intensity of the reflective symmetry, and, thus, the PCA
is suitable for aligning them. By contrast, the PCA is not
suitable for aligning the models shown in Figure 1(b), but
the reflective symmetry method is.

Uniqueness. In Figure 1(c), the models are reflective-55

ly symmetric, but the reflective symmetry method cannot
guarantee consistent alignments, because the planes of re-
flection are not unique.

Consistency. Most models shown in Figure 1(d) have
high intensity of the reflective symmetry, except the last60

one, but the reflective symmetry method still works poorly
on this group because of the inconsistency of the intensity
values of the models.

The values of these criteria cannot be compared directly
between different features, because the computation meth-65

ods are different, and hence it is still unknown which is the
best feature to align given groups of models. To solve this
problem, we define a score by combining the values of the
criteria, and then learn a data-driven model which repre-
sents the relation between the alignment errors and the70

scores. Finally, the features with the minimum predicted
alignment errors are selected to align the given models.

Because features are effective only on specific categories,
using single features to align general categories results in
poor alignments. By combining different features, the75

framework presented in this paper is able to align gen-
eral categories, and the alignment results are significant-
ly improved. Moreover, by applying different features to
align the first and the secondary axes, respectively, our
framework can generate new alignments which cannot be80

generated using single features. For example, in Figure 2,
all the single features fail to align both the first and the
secondary axes, but our framework is able to align them
consistently.

In this paper, a general framework is presented for mod-85

el alignment, in which multiple features are evaluated and
combined to yield consistent alignment results. Specifi-
cally, the contributions are as follows: (1) we propose an
evaluation method of quantifying the extent of how a fea-
ture is suitable for aligning given groups of models, based90

on the intensity, the uniqueness and the consistency; (2) a
data-driven method is proposed to select the best features
for alignment.

2. Related Work

The algorithms for model alignment can be classified95

into two categories, i.e., the groupwise alignment (co-
alignment) and the pairwise alignment. In this section, we
majorly review the co-alignment algorithms and the relat-
ed features, which are the most related to our framework.
For completeness, we also review the pairwise alignment100

algorithms at the end of this section.

(b) PCA (c) MPA

(d) RES (e) ROS

(a) Ours

Figure 2: The alignments generated by our framework
(Ours), the PCA (PCA), the maximum projection area
(MPA), the reflective symmetry (RES) and the rotational
symmetry (ROS). All the single features fail to align them,
but our framework is able to align them consistently by s-
electing the RES and the MPA to align the first and the
secondary axes, respectively. The solid lines represent the
first axes and the dashed lines represent the secondary ax-
es. Note that the MPA aligns models with the normals
of the planes with the maximum projected areas, and the
RES aligns models with the normals of the planes of the
reflective symmetry.

For the groupwise alignment (e.g., [1, 2]), alignment is
performed on the groups that contain models from similar
categories. The models are generally aligned by employing
one or multiple features. The best-known algorithms are105

the PCA-based algorithms, including the Continuous P-
CA (CPCA) [3] and the Normal-based PCA (NPCA) [4].
The CPCA method treats a mesh model as an infinite
point set which consists of all the points on the surface of
the model, whereas the NPCA method is applied on the110

face normals. The PCA-based algorithms are effective on
the models that have different scales along different direc-
tions, especially on slender models, but they may generate
inconsistent alignments on other types of models.

The symmetry, including the reflective symmetry and115

the rotational symmetry, is another major type of feature
for model alignment, because the normals of the planes of
reflection and the axes of rotation can be used to gener-
ate accurate alignments. The existing symmetry detection
algorithms have two different goals: global symmetry de-120

tection [5, 6, 7, 8, 9, 10, 11, 12, 13] and partial symmetry
detection [14, 15, 16]. The global symmetry detection tech-
niques focus on finding symmetric planes or axes through
the centers of the models; in contrast, the partial symme-
try detection techniques consider all the possible planes or125

axes. In general, only the global algorithms are consid-
ered for model alignment. The partial algorithms can also
detect global symmetries, but are less efficient.
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The projection area is also widely used for model align-
ment. Johan et al. [17] proposed a projection-area-based130

algorithm, in which two perpendicular axes with the min-
imum projection areas are selected successively and then
used for alignment. Lian et al. [18] proposed the concept
of “rectilinearity” of 3D models, and models are aligned
when the sums of the projection areas on the three coor-135

dinate planes are minimized.
Several features do not belong to the major types above,

but are also effective in model alignment. Barequet and
Har-Peled [19] proposed an efficient algorithm to compute
the minimum-volume bounding boxes (MBB) of models,140

and the models are aligned based on the MBB axes and
widths. Sfikas et al. [20] proposed an alignment algorithm
based on panoramic views. In this algorithm, a plane of
reflection is estimated by rotating the 3D model and com-
puting the score measuring the extent of symmetry, and,145

thus, the first axis is estimated. The secondary axis is es-
timated by analyzing the variance of the model. In recent
years, researchers propose several algorithms [21, 22, 23] to
estimate the upright orientations of 3D models, and these
orientations can also be used for partial alignment of one150

axis.
Observing that each type of feature is effective only

on specific categories of models, several algorithms have
been proposed to combine multiple features to enhance
the alignment results. Chaouch and Verroust-Blondet [24]155

combine the CPCA with the symmetry. First, they use
the CPCA to compute three axes, each with two oppo-
site orientations, and then use symmetric characteristics
to select the best axis and the best orientation simultane-
ously. Lian et al. [18] begin with the PCA and the recti-160

linearity to generate two types of alignments, respectively,
and the alignments with less valid pixels of the silhouettes
projected on three coordinate planes are finally selected.
Axenopoulos et al. [25] proposed the Combined Pose Es-
timation method, in which the CPCA, the symmetry and165

the rectilinearity are combined. The CPCA is applied to
yield the initial alignment. If reflective symmetry is ob-
served in two or three CPCA-coordinate planes, the align-
ment is kept; otherwise, the rectilinearity is utilized to
generate the final result. These combinational method-170

s are able to generate better alignment results than does
the use of single features, but they use simple criteria for
feature selection, and the results could be further improved
if more elaborate selection criteria are applied and more
features are employed.175

For the pairwise alignment, a common process is to rep-
resent a 3D model as an orientation relevant function,
and a pair of models is aligned by finding the rotation
that minimizes the distance between the functions. Ac-
cording to the types of the employed descriptors, these180

approaches can be further classified into two categories,
i.e., the spatial-domain based algorithms [26, 27, 28] and
the frequency-domain based algorithms [6, 29, 30]. The
spatial-domain based algorithms are directly applied on
the positions of the elements of the models. Whereas, in185

the frequency-domain based algorithms, the representa-
tions of the models are transformed from spatial domain
to frequency domain, and the subsequent processes are
performed in frequency domain. When the pairwise algo-
rithms are used to align a large set of models, a reason-190

able strategy is to select a reference model and align oth-
er models to it; another strategy is to consider (but not
truly align) all possible pairs and then remove or speed
up unnecessary alignments with different techniques. The
former strategy would generate poor alignments if the ref-195

erence model is not properly selected, whereas the latter
one results in lower efficiency compared with the former
one.

3. Feature evaluation

In theory, an unlimited number of features can be reg-200

istered into the framework. In order to select the best
features for alignment, we employ three types of quanti-
fied characteristics to define the criteria for selection, i.e.,
the intensity, the uniqueness and the consistency.

To calculate the values of the criteria, a sampling strat-205

egy is adopted. Specifically, N × N axes are sampled in
terms of the azimuthal and the elevational angles, where
N is a positive integer. The range of the azimuthal angle is
[0, π) and the range of the elevational angle is [−π/2, π/2).
Because the axes for alignment are undirected, this con-210

figuration covers all possible axes. This sampling strategy
is non-uniform, but it is easy to use and is enough for our
purpose. Other reasonable sampling strategies (uniform
or non-uniform) could also be considered.

In our implementation, N is set to 128 (it do not need215

to be a power of 2). Typically, a larger N can bring higher
alignment accuracy, but it reduces the computational effi-
ciency. Empirically, this value is recommended to be set
between 30 and 300.

In the following, a detailed description of these criteri-220

a will be provided and the extraction procedure will be
demonstrated with four exemplar features, i.e., the slen-
derness, the maximal projection area, the reflective sym-
metry and the rotational symmetry.

3.1. Intensity225

The intensity measures the significance of features and
it is the most important among the three types of criteria.

The slenderness can be measured by the PCA, and the
intensity value is negatively correlated to the ratio of the
second largest eigenvalue to the largest eigenvalue. But230

the PCA provides only three eigenvalues, which are not
sufficient to measure all the sample axes. Thus, we come
back to the nature of the PCA: the PCA is the optimal lin-
ear transformation which divides a space into orthogonal
subspaces with the largest variance. Therefore, for a mesh235

model with M faces and a sample axis, ai and pi being
the area and center of a face indexed by i, respectively, we
measure the intensity value of the slenderness I

′

s using the
area-weighted variance:
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I
′

s =

√√√√√√√√
M∑
i=0

ai((pi − c) · o)
2

M∑
i=0

ai

where c is the center of the model and o is a unit vector240

along the axis.
The intensity of the maximum projection area Ip is cal-

culated as:

Ip =

M∑
i=0

ai |n i · o|

M∑
i=0

ai

where n i is the normal of a face indexed by i.
The algorithm proposed by Kazhdan et al. [7] provides245

quantified measurements of both the reflective and ro-
tational symmetries simultaneously. Suppose the values
measuring the reflective and rotational symmetries along
an axis are vre and vro, respectively. The intensity of the
reflective symmetry Ire is:250

Ire =


0, vre < vre,l

ln vre − ln vre,l
ln vre,u − ln vre,l

, vre,l ≤ vre ≤ vre,u

1, vre > vre,u

where vre,l and vre,u are the manually selected lower and
upper bounds of vre, respectively.

Similarly, the intensity of the rotational symmetry Iro
is:

Iro =


0, vro < vro,l

ln vro − ln vro,l
ln vro,u − ln vro,l

, vro,l ≤ vro ≤ vro,u

1, vro > vro,u

where vro,l and vro,u are the manually selected lower and255

upper bounds of vro, respectively.
Note that the manually selected bounds are not real

bounds, and they are selected according to the distribu-
tions of the values measuring the symmetries. For the sym-
metry estimation algorithm that we adopt, the real lower260

and upper bounds are 0 and infinity respectively, for both
vre and vro, which cannot be applied in the expressions to
calculate the intensity values. The range between the man-
ually selected upper and lower bounds should cover most
values (e.g., > 95%), and just abandon a few values which265

are too large or two small. In our implementation, [2, 128]
and [2.5, 1000] are selected as the range for the reflective
symmetry and the rotational symmetry, respectively (the
voxelization resolution of the symmetry estimation algo-
rithm is set to 128).270

For convenience, the intensity values should be normal-
ized in [0, 1]. The intensity values of the maximum projec-
tion area, the reflective symmetry and the rotational sym-
metry are already normalized according to the calculation
expressions of them. In order to normalize the intensity
value of the slenderness, we find the one with the largest
intensity value I

′′

s from all the sample axes that are per-
pendicular to the axis corresponding to I

′

s. Considering
the three eigenvalues of the PCA, I

′

s and I
′′

s can be com-
pared to the largest and the middle eigenvalues, respec-
tively. The normalized intensity value of the slenderness
is:

Is = 1− I
′′

s

I ′
s

After the calculation of the intensity values related to
all the sample axes, for each feature, the largest intensity
value is selected to be the intensity value of the whole
model, and the corresponding axis is selected to be the
axis for alignment.275

3.2. Uniqueness

If there are multiple similar intensity values that cor-
respond to different sample axes, the alignment would be
ambiguous. For this reason, the criterion of the unique-
ness is defined to measure the uniqueness of the largest280

intensity value.
The uniqueness value of a feature is calculated based on

the intensity values related to all the sample axes. Be-
cause of the spatial continuity, the differences of the inten-
sity values between neighboring axes are typically small.285

Therefore, only the local maxima are considered, and an
intensity value is considered as a local maximum if it is the
largest in its K-degree neighborhood. Specifically, one ax-
is is considered to be inside another’s neighborhood if the
angle between them is less than K degree. Then, for all290

the four types of exemplar features, the uniqueness value
U of a model is defined as the ratio of the second largest
local maximum Isecond to the largest local maximum Imax.

U = 1− Isecond
Imax

Hence, the range of the uniqueness is [0, 1]. If there is
only one local maximum, the uniqueness value is set to 1.295

K should be properly set. If it is too large, reason-
able local maxima might be covered by others’ neighbor-
hood. If it is too small, the second largest local maximum
would generally appear near the largest one with the sim-
ilar values, and the calculated uniqueness value would be300

not suitable to measure whether there are ambiguous axes
with similar intensity values. In our implementation, K is
set to 10.

3.3. Consistency

The criterion of the consistency measures how consis-
tent a model is with other models in the same group. The
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consistency can be reflected in the values of the intensi-
ty and the uniqueness. Hence, two types of consistency
are defined, i.e., the consistency of the intensity and the
consistency of the uniqueness. For a model, the consisten-
cy value of the intensity is defined as the absolute value
of the difference between its intensity value and the av-
erage intensity value of the corresponding group, and the
consistency value of the uniqueness is calculated similarly.

CI = 1− |I − Iavg|

CU = 1− |U − Uavg|
In these equations, CI and CU are the consistency value305

of the intensity and the consistency value of the unique-
ness, respectively; Iavg and Uavg are the average intensity
value and the average uniqueness value of the group, re-
spectively.

4. Feature selection310

In our framework, model alignment is divided into two
steps, i.e., the estimation of the first coordinate axes and
the estimation of the secondary ones. Then, the third ax-
es are the cross products of them. After deploying the
reference frames, models are naturally aligned. In both315

steps, we apply the same method to select the best fea-
tures for specific partial alignments, except that the axes
are sampled only in the planes that are perpendicular to
the first axes when estimating the secondary axes. Thus,
only the procedure for estimating one type of axes will be320

demonstrated.
For each type of axes, the estimation procedure con-

tains a training phase and a test phase, and the details
are demonstrated in Figure 3 and Figure 4, respectively.
To avoid cluttering in the figures, only two features are325

demonstrated. The overall estimation procedure is as fol-
lows. First, we define a score for each feature based on the
criterion values and the parameters of the score calculation
expression are optimized by minimizing a defined energy.
Second, for each feature, a curve is fitted to represent the330

relation between the scores and the angular errors. Final-
ly, with the score calculation expressions and the curves,
the feature with the minimum average predicted angular
error is selected for alignment.

4.1. Score definition335

In Section 3, we have described the criteria for evaluat-
ing the extent of the suitability of a feature in aligning a
group of models, and the values of these criteria should be
transformed into a single score for convenience of compar-
ison.340

The score is defined to measure the ability of a feature to
align given models. The intensity can do the same thing,
but it does not work well alone. Therefore, the uniqueness,
the consistency of the intensity and the consistency of the
uniqueness are combined with the intensity one by one to345

enhance the power of the score.

Suppose f is a function with four inputs: u, v, para and
op, where op ∈ {1, 2} is a parameter determining the op-
eration of f , and para ∈ [0,∞) is a parameter controlling
the extent of the effect of v on u.350

f (u, v, para, op) =

{
u+ v · para, op = 1

u · vpara, op = 2

The score s is defined as:

s0 = I

s1 = f (s0, U, para1, op1)

s2 = f (s1, CI , para2, op2)

s = f (s2, CU , para3, op3)

These expressions can be explained as follows: The s-
core is originally equal to I. Then, U , CI , and CU take
effects on the value of the score in turn. The parameters
of ops determine how they take effects and the parameters355

of paras determine the extents of the effects. Finally, the
score is the combination of the intensity I, the uniqueness
U , the consistency of the intensity CI and the consistency
of the uniqueness CU with the related parameters.

The parameters of the expressions are optimized by en-360

ergy minimization, which will be explained in Section 4.3.
The score is defined in a cascaded way so that we can op-
timize one pair of parameters independently in a cascade.

4.2. Energy definition

Because an unlimited number of features can be regis-365

tered into our framework in theory, it is not practical to
manually adjust the parameters for each feature. There-
fore, we define an energy function and the parameters are
optimized by minimizing the energy.

In the training set, there are plenty groups of models,370

which are aligned manually. These alignments serve as the
ground-truth and the angular errors of other alignments
are computed through comparison with them.

For a model indexed by i, suppose the angles between
the estimated axis (the first or the secondary axis) and375

the three manually aligned axes are Ax,i, Ay,i and Az,i,
respectively. The average angles of the group are Ax,avg,
Ay,avg and Az,avg, respectively. The angular error ei of
the model with respect to the group is defined as:

ei =
|Ax,i −Ax,avg|+ |Ay,i −Ay,avg|+ |Az,i −Az,avg|

3

The definition of the angular error is explained as fol-380

lows. As demonstrated in Figure 5, the alignments of (a)
and (b) are appropriately the same in nature, but they
are represented with different axes. It is similar to the
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models

alignments

criterion values

average 
angular errors

ground-truth 
alignments

curve C1

featu
re

 F1

alignments criterion values

feature F2

average 
angular errors

curve C2

scores

scores

s=f(I, U, CI, CU)
score calculation

expression S1

s=f(I, U, CI, CU)
score calculation

expression S2

Figure 3: The procedure for the training phase of our framework with respect to one type of axes (the first or the
secondary axes). First, by applying different features, we yield several groups of alignments together with four types of
criterion values, i.e., the intensity, the uniqueness, the consistency of the intensity and the consistency of the uniqueness.
Second, the average angular errors are computed through comparison between the produced alignments and the ground-
truth. Third, the parameters of the score calculation expressions are learned by energy minimization and the scores are
computed simultaneously. Finally, for each feature, a curve is fitted to represent to relation between the scores and the
average angular errors. The inputs are framed in green, and the outputs are framed in red.

E1<E2models

alignments criterion valuesfeature F1

feature F2

curve C1

average angular 
error E1

curve C2

alignments criterion values

average angular 
error E2

selected

abandoned

scores

scores

s=f(I, U, CI, CU)
score calculation

expression S2

s=f(I, U, CI, CU)
score calculation

expression S1

Figure 4: The procedure for the test phase of our framework with respect to one type of axes. First, different features are
applied to yield several groups of alignments together with four types of criterion values. Second, the scores are computed
based on the criterion values and the score calculation expressions. Third, the average angular errors are predicted with
the scores and the curves that are learned in the training phase. Finally, the alignments with the minimum average
predicted angular error are selected as the final results. The inputs are framed in green, and the outputs are framed in
red. 6



(a) Ground-truth alignment (b) Consistent alignment

(c) Inconsistent alignment

Figure 5: Alignments of the same group, which are rep-
resented by the first (solid lines) and the secondary axes
(dashed lines).

situation that the same point may have different coordi-
nates with regard to different reference frames. Therefore,385

the angular error cannot be defined directly with the an-
gles between corresponding axes, because the angular error
cannot measure the extent of alignment consistency. We
observe that Ax,i is appropriately a constant for the model-
s in (b), and, hence, |Ax,i −Ax,avg| is appropriately equal390

to 0, but Ax,i differs greatly for the models in (c), which
are inconsistently aligned. This observation also holds for
Ay,i and Az,i. Therefore, |Ax,i −Ax,avg|, |Ay,i −Ay,avg|
and |Az,i −Az,avg| can be used for estimating the consis-
tency of an alignment, and the expression above is adopted395

to define the angular error.
Then the energy E of the group is defined as:

E =

∑
i

∑
j

sgn (si − sj) · (ei − ej)∑
i

∑
j

|ei − ej |

where si and sj are the scores of models indexed by i and
j, respectively. Here, sgn is the signal function such that:

sgn (x) =


1, x > 0

0, x = 0

−1, x < 0

Ideally, a larger score corresponds to a lower angular400

error. In this case, sgn (si − sj) · (ei − ej) is a negative
value. In the next step, we adjust the parameters of the
score calculation expressions so as to minimize the energy.
By adopting this definition of energy, minimizing the en-
ergy is equivalent to improving the quantity of ideal cases.405

4.3. Energy minimization

A greedy algorithm is applied to learn the parameters
of the score calculation expressions. First, the parameters
of ops are set to 1, and the parameters of paras are set
to 0. Then, the parameters are optimized iteratively. In410

each iteration, only one pair of parameters is optimized to
minimize the energy. The process goes on until the energy
stops decreasing and it typically terminates in less than
10 iterations. Empirically, it is sufficient to obtain good

minimization results by exhaustively testing the values of415

the parameters of paras in this set:

{0} ∪ {1.1n|n ∈ N,n ∈ [−50, 50]}

Finally, the values that minimize the energy are assigned
to the parameters of the score calculation expressions. The
details are shown in Algorithm 1.

4.4. Curve fitting420

The criterion values related to different features are cal-
culated with different methods, thereby having different
intrinsic meanings. Because the scores rely on the crite-
rion values, they cannot be employed for feature selection
directly. By fitting curves that represent the relation be-425

tween the scores and the angular errors, we are able to pre-
dict the angular errors with the scores and, consequently,
the feature with the minimum predicted angular error can
be selected to align the models. According to the relation
between the scores and the angular errors, we employ in-430

verse proportion curves to fit them in our implementation.
Because the angular errors predicted by different features
often differ greatly, we do not require high accuracy of the
fitted curves, and inverse proportion curves work well in
our experiments. However, other reasonable curves could435

also be considered. The expression of an inverse propor-
tion curve is defined as:

y =
1

b1 · x+ b2
+ b3

where b1, b2 and b3 are three parameters controlling the
shape and the position of the curve.

When fitting the curves, each pair of the score and the440

angular error corresponds to a point in the chart, and these
points are fitted using least squares method. Because the
data are noisy, they are not directly used for fitting. In-
stead, the range of the scores is equally divided into k part-
s, and the average values of these parts are employed for445

fitting. This treatment markedly improves the fitting ac-
curacy and the fitting results will be shown in Section 5.2.

5. Experimental Results

In our experiments, four types of features were employed
to evaluate the effectiveness of our framework, i.e., the450

slenderness, the maximum projection area, the reflective
symmetry and the rotational symmetry. For simplicity,
we define the abbreviations for them, as shown in Table 1.
All the experiments were performed on a laptop equipped
with an Intel i7-3630QM CPU at 2.4 GHz (only one core455

was used).

5.1. Dataset

Our framework was tested on the dataset from the
Princeton Shape Benchmark [31], which consists of 1814
3D polygonal models. The models in the dataset have460

already been divided into a training set and a test set,
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Algorithm 1 Energy minimization and parameter optimization

Input: inputs //all the inputs are used by the energy calculation function
Output: The parameters op1, para1, op2, para2, op3, para3; The minimum energy Emin;

1: Declare the energy calculation function: E ← calE (op1, para1, op2, para2, op3, para3, inputs);
2: Define sets: Sop ← {1, 2}; Spara ← {0} ∪ {1.1n|n ∈ N,n ∈ [−50, 50]};
3: op1 ← 1; op2 ← 1; op3 ← 1; para1 ← 0; para2 ← 0; para3 ← 0;
4: ite← 0; Emin ←∞;
5: repeat
6: index← mod(ite, 3);
7: if index = 0 then //optimize op1 and para1
8: search op in Sop and para in Spara to compute E ← calE(op, para, op2, para2, op3, para3, inputs),

and find optmp and paratmp with the minimum energy of Etmp;
9: if Etmp < Emin then

10: Emin ← Etmp; op1 ← optmp; para1 ← paratmp;
11: end if
12: else if index = 1 then //optimize op2 and para2
13: search op in Sop and para in Spara to compute E ← calE(op1, para1, op, para, op3, para3, inputs),

and find optmp and paratmp with the minimum energy of Etmp;
14: if Etmp < Emin then
15: Emin ← Etmp; op2 ← optmp; para2 ← paratmp;
16: end if
17: else //optimize op3 and para3
18: search op in Sop and para in Spara to compute E ← calE(op1, para1, op2, para2, op, para, inputs),

and find optmp and paratmp with the minimum energy of Etmp;
19: if Etmp < Emin then
20: Emin ← Etmp; op3 ← optmp; para3 ← paratmp;
21: end if
22: end if
23: ite+ +;
24: until Emin does not change for 2 successive iterations

each containing 907 models. The benchmark also provides
several classifications according to the models’ categories,
and the most detailed one is employed in our experiments.
In this classification, the training set is classified into 90465

groups, and the test set is classified into 92 groups.

In order to produce ground-truth alignments for com-
parison, the models in the dataset are manually aligned
such that the models in the same groups have consistent
orientations. Specifically, each model is assigned two per-470

pendicular axes, which define a reference frame, and then
the models in the same groups are aligned according to
the reference frames.

Table 1: Abbreviations of Features

Feature Abbreviation References
Slenderness

(evaluated by the PCA)
PCA [3]

Maximum projection area MPA [18, 17]
Reflective symmetry RES [7]
Rotational symmetry ROS [7]

(b) MPA(a) PCA

(c) RES (d) ROS
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Figure 6: The fitted curves corresponding to the four em-
ployed features related to the first axes. The angular errors
are shown in degrees.
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5.2. Curve fitting

In our implementation, the number of parts k that the475

range of the scores is divided into was set to 20, and hence
there were 20 points to be fitted in the chart if no part
was empty. The fitting results related to the first axes
are demonstrated in Figure 6. The results related to the
secondary axes are similar and thus omitted.480

We can see that, for each feature, the curve fits the
data well except for three cases. (1) For the parts on the
very left in Figure 6(b and c), the scores are relatively
small, which indicates that the features probably fail to
align the given models and, to some extent, the angular485

errors are random. (2) For the parts on the very right
in Figure 6(a, b and c), the angular errors predicted by
the curves may be less than 0, but that has little negative
effect on the final alignments, because the selected features
are still effective. (3) In the part with the a score from 0.3490

to 0.5 in Figure 6(d), the curve does not fit the data well,
because few original points fall into this range. (Note that
the points shown in the chart are the average values of the
original sample points in these parts, and average values
are known to be inaccurate with insufficient number of495

samples.)

5.3. Feature selection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 

 

PCA

MPA

RES

ROS

Figure 7: The results of the feature selection related to
the first (the upper bar) and the secondary axes (the lower
bar). The lengths of the bars represent the frequencies of
the features being selected by the framework for alignment.

In this experiment, we show the results of feature selec-
tion on the test set, in both steps of aligning the first and
the secondary ones. In Figure 7, the lengths of the bars500

represent the frequencies of the features being selected by
the framework for alignment. We can see that the slender-
ness and the reflective symmetry were the most frequently
selected features in aligning the first axes, whereas the
maximum projection area was the most frequently select-505

ed feature in aligning the secondary axes. The rotation-
al symmetry was never selected in aligning the secondary
axes, because no significant rotational symmetry was de-
tected in this step. In addition, 77.0% of the models in
the test set were aligned with two different features in the510

two steps, respectively, and these alignments could not be
generated using single features.

5.4. Computational time

In this experiment, we analyze the computational time
of our framework. In terms of computational time, the515

training phase can be divided into three major steps, i.e.,
feature extraction, uniqueness computation and parameter
learning; the test phase can be divided similarly except
that it does not have the step of parameter learning. The
time consumed by other steps is quite short and hence can520

be ignored. The detailed times of these major steps are
shown in Table 2.

We can see that the framework took 6.43 seconds in
average to train a model and took 7.55 seconds in aver-
age to align a model. The time for aligning a model was525

longer than that for training because the models in the
test set are more complicated than those in the training
set. Specifically, the models have 4373 vertices and 7960
faces in average in the test set, whereas the models have
4070 vertices and 7325 faces in average in the training set.530

In traditional learning-based applications (e.g., [32]), the
learning step generally costs much more time than that for
feature extraction. In contrast, the learning step of our
framework costs much less time, because our framework
does not learn the alignments directly. Instead, it just535

learns the relationship between the angular errors and 4
parameters, i.e., the intensity, the uniqueness, the consis-
tency of the intensity and the consistency of the unique-
ness. Thus, the computational complexity is significantly
reduced. In our experiment, the learning step cost 0.35 sec-540

onds in average for a model, and it comprised just 4.68%
of the whole training time.

Table 2: Average Computational Times per Model (in sec-
onds)

Step Feature
Training

Phase
Test

Phase

Feature Extraction

PCA 1.26 1.42
MPA 0.92 1.11
RES 1.42 1.46
ROS 1.73 1.65

Uniqueness Computation

PCA 0.90 0.92
MPA 0.65 0.71
RES 0.08 0.08
ROS 0.19 0.21

Parameter Learning × 0.35 ×

5.5. Comparison with single features

Our framework was compared with the uses of single
features in terms of alignment error. Because some ap-545

plications only require the alignments of the first axes,
whereas others require full alignments, the comparison was
performed with two criteria, i.e., the average angular er-
ror related to the first axes and the average angular error
related to all the three axes. The average angular errors550
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Figure 8: The comparison of the angular errors (in
degrees). The blue bars represent the average angu-
lar errors related to the first axes, whereas the red
bars represent the average angular errors related to al-
l the three axes. MAN=manual alignments, OUR=our
framework, MER=our framework with merged categories,
MUL=multiple features (Axenopoulos et al.’s algorithm).

were calculated through comparison between the estimat-
ed alignments and the ground-truth alignments, using the
same calculation method defined in Section 4.2.

The results of the comparison are shown in Figure 8.
In addition, we show the angular errors of another group555

of manual alignments (MAN) in this figure, which is gen-
erated by a different person. Similar to the ground-truth
alignments, this group of manual alignments has also been
carefully checked so as to avoid observable mistakes. Be-
cause different persons may have different tendencies to560

align the same models, both groups of alignments are cor-
rect but not similar. This group of alignments gives an
estimation of the limit of the angular errors that an algo-
rithm can achieve in practice.

The results show that the angular errors of our align-565

ments are much smaller than those generated using single
features, demonstrating the effectiveness of our framework.

5.6. Comparison with Axenopoulos et al.’s algorithm

Because our framework employs multiple features, we
also compare it with Axenopoulos et al.’s algorithm [25],570

which combines the CPCA, the symmetry and the rectilin-
earity. In this algorithm, the CPCA is applied to generate
an initial alignment for each model. If reflective symmetry
is observed in two or more CPCA-coordinate planes, the
initial alignment is kept; otherwise, the model is realigned575

with the rectilinearity. This algorithm is a traditional nor-
malization algorithm instead of a co-alignment algorithm,
so it may use different features to align models in the same
groups, and, consequently, generates poor alignments.

Therefore, we made some modifications to turn this al-580

gorithm into a co-alignment algorithm. First, each model
was initially aligned with the CPCA. Then, for each group
of models, we calculated the average scores that estimated
the extents of the reflective symmetry with respect to the
CPCA-coordinate planes. Finally, for a category, if two or585

more average scores were higher than a given threshold,
the initial alignments were kept; otherwise, the rectilin-
earity was applied to generate new alignments.

Compared to our framework, the modified algorithm has
the advantage of efficiency, because it extracts fewer fea-590

tures and does not need a training phase. Specifically, it
took 2.29 seconds in average to align a model in the test
set, whereas our framework took 7.55 seconds. However,
the alignment results generated by our framework were
much better. The angular errors related to the modified595

algorithm are also shown in Figure 8 (MUL). The reason
why our framework performs better is that it has a more e-
laborate mechanism to select suitable features for aligning
specific groups of models.

5.7. Comparison with Averkiou et al.’s algorithm600

The descriptor-based algorithms play an important role
in aligning 3D models, in which models are generally
aligned pairwise by minimizing the distance between the
corresponding descriptors. When they are applied to align
a large set of models, a common strategy is to select a ref-605

erence model and then align all the other models to it, but
this strategy may generate poor alignments if the reference
model is not properly selected. Instead, Averkiou et al.’s
algorithm [26] considers all possible pairs of models and
uses a divide-and-conquer strategy to speed up the com-610

putation. First, it divides the whole set into subsets such
that the models in each subset are easier to be aligned;
then, it aligns the subsets and, consequently, all the mod-
els are co-aligned.

Averkiou et al.’s algorithm supposes that the first axes615

have already been aligned and only aligns the secondary
axes. Therefore, we used the ground-truth first axes for
both Averkiou et al.’s algorithm and our framework and
only compared the angular errors related to the secondary
axes. The angular errors related to our framework and620

Averkiou et al.’s algorithm were 7.44 and 10.53 degrees,
respectively, and the average times to align a model were
2.38 and 9.99 seconds, respectively. The results show that
our framework achieves higher alignment accuracy with
much less computational time.625

5.8. Alignment results

The alignment results generated by our framework are
shown in Figure 9. The estimated first axes are repre-
sented with solid lines, and the estimated secondary axes
are represented with dashed lines. We can see that the630

framework can generate consistent alignments on general
categories of models. Moreover, suitable features can be
selected by the framework in each step, thereby guaran-
teeing the effectiveness of the framework.
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(b) Axes,  PCA+MPA

(c) Biplanes,  RES+MPA

(d) Hot air balloons, ROS+MPA

(e) Ships,  PCA+RES

(f ) Hats,  ROS+RES

(g) Race cars,  RES+PCA

(h) Stealth bombers,  MPA+RES

(a) Horses,  PCA+PCA

Figure 9: The alignment results generated by our framework. The solid lines represent the estimated first axes and the
dashed lines represent the estimated secondary axes. The caption under each group shows the name of the category and
the features selected by the framework to align the first and the secondary axes, respectively.
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5.9. Inter-class alignment635

In general, co-alignment algorithms should be applied
on similar models, and the categorization of models pro-
vides a natural way to classify similar models into groups.
Aligning dissimilar models (e.g., aligning a door to a bird
or aligning a plane to a hat) is often meaningless, and640

humans are not aware how to align them.
In this experiment, we merged the 92 categories in the

test set into 18 groups according to their similarities. With
the new classification, most groups contained multiple cat-
egories. For example, balloon vehicles, heads of humans645

and wheels were merged; sea vessels, cars and cycles were
merged; arthropod animals, humans and quadruped ani-
mals were merged.

With the new classification, the average angular errors
related to the first axes and all three axes were 6.98 and650

8.73 degrees, respectively, as shown in Figure 8 (MER).
Compared to the alignment results with the original clas-
sification, the consistency of the alignments had a modest
decrease, because the models in the new groups differed
greatly in shape, which prevented our framework from se-655

lecting the most suitable features for alignment. However,
the consistency was still higher than that of any single fea-
ture. This experiment proves that our framework can still
work well on inter-class groups without accurate catego-
rization of the models.660

5.10. Failure cases

(a) Snakes

(c) Flying birds aligned with the MPA (d) Flying birds aligned with the RES

(b) Fireplaces

Figure 10: (a, b and c) show three failure cases of our
framework. (d) shows the correct alignments generated
with the RES.

Although our framework works well on most categories,
there are several failure modes that result in inconsistent
alignments.

First, as shown in Figure 10(a), the models of snakes665

vary greatly in shape and even humans are confused how
to align them.

Second, as shown In Figure 10(b), although our frame-
work selected the RES to align the first axes consistently,
all the features failed to align the secondary axes, and,670

hence, the final alignments were not consistent.
Finally, as shown in Figure 10(c and d), our framework

selected the MPA to align both axes of the models, but the
RES generated better alignments. It is two-fold why the

RES was not selected. On one hand, this group contained675

several thin models, and the reflective symmetry calcula-
tion algorithm [7] that we adopted might generate inaccu-
rate values on thin models, which estimated the extents of
the reflective symmetry. Although we can see that these
thin models have unique planes of the reflective symme-680

try, this algorithm assigned similar values to two different
planes for a single model. Thus, the RES got a relatively
low value of the uniqueness, which prevented it from being
selected by the framework. This problem could be solved
by promoting the voxelization resolution of the adopted al-685

gorithm, or by adopting a new algorithm which performs
better on thin models. On the other hand, although the
values of the reflective symmetry were similar, they were
still distinguishable. This problem might also be solved by
adjusting the method of uniqueness calculation.690

6. Conclusions and future work

In this paper, we propose a general framework for model
alignment. Based on three types of quantified characteris-
tics, multiple features are evaluated and the suitable ones
are selected to align given groups of models. This frame-695

work can be applied to general categories and it can yield
alignments with much smaller angular errors than can s-
ingle features. Moreover, the framework can generate new
alignments by combining two different features to align
the first and the secondary coordinate axes, respectively,700

which cannot be generated using single features.
The major limitation of our framework is that the align-

ment results rely on the employed features. If all the fea-
tures fail to align given models consistently, our framework
cannot guarantee consistent results, either.705

In future work, we plan to employ and test more features
in our framework. In addition, more evaluation criteri-
a, different energy functions and different types of curves
could also be considered, which may further improve the
effectiveness of the framework.710
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