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Abstract The conventional isosurface techniques are not competent for meshing a heterogeneous object because they
assume that the object is homogeneous. Thus the visualization method taking the heterogeneity into account is desired. In

this paper, we propose a novel algorithm to extract the boundary surfaces from a heterogeneous object in one pass, whose
remarkable advantage is free of the number of materials contained. The heterogeneous object is first classified into a series
of homogeneous material components. Then each component is enclosed with a 2D-manifold boundary surface extracted
via our algorithm. The information important to the heterogeneous object is also provided, such as the interface between
two materials, the intersection curve where three materials meet and the intersection point where four materials meet. To
improve the performance, the algorithm is also designed and implemented on GPU. Experimental results demonstrate the
effectiveness and efficiency of the proposed algorithm.
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1 Introduction

Extracting the boundary surfaces from a heteroge-
neous object is an important technique in many practi-
cal applications such as anatomy, manufacture, geology.
A heterogeneous object is a solid model composed of
multiple homogeneous material components in general.
To identify and represent its homogeneous components
can facilitate the investigations of the heterogeneous
object. For example, the surgeons can diagnose the
illness and perform the operation more confidently by
browsing the clearly distinguished parts, the engineers
can re-design the machinery parts and improve their
performances in a well-targeted manner by observing
their internal structures and composition.

The heterogeneous object is represented mathemati-
cally or discretely in general. Its boundary surface
representation is also preferable[1]. The conventional
isosurface extraction methods are hardly adapted to
the heterogeneous cases. Firstly, the “case table” will
become too complex to be constructed if we mimic the
Marching Cube algorithm[2]. For example, there will be
6 561 (38) items in the case table even if there are only
three materials involved. Secondly, if the isosurface

extraction algorithms were adopted, only one isosurface
could be extracted in one pass, which encloses only one
homogeneous material. Moreover, to display multiple
isosurfaces clearly and completely in one image is diffi-
cult and tends to introduce artifacts and confusion.

Furthermore, another challenge in extracting the
boundary surfaces from the heterogeneous object is to
identify the interface or intersection information be-
tween or among different material components. Even
if the interface between different materials may not be
smooth, the extracting algorithm is required to defi-
nitely distinguish homogeneous components and clearly
exhibit the boundary surface of each material compo-
nent. As to adjacent material components, if their
boundary surfaces are extracted componentwisely, the
interface between adjacent components can only be ob-
tained via surface-surface intersection[3]. It is a time-
consuming procedure and hinders us from visualizing
the heterogeneous object in real time. In addition, it is
difficult to guarantee the topological consistency of the
interface, i.e., the interface may not be 2D manifold.

In this paper, we propose an algorithm to extract
boundary surfaces of homogeneous materials from a
heterogeneous object in one pass, which is abbreviated

Regular Paper
This work is supported by the National Natural Science Foundation of China under Grant Nos. 60933007 and 61170138, the

National Basic Research 973 Program of China under Grant No. 2009CB320801, the Program for New Century Excellent Talents in
University of Ministry of Education of China under Grant No. NCET-10-0728.

∗Corresponding Author
�2012 Springer Science +Business Media, LLC & Science Press, China



Ming Wang et al.: 2D-Manifold Boundary Surfaces Extraction from Heterogeneous Object on GPU 863

as BSHO. It generates 2D-manifold boundary surfaces
and distinguishes different material components with-
out ambiguity. A special hierarchical data structure
is designed to organize the extracted surfaces, which
contains the hierarchical information of heterogeneous
object, i.e., boundary surface, interface and separating
point. Here, the boundary surface is a 2D-mainfold
surface enwraping the homogeneous component, the in-
terface is a 2D-mainfold surface patch to separate two
material components, the separating point is a point at
which two or more materials meet. Fig.1 demonstrates
our algorithm by using three examples. The BluntFin
model consists of three materials, the Hand model con-
tains blood vessel and bones, and the Torso model is
filled with organs and bones. The main contributions
of our algorithm include:

• An efficient method is proposed for extracting the
boundary surfaces from a heterogeneous object in one
pass, and the extracted boundary surfaces are guaran-
teed to be 2D-manifold.

• The intersection information between or among
multiple materials is obtained simultaneously.

• A special data structure is designed for the boun-
dary surfaces and the intersection information.

• A GPU implementation of the algorithm is also
designed.

The rest of the paper is organized as follows. Af-
ter describing related work in Section 2, we introduce
our BSHO algorithm in Section 3, which includes ex-
tracting and rendering steps. The details of the GPU
implementation is presented in Section 4. Section 5 is
the experimental results and discussion, followed by the
conclusions in Section 6.

2 Related Work

The proposed algorithm is closely related to isosur-
face extraction and heterogenous object modeling.

Isosurface extraction is one of the fundamental tech-
niques for visualizing volume data. The Marching
Cube algorithm (MC) is the representative one[2]. Even
though the extensions of MC algorithm[4-5] are ro-
bust and efficient, they are not able to process the

heterogeneous objects. Nielson[6] ever proposed a rough
idea to process heterogeneous volume data. He di-
vided a heterogeneous tetrahedron into homogeneous
material parts by splitting its edges, faces and tetra-
hedron at mid-edge points, mid-face points and mid-
tetrahedron point respectively. Due to lack of efficient
data structure, only triangle soup is obtained to sepa-
rate different materials. The method is still far from be-
ing matured for extracting the boundary surfaces from
the heterogeneous objects consistently. First, the ex-
tracted surfaces are not 2D-manifold. Secondly, there
is no global intersection information available between
or among different materials. Thirdly, the time com-
plexity of the algorithm is too high. Bonnell et al.[7]

solved the problem from a purely mathematical view-
point, which can generate similar results with those of
Nielson’s method[6]. Wu et al.[8] extended the MC algo-
rithm to the multi-material case, namely multi-material
marching cubes algorithm (M3C). The approach is to
separate a cube which contains more than two face-
centered nodes, which may lead to complex cases in
polygon triangulation step. The smoothing step will
produce pleasant visual effect but might cause volume
shrinkage. In addition to primal methods, dual met-
hods are also widely adopted in heterogeneous object
surface reconstruction. Wang[9] not only modeled the
heterogeneous object but also accelerated the modelling
process by parallel computing. And the method pro-
posed by Ju et al.[10], combining the Extended March-
ing Cubes method with dual method, creates polygons
from points and normal data stored on edges in the
grid. Feng et al.[11] combine the tri-linear contouring
and volume rendering to display the heterogeneous ob-
ject on GPU directly.

In computer-aided design community, representation
and modeling of heterogeneous objects is also an impor-
tant topic[12-13]. Pratt et al.[14] classified the represen-
tation methods into three types, i.e., exact boundary-
based parameterizations of object interiors, volume dis-
cretization approaches and non-boundary conformant
parameterization methods. Wang[1] meshed a hetero-
geneous object with 2D-manifold surfaces. However the

Fig.1. Examples of boundary surface extraction from heterogeneous objects. (a) The BluntFin consists of three materials. (b) The

Hand contains blood vessels and bones. (c) The Torso contains multiple organs and bones.
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intersection information between or among different
materials cannot be obtained explicitly since each
boundary surface is optimized separately. Shammaa
et al.[15] combined region growing and graph-cut met-
hods to classify the volumetric model into its compo-
nent materials and adopted a generalized MC algorithm
to generate triangulated mesh surfaces. They also pro-
vided a quality measure to evaluate the extracted iso-
surfaces. However, the extracted surfaces may be de-
graded when the number of materials is more than 3.

In general, the boundary surface extraction algo-
rithms for heterogeneous objects are very space and
time consuming. GPU provides us the opportunities
to achieve performance gains. Pascucci[16] first used
vertex shaders of programmable graphics hardware to
extract the isosurface. Since the resulting geometries
cannot be persistently stored, the extraction process
has to be performed frame by frame. Klein et al.[17]

and Kipfer et al.[18] gained significant improvements
by taking advantage of the superbuffers provided by
some ATI graphics cards. However the commonality
and reusability of their algorithms are limited. Bua-
tois et al.[19] obtained extra performance gains by stor-
ing isosurface in texture memories. With the advent of
CUDA (Compute Unified Device Architecture)[20], the
researchers are more convenient to exploit the paral-
lel processing capabilities of modern GPUs[21]. To our
knowledge, there is no attempt to mesh a heterogeneous
object on GPU yet.

3 BSHO Algorithm

In our algorithm, the input is regular cubical scalar
volume data. The volume data is segmented into diffe-
rent materials. Each grid point is assigned to a mate-
rial index according to its scalar value. Our goal is to
extract boundary surfaces so that each material is sepa-
rated from others. Furthermore, the global intersection
information between or among different materials are
implied naturally in the extracted boundary surfaces.
As described and analyzed above, it is extremely diffi-
cult to extract boundary surfaces from the cubical data-
set directly. Alternatively, each cube is subdivided into
six tetrahedra and the extraction is performed in each
tetrahedron. A hierarchical data structure is carefully
designed to record the 2D-manifold boundary surfaces
information and the global intersection information.

3.1 Hierarchical Data Structure

Supposing there are nmaterials in the heterogeneous
object H , the classifying function M(p) will return a
material index between −1 and n− 1 according to the
scalar value F (p) at the sample p, where −1 indicates
the materials that we are not interested in. Let Ωu be

the boundary surface of the material u. Then there are
totally (n+1) boundary surfaces in H . The boundary
representation of the heterogeneous object H is defined
as follows:

H =
⋃

i=−1..n−1

Ωi. (1)

Let Γ(u,v) be the interface between materials u and v.
Obviously Γ(u,v) = Γ(v,u). There are total ((n + 1) ×
(n+2)/2) interfaces in H at most. Then the boundary
surface of material u(u ∈ [0, n− 1]) can be represented
as the union of related interfaces:

Ωu =
⋃

i=−1..n−1,i�=u

Γ(u,i). (2)

Inferring from (2), it would be a curve segment
ψ(u,v,w) where three materials u, v and w meet:

ψ(u,v,w) =Ωu

⋂
Ωv

⋂
Ωw = Γ(u,v)

⋂
Γ(v,w)

=Γ(u,v)

⋂
Γ(u,w) = Γ(u,w)

⋂
Γ(v,w). (3)

Similarly, it would be an intersection point where four
materials meet. The intersection point can also be de-
scribed as the intersection among three interfaces as
follows:

ϑ(u,v,w,z) =Ωu

⋂
Ωv

⋂
Ωw

⋂
Ωz

=Γ(u,v)

⋂
Γ(u,w)

⋂
Γ(u,z)

=Γ(u,v)

⋂
Γ(v,w)

⋂
Γ(v,z)

=Γ(u,w)

⋂
Γ(v,w)

⋂
Γ(w,z)

=Γ(u,z)

⋂
Γ(v,z)

⋂
Γ(w,z). (4)

According to above analysis, we can draw a conclu-
sion that the interface is the key element to our boun-
dary surfaces extraction algorithm. An interface can be
fully defined by separating points on or in the tetrahe-
dron. The definition and extraction of separating point
will be introduced in detail in the following subsection.
The pseudocode of our BSHO algorithm is shown in
Algorithm 1.

Algorithm 1
1: Input: Segmented volume data
2: for each cube do

3: Subdivide the cube into six tetrahedra;
4: for each tetrahedron do
5: Generate case index of the tetrahedron;
6: Extract and compute separating points ac-

cording to the case index;
7: Triangulate the separating points to form se-

parating triangles;
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8: end for
9: end for
10: Combine shared separating points for preserving 2D

manifold;
11: Calculate normal vector for each separating point;
12: Group separating triangles to form interfaces;
13: Group interfaces to form boundary surfaces;

3.2 Extracting Separating Points from
Tetrahedron

A tetrahedron can be subdivided into parts with tri-
angular meshes so that each part is of homogeneous
material. Similar to MC-like methods, we assume that
there will be a bi-point on the tetrahedral edge if its two
end points are of two materials. Similarly, there will be
a tri-point in a tetrahedral face if its three vertices are
of three materials and a tetra-point in a tetrahedral
volume if the tetrahedral vertices are of three or four
materials. As shown in Fig.2(d), the points 4 ∼ 9 are
bi-points, and the points 10 ∼ 13 are tri-points and
the point 14 is a tetra-point. All of them are called
separating points, whose data structure is described in
Algorithm 2 as follows:

Fig.2. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. u, v,

w and z at the tetrahedron corners are material indices. Except

for the homogeneous case, there are still four cases, which are of

more than one material and should be subdivided. Two-material

tetrahedron can be subdivided into two parts by one (a) or two

(b) triangles, while three-material tetrahedron by 8 triangles (c),

and four-material tetrahedron by 12 triangles (d).

Algorithm 2.
1: //Data structure of a separating point
2: struct VERTEXINFO {
3: float 4 fPos; //the position of the point
4: float 4 fNormal[4]; //the normals for materials
5: unit nMaterial[4]; //the material indices

6: unit nCount[4]; //the number of triangles
}

Each vertex of the tetrahedron can be classified and
assigned as one of material indices. Except for the
homogeneous case and other configurations which can
be reached by rotation and symmetry, there are still
four cases need to be considered. The four cases and
their separating triangles are shown in Fig.2. Each in-
terior separating triangle is defined by three separat-
ing points. The information of the separating trian-
gle, such as the separating points and material types at
both sides of the triangle, will be recorded. They are
very important for us to generate 2D-manifold boun-
dary surfaces. We distil a data structure of the triangle
as a vector of quintuple elements in (5), where P0, P1, P2

are indices of the separating points, while mf and mb
are the material indices of the front side and back side
of the triangle respectively.

Δ : (P0, P1, P2,mf,mb). (5)

We record three separating points counterclockwise
such that the normal direction of the triangle is from
high index material to low index material. For example,
the case in Fig.2(a), if u < v, the separating triangle
will be recorded as (7, 9, 8, u, v), otherwise (7, 8, 9, v, u).

The position of a separating point is calculated via
linear interpolation. In general, a material type is not
determined by an exact scalar value, but a scalar range.
In our paper, we will not address the problem on how
to choose these scalar ranges, i.e., the volume data seg-
mentation problem. Supposing the ascending thresh-
olds are given as λ0 = −∞, λ1, . . . , λN = +∞, the
sample point p(l,m, n) can be classified as follows:

M(p) = i ⇔ λi−1 < F (p(l,m, n)) � λi, (6)

where (l,m, n) is the grid index of sample p, and
F (p(l,m, n)) is the scalar value at sample p. In the
case that two neighboring samples, i.e., p(l,m, n) and
p(l + 1,m, n)) are classified as materials i and (i + 1)
according to (6), there will be a bi-point generated at
(l + δ,m, n) where δ can be simply assigned as 0.5 or
calculated by the following equation.

δ =
λ− F (p(l,m, n))

F (p(l + 1,m, n)) − F (p(l,m, n))
, (7)

where λ = λi. If the two neighboring samples are clas-
sified as i and j (j > i+ 1) type materials respectively,
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the threshold λ in (7) can be chosen as λi+λj−1
2 or any

values in the interval (λi, λj−1]. As for the tri-points or
the tetra-points, we compute their positions as the cen-
troid of the related bi-points or the related tri-points,
respectively.

3.3 Interfaces

After extracting the interior separating triangles
from the tetrahedra, the interfaces can be obtained by
clustering and grouping these triangles. An interface is
defined as the interior separating triangles set:

Γ(u,v) =
{ {Δs|mf = u,mb = v}, if u < v,

{Δs|mf = v,mb = u}, if v < u.
(8)

From above definition, we know that each triangle
will be applied twice, i.e., one for the material front
and the other for the back material. If we assigned an
average normal to each vertex as in the MC-like algo-
rithms, the rendering of the boundary surfaces would
be confused. To avoid this circumstance, we will intro-
duce a new approach to calculate the vertex normal for
each interface.

3.3.1 Normal Calculation

In a tetrahedron, the boundary surface patch cor-
responding to the material is the interface, which is
composed of corresponding interior separating trian-
gles. However, the interior separating triangles shar-
ing a separating point may be in different tetrahedra or
even in different cubes. To display an interface properly
and correctly, we compute the normal vectors of its
separating points on-the-fly, which can avoid the huge
amount queries of neighboring triangles in the same in-
terface.

Traditionally, the vertex normal in an isosurface can
be computed as the average normal of triangles inci-
dent to the vertex. However, the solution will cause
confused rendering result for the heterogeneous object
case. To address this problem, Wang[1] duplicated the
intermediate surfaces and Feng[11] set extracted inter-
faces opaque in volume rendering. In order to represent
the heterogeneous object without ambiguity, we will
calculate multiple normal vectors for each separating
point. Each normal vector corresponds to one mate-
rial, i.e., one boundary surface. It is an average normal
of the triangles, which are incident to the same separat-
ing point and in the same boundary surface. As to the
interior separating triangle Δ : (P0, P1, P2,mf,mb), its
normal corresponding to material u is

⎧⎨
⎩
N(Δ,mf) =

−−→
P2P0 ×−−→

P0P1, if mf = u,

N(Δ,mb) =
−−→
P0P1 ×−−→

P2P0, if mb = u.
(9)

The normal vector is then accumulated for each
separating point. The one-to-one relationship between
the normal vector and its material type is accomplished
by keeping the same order of the normal vector in the
fNormal array and the material type in nMaterial ar-
ray in its VERTEXINFO in Algorithm 2. Finally, the
number of interior separating triangles incident to the
separating point is recorded in the nCount [i]. The sepa-
rating point’s normal vector of the boundary surface
for material u is obtained by dividing fNormal [i] by
nCount [i].

3.3.2 Rendering Scheme

According to above description, the boundary repre-
sentation of a heterogeneous model is the union of the
boundary surfaces of different materials. Each boun-
dary surface is again the union of the interfaces related
to the material. Thus properly rendering of the inter-
faces is important to reveal the structure of the hete-
rogeneous object. Let Γ(u,v) be the interface between
materials u and v. It is rendered twice, one with the
normals about material u and one with v. Our render-
ing scheme can provide the users the adjacent materials
information immediately and intuitively.

3.4 2D Manifold Preservation of Boundary
Surfaces

Supposing the heterogeneous object H has (L+1)×
(M+1)×(N+1) samples and L×M×N domain cubes.
Each cube is subdivided into 6 tetrahedra as shown in
Fig.3.

Fig.3. A cube is subdivided into six tetrahedra. The points la-

beled from 8 to 50 are separating points.
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After extraction of the interior separating trian-
gles from tetrahedra, the triangle soup approximat-
ing the heterogeneous object boundaries is obtained.
Our aim is to traverse the triangle soup and check the
shared separating points of the triangles so that the
2D-manifold boundary surface for each material is gene-
rated. The rules of generating 2D-manifold interfaces
and boundary surfaces from the interior separating tri-
angles are described as follows:

• Merge the Separating Points Shared by Neighbor-
ing Cubes. The separating points on the cube edge
shared by the neighboring cubes will be merged. Only
the point with the smallest label should be preserved.
For example, vertex 13 in Cube(i, j, k) will be merged
and replaced with vertex 12 in Cube(i+ 1, j, k).

• Merge the points shared by neighboring tetrahedra
in a cube. The separating points on the tetrahedron
edge shared by the neighboring tetrahedra in a cube
will be merged. Only the point in the tetrahedron with
the smallest label should be preserved as shown in Ta-
ble 1. In Table 1, Ti

5
i=0 are six tetrahedra in the cube,

while Vi
14
i=0 are vertices in a tetrahedron as shown in

Fig.2(d). The entries in Table 1 are the indices of ver-
tices in a cube as shown in Fig.3. For example, the
vertex V4 in T3, labeled 11 in cube, will be merged and
replaced by the vertex V6 in T2.

The first rule takes priority over the second one.
Through above separating points merging rules, the

generated boundary surface for each material is 2D-
manifold, in which there is no redundant vertex.

4 GPU Implementation Details

As described above, the proposed BSHO algorithm
is well compatible with the parallel computing model.
Thus it can be accelerated by general-purpose GPU.

4.1 Software & Hardware Condition

CUDA presents a general-purpose parallel comput-
ing architecture[20]. It provides APIs to access the Ver-
tex Buffer Object (VBO) directly. Therefore, our al-
gorithm is implemented with CUDA on an NVIDIA
Quadro FX 5800 GPU which has 4 G video memory
and 240 CUDA parallel processing cores. Since it is
the most efficient way to render the triangular mesh by
combining VBO with shaders in OpenGL, we store the
extracted boundary surface meshes in VBOs.

4.2 GPU Implementation

There are a lot of GPU-based isosurface extraction
algorithms. However, none of them is related to repre-
sentation of heterogeneous object.

To generate 2D-manifold boundary surfaces, a merg-
ing operator is defined for the separating points. The
auxiliary arrays involved are CAV, V 2P and VA, which
are shown in Fig.4. CAV records the indices of tetrahe-
dra containing interfaces, V 2P records the addresses of
separating points, and VA indicates the first separating
point in a tetrahedron in V 2P . The GPU implementa-
tion details are described as follows:

Table 1. Separating Points Merging Lookup

Index V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

T0 0 5 1 6 21 13 8 26 17 22 30 43 31 39 45

T1 0 1 2 6 8 9 20 26 22 14 27 39 32 42 46

T2 0 2 3 6 20 10 11 26 14 23 28 42 33 44 47

T3 0 3 7 6 11 15 24 26 23 18 35 44 34 40 48

T4 0 7 4 6 24 19 12 26 18 25 36 40 38 41 49

T5 0 4 5 6 12 16 21 26 25 17 29 41 37 43 50

Fig.4. Frame of our kernels on GPU. (a) IF is the index VBO. It records the separating points’ locations in V 2P before performing

merging operation, and records the element indices after performing merging operation. (b) The dotted arrow means a merging

operation. It indicates the 4th separating point P(1,4) in Tetrahedron 1 and the 6th separating point P(0,6) in Tetrahedron 0 will be

merged as P(0,6).
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• Preprocessing (CPU side). The heterogeneous ob-
ject dataset is copied from main memory to video mem-
ory via cudaMemcpy function. Then several VBOs
(Vertex Buffer Objects) are allocated on the video
memory. As shown in Fig.4, the VBO SP with ver-
tex array buffer is for preserving the separating points
information, the other VBOs with element array buffer
are for recording the indices to the SP elements in the
interfaces. Each VBO can be efficiently accessed by
mapping a pointer to its buffer via the cudaGraphicsRe-
sourceGetMappedPointer function. The video memo-
ries for auxiliary data structures are also allocated in
advance. At last, the case table, listed in Appendix,
is binded on a constant memory via the cudaMemcpy-
ToSymbol function.

• Classify and Compact (GPU side). All the tetra-
hedra are numbered in an ascending order. It will be
video memory consuming to process all the tetrahedra,
which is still precious for modern GPU. Thus, we only
record the indices of tetrahedron containing more than
one materials in CAV array. By coding the material in-
dices of tetrahedron vertices in ascending order starting
from 1, we can obtain an unsigned integer case flag. In
this way, all the tetrahedron can be classified into 15
cases no matter how many materials the heterogeneous
object involves. The case table of 15 items could be
found in Appendix.

• Generate Triangles (GPU side). The separating
points which define the interior subdivision triangles
are recorded in the SP array, while the addresses of
these points are recorded in the V 2P array. As shown
in Fig.4, in the V 2P array, there are 11 elements cor-
responding to a tetrahedron since a tetrahedron con-
tains 11 separating points at most. The interior sub-
division triangles are generated according to the case
table in Appendix. The VBO for an interface (IF) col-
lects its triangles by recording their vertices locations
in the V 2P array instead of the SP array.

• Merge Shared Separating Points (GPU side). Each
element in the V 2P array will be assigned to a thread.
The thread will merge the corresponding separating
points shared by cubes and by tetrahedra according to
the two merging rules in Subsection 3.4. Here the GPUs
with computing capability 1.1 or higher and supporting
atomic operator are required because the normal and
count accumulation operations should be executed ex-
clusively.

• Average of Normal Vectors (GPU side). Each
separating point in SP has four normal vectors at most.
Each normal in each SP element corresponds to a
material. It is an average of the normals of triangles
related to the material.

• Calculate Indices (GPU side). Till now, the

number in an element of the interface VBO is a location
recording the address of the corresponding separating
point. It should be updated as the index of the SP ele-
ment. We first obtain the address of the corresponding
separating point via V 2P array. Then we compute the
index by dividing the address offset from the start ad-
dress of SP by the size of SP’s element.

• Vertex Shader (GPU side). The boundary sur-
face to the specified material is rendered via openGL
pipeline. The proper normal is selected via vertex
shader.

5 Experimental Results and Discussion

Our BSHO algorithm has been implemented with
C++, CUDA3.2 and OpenGL on a PC with Intel Core
i5-2300 2.8GHz CPU, 8 GB main memory and NVIDIA
Quadro FX 5800 GPU. Among the examples, both real
and synthetic datasets are adopted.

The BluntFin dataset is the “teapot of CFD visuali-
zation”, which was provided by Hung and Buning[22]

and widely adopted as the test dataset in geometric
and visualization communities. The dataset adopted
in our implementation is a re-sampled version which
is freely available at http://www9.informatik.uni-
erlangen.de/External/vollib/. As shown in Fig.5, the
BluntFin (Fig.5(a)) is composed of three materials, i.e.,
brown material (Fig.5(b)), olive material (Fig.5(c)) and
teal material (Fig.5(d)).

The sample value of the brown material is in
the range (10, 35], olive material in (35, 60] and teal

Fig.5. BluntFin dataset (a) is composed of three materials (b),

(c), and (d). The boundary surface of each material is formed by

merging related interfaces. We can obtain not only the boundary

information of each component but also the adjacent component

information using our BSHO algorithm.
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material in (60, 255] respectively. We first generate the
interfaces between the materials with the thresholds
{10, 35, 60, 255} and then group the related interfaces
to form boundary surfaces. Let “b”, “o” and “t” be
noted as the brown, olive, teal materials and “−1” be
the material that we are not interested in. As shown in
Fig.5, there are five interfaces generated in total. They
are Γ(b,−1) (Fig.5(f)), Γ(b,o) (Fig.5(g)), Γ(o,t) (Fig.5(j)),
Γ(0,−1) (Fig.5(k)), and Γ(t,−1) (Fig.5(m)), respectively.
The boundary surface of olive material, Ωo (Fig.5(h)),
is composed of the interfaces Γ(o,−1), Γ(o,b) and Γ(o,t).
Thus Ωo directly represents the boundary surface of
olive-material component and also intuitively provides
the adjacent material information. Ωb and Ωt can also
be obtained similarly by merging their related inter-
faces. Fig.6 is the results of MC method with isova-
lues 10, 35 and 60 respectively. It is evident that the
MC method cannot extract the boundary surfaces of
different materials thoroughly. Furthermore, it cannot
provide the interface information of adjacent materials
either.

Fig.6. Isosurfaces in (a), (b), and (c) are extracted by the MC

algorithm with isovalues 10, 35 and 60 respectively. The MC al-

gorithm is not able to extract multiple boundary surfaces in one

pass. It cannot extract the boundary surface of the olive material

as shown in Fig.5(c) either.

Fig.7 gives an example of synthetic dataset, which
is composed of three material components and is sur-
rounded by air. The thresholds for the three materials
are {20, 60, 110, 160}. As shown in Fig.7(a), three

Fig.7. The heterogeneous object (a) is composed of three ma-

terials (b), (c), and (d). It is surrounded by air, which is the

uninterested material. Three of four materials meet at red curves

and four materials meet at yellow point. (f) is the zoom in of the

are of marked by blue rectangle of (e), where the sharp features

are not well extracted.

material components meet or intersect at red curves,
which can be obtained by connecting the related tri-
points and tetra-points. Four materials, including three
materials and the air, meet at yellow points. Fig.7(f) is
the local zooming in of the area marked by blue rect-
angle in Fig.7(e). The sharp features on the boundary
surface cannot be preserved probably. It is the weak-
ness of the BSHO algorithm.

The third example is a hand model (Fig.8), where
the vessel and bone are segmented in advance. The
boundary surfaces of vein and the bone are extracted.

Fig.8. Vein (a) and bone (b) are two components of the hand

model.

The last dataset is the Utah torso model. It is a
tetrahedral volumetric mesh. The conductivity ten-
sors are stored with the elements. The details about
the model can refer to [23]. We get the sample values
of conductivity by SCIRun software[24]. As shown in
Fig.1(c), it contains much more organs than hand. In
our implementation, six organs are extracted simulta-
neously in one pass. As shown in Fig.9, they are liver,
kidney, lung, bone, artery, and heart.

Fig.9. Utah torso model contains liver (a), kidney (b), lung (c),

bone (d), artery (e) and heart (g).

The statistic of the examples is listed in Table 2.
In general, our GPU implementation is faster than the

Table 2. Details of Our Test

Dataset Materials Size Triangles CPU (s) GPU (s)

BluntFin 3 256 × 128 × 64 961 350 42.36 1.62
Synthetic 3 64 × 64 × 64 42 848 0.07 0.08
Hand 2 256 × 128 × 256 1 420 234 11.01 2.45
Torso 6 199 × 199 × 249 2 262 800 34.60 3.78
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CPU implementation one order of magnitude except for
the synthetic dataset since the size of the dataset is very
small. According to our experiments, it will take much
more time to process the dataset which contains more
tri-points and tetra-points. It is the reason why the
BluntFin model is the most time-consuming on CPU.
In general, for a dataset of (L+ 1)× (M + 1)× (N +1)
samples and J materials involved, the time complexity
of the BSHO algorithm is O(L×M×N×J). Thus the
runtime is dependent on the dimension of the dataset
and the number of materials involved. Another aspect
is the space complexity. The proposed BSHO algorithm
requires much more memory than the MC-like algo-
rithms. Because there are multiple boundary surfaces
are extracted in one pass so the stage of extraction sepa-
rating points will makes heavy use of the video memory.
For example, the Utah torso dataset needs nearly 2G
video memory.

6 Conclusions

In this paper, we propose a novel algorithm for ex-
tracting the boundary surfaces of different materials
from a heterogeneous object. The boundary surfaces
are 2D-manifold. The intersection information among
different materials are explicitly recorded in the inter-
faces. The GPU implementation of the algorithm is
also given.

In future, we will improve our algorithm from two
aspects. One is to adopt more reasonable material clas-
sification approach. The other is to compact the ex-
tracted results. We will also extend the algorithm to
the cubical case directly.
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Appendix

In theory, there are total 44 cases for a heterogeneous
tetrahedron. Only five cases need to be considered,
since the other cases can be reached via rotation and
symmetry. As a compromise between theory and imple-
mentation, we classify the cases into 15 items and list
them as below. Each item is a quintuple-number vector
in the form of {P0, P1, P2, mf, mb}. P0, P1 and P2 are
the indices of separating points in the tetrahedron as
shown in Fig.2(d). The normal vector for material mf

of each separating point is calculated by
−−→
P2P0 × −−→

P0P1,

while
−−→
P0P1 × −−→

P2P0 for mb. The 15 items are listed as
below:

• 0x1111 :
None;

• 0x1112:
{7, 9, 8, 0, 3};

• 0x1121:
{5, 9, 6, 0, 2};

• 0x1211:
{4, 8, 5, 0, 1};

• 0x1122:
{5, 8, 7, 1, 2};

• 0x1212:
{4, 7, 9, 0, 1}, {4, 9, 5, 0, 1};

• 0x1221:
{4, 8, 9, 0, 1}, {4, 9, 6, 0, 1};

• 0x1222:
{4, 7, 6, 0, 1};

• 0x1123:
{12, 14, 5, 0, 2}, {12, 8, 14, 0, 3},
{12, 14, 9, 2, 3}, {13, 6, 14, 0, 2}, {13, 14, 7, 0, 3},
{13, 9, 14, 2, 3}, {14, 6, 5, 0, 2}, {14, 8, 7, 0, 3};

• 0x1213:
{11, 14, 4, 0, 1}, {11, 7, 14, 0, 3},
{11, 14, 8, 1, 3}, {12, 5, 14, 2, 1}, {12, 14, 9, 2, 3},
{12, 14, 8, 3, 1}, {14, 5, 4, 0, 1}, {14, 7, 9, 0, 3};

• 0x1231:
{10, 4, 14, 0, 1}, {10, 14, 6, 0, 2},
{10, 5, 14, 1, 2}, {12, 14, 8, 3, 1}, {12, 9, 14, 3, 2},
{12, 14, 5, 1, 2}, {14, 4, 8, 0, 1}, {14, 9, 6, 0, 2};

• 0x1223:
{11, 14, 4, 0, 1}, {11, 7, 14, 0, 3},
{11, 14, 8, 1, 3}, {13, 6, 14, 0, 2}, {13, 14, 7, 0, 3},
{13, 9, 14, 2, 3}, {14, 6, 4, 0, 1}, {14, 9, 8, 2, 3};

• 0x1232:
{10, 4, 14, 0, 1}, {10, 14, 6, 0, 2},
{10, 5, 14, 1, 2}, {13, 14, 7, 0, 3}, {13, 6, 14, 0, 2},
{13, 14, 9, 3, 2}, {14, 4, 7, 0, 1}, {14, 5, 9, 1, 2};

• 0x1233:
{10, 4, 14, 0, 1}, {10, 14, 6, 0, 2},
{10, 5, 14, 1, 2}, {11, 14, 4, 0, 1}, {11, 7, 14, 0, 3},
{11, 8, 14, 3, 1}, {14, 7, 6, 0, 2}, {14, 5, 8, 1, 2};

• 0x1234:
{10, 4, 14, 0, 1}, {10, 14, 6, 0, 2},
{10, 5, 14, 1, 2}, {11, 14, 4, 0, 1}, {11, 7, 14, 0, 3},
{11, 14, 8, 1, 3}, {12, 14, 5, 1, 2}, {12, 8, 14, 1, 3},
{12, 14, 9, 2, 3}, {13, 14, 7, 0, 3}, {13, 9, 14, 2, 3},
{13, 6, 14, 0, 2}
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