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Abstract—We present MobileSky, the first automatic method for real-time high-quality sky replacement for mobile AR applications.
The primary challenge of this task is how to extract sky regions in camera feed both quickly and accurately. While the problem of sky
replacement is not new, previous methods mainly concern extraction quality rather than efficiency, limiting their application to our task.
We aim to provide higher quality, both spatially and temporally consistent sky mask maps for all camera frames in real time. To this
end, we develop a novel framework that combines a new deep semantic network called FSNet with novel post-processing refinement
steps. By leveraging IMU data, we also propose new sky-aware constraints such as temporal consistency, position consistency, and
color consistency to help refine the weakly classified part of the segmentation output. Experiments show that our method achieves an
average of around 30 FPS on off-the-shelf smartphones and outperforms the state-of-the-art sky replacement methods in terms of
execution speed and quality. In the meantime, our mask maps appear to be visually more stable across frames. Our fast sky
replacement method enables several applications, such as AR advertising, art making, generating fantasy celestial objects, visually
learning about weather phenomena, and advanced video-based visual effects. To facilitate future research, we also create a new video
dataset containing annotated sky regions with IMU data.

Index Terms—semantic segmentation, mobile augmented reality, sky replacement.
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1 INTRODUCTION

THe development of Augmented Reality (AR) technol-
ogy blurs the line between reality and the virtual world.

The sky is ubiquitous in everyday environments, and its
augmentation is starting to attract attention in AR applica-
tions. For example, the stargazing app Stellarium Mobile1

helps users identify stars, constellations, planets, and other
deep-sky objects in real-time through interactive AR. The
sky replacement problem is one of the challenging problems
for sky augmentation. In mobile AR applications, we expect
a user to lift a mobile phone with its camera and get a
real-time sky replacement effect - the sky area is accurately
separated and replaced with a stylized skybox. Moreover,
the user can move the phone freely to get an immersive
experience of the virtual sky mixed with reality. Solving this
problem enables many AR applications, such as displaying
rare astronomical views, showing fantasy celestial objects,
creating fireworks, thunderstorm experience for automotive
and aerospace training [1], future sky visualization for Ar-
chitecture, Engineering and Construction (AEC) industries
[2], and many more possible contents.

In order to solve the sky replacement problem, matting
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techniques [3], [4], [5] can be used to extract sky regions
for each individual video frame. However, these methods
have limitations to achieve our goal since (1) they often
require user interactions [6]; (2) they are often too slow
to run in real-time, especially on mobile devices [7], [8].
In recent years, video editing methods dedicated to sky
replacement have emerged [9], [10], [11]. However, most
of them require high computing power or do not support
real-time performance. In addition, the above methods do
not consider virtual-real world fusion in AR since they have
mainly focused on offline images or videos. As far as we
know, no existing method is capable of providing real-time,
frame-by-frame sky mask maps with good quality at low
computation on mobile devices today.

Therefore, the sky replacement problem for mobile
AR applications poses new challenges that existing image
(video) editing methods do not have. First, we must extract
sky regions on mobile processors with low latency and low
computation while maintaining high segmentation accu-
racy. Second, we want to achieve a temporally consistent
composition of video frames. That means that the extracted
regions must not have significant instability (jitter) over
frames. Third, we want the composition to be visually
pleasing enough, especially with minimal artifacts at the
edges of the sky and non-sky regions. Finally, we must
ensure that the solution can be integrated into a real-time
mobile AR system.

We tackle these challenges through a novel and fast sky
replacement system in a coarse-to-fine fashion. Our method
leverages the real-time learning-based automatic segmen-
tation method and refines the segmentation result using a
real-time matting method to achieve an automatic, real-time
matting result. First, we present an efficient automatic deep

www.stellarium-labs.com/


JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. X, AUGUST 2022 2

C
am

er
a 

F
ee

d
C

om
pu

te
d 

M
as

k
S

ty
li

ze
d 

S
ky

(a) real-time sky replacement (b) with virtual blue sky with whales (c) with virtual dusk sky with balloons

Fig. 1. Our MobileSky is able to naturally blend a stylized skybox (i.e., a pre-made panoramic sky video with virtual 3D objects) and camera feed
into a visually pleasing AR scene in real time. This is enabled by real-time generation of a computed mask map based on the camera feed and
IMU data for replacing sky regions at a real-time rate. We demonstrate: (a) An illustration of MobileSky application; (b) and (c) Two captured frames
under different weather conditions and the composite examples with fantasy skies and imaginary objects.

semantic segmentation network to obtain a comparatively
accurate pixel-wise two-class segmentation result in real
time. It is a regular step for acquiring an original mask
map, and the map inevitably contains rough segmentation
edges and potentially misclassified pixels. There are two
kinds of misclassification, (a) false-negative, where pixels
belonging to the sky regions are misclassified as non-sky
results, and (b) false-positive, where pixels belonging to
the non-sky regions are misclassified as sky results. Direct
use of this mask map for sky replacement would result in
artifacts or flickering. Second, we design a series of sky-
aware constraints: (1) for temporal consistency improve-
ment: the false-negative mask pixels in the sky regions are
corrected by the pixel-wise correspondence between the
previous frame and current frame; (2) for position consis-
tency improvement: the false-positive mask pixels in the
non-sky regions are corrected by excluding the locations
where the sky regions are not likely to appear in frames;
and (3) for color consistency improvement: those weakly
classified mask pixels with significantly different colors are
re-evaluated by fully considering the color features of the
sky regions and non-sky regions. With these constraints,
we develop a per-pixel function to compute refined mask
maps. Finally, we adopt an image matting algorithm called
Guided Image Filter [12] to provide extra alpha values at the
intersection boundaries with respect to the shape of edges.

We address the first challenge by optimizing all the steps
of our pipeline in parallel so that our system is able to
run fast enough on handheld devices (a smartphone in our
experiments) with limited available resources. To tackle the
temporal consistency challenge, we align previous frame
and current frame using IMU (Inertial Measurement Unit)
data, which are correlated over frames, and solve it using
our newly developed temporal and position consistency
constraints. For the third challenge, we improve the rough
segmentation edges with more edge details and soft tran-
sitions by leveraging the color consistency constraint and
image matting.

In summary, our work makes the following technical
contributions:

• We present MobileSky, the first automatic sky replace-
ment method for mobile AR experiences. By taking
camera color frames and IMU data as inputs, our
method produces a pleasing augmented sky effect
running at around 30FPS (Hz). To the best of our
knowledge, our work is the first sky replacement
method that achieves real-time performance on mo-
bile devices.

• We propose FSNet, a novel lightweight sky seg-
mentation network, which outperforms lightweight
baseline segmentation models in terms of inference
speed and quality.

• We develop new sky-aware constraints to refine the
sky regions by fully considering the color, sky po-
sition, and temporal coherence across neighboring
video frames, and unify them into pixel-wise calcu-
lations of all the constraints to obtain better results.

• To facilitate future research, we create the first video
dataset containing annotated sky regions with IMU
data. The dataset contains 100 videos (around 29,000
camera frames) shot in various weather and en-
vironmental conditions. All videos were shot with
handheld devices.2

We demonstrate the effectiveness of sky replacement
maps produced by our method for mobile AR applications
with enhanced effects. We have tested our method on a
variety of video inputs and compared it against a set of
state-of-the-art semantic segmentation and sky replacement
algorithms. We also list evaluation metrics that reflect the
challenges discussed above and perform extensive numer-
ical evaluations. Finally, we conduct two user studies to
show that our results meet good quality rendering results
and accord with human preferences.

2 RELATED WORK

This work aims to efficiently create high-quality and
temporally-consistent video outputs where the sky regions

2. https://github.com/guoccoo/MobileSky

https://github.com/guoccoo/MobileSky
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in an input video are replaced by stylized skyboxes. Collec-
tively, this task entails image and video semantic segmen-
tation, image and video matting, and image and video sky
replacement. In this section, we review the closely related
work in these areas.

2.1 Image and Video Semantic Segmentation

Sky segmentation in videos plays a significant role in the
proposed sky replacement system. In order to find explicit
sky regions, hand-crafted visual features were regarded as
effective information to classify sky [13], [14], [15]. However,
the results of such methods are often undesired because of
the complex environment. On the other hand, with the de-
velopment of deep convolutional neural networks (CNNs)
[16], [17], the performance of semantic segmentation was
boosted [18], [19], especially for complex real road scenes
like Cityscapes [20].

Therefore, we employ deep learning-based methods to
segment sky regions reliably because of their high per-
formance [21], [22], [23], [24], [25]. After a comprehensive
study of image or video segmentation techniques, we found
that, in practice, sky segmentation (essentially a binary
classification problem) was easier than the aforementioned
general multi-class segmentation tasks. In other words, re-
cent image segmentation methods are generally able to meet
the segmentation accuracy requirement in our task. But the
high computation cost required by the high-performance
networks [18], [19], [21] is unaffordable for handheld de-
vices. Video object segmentation methods, by taking tempo-
ral consistency into consideration, are usually designed for
desktop PCs, and they are too time-consuming to be used on
mobile devices [26], [27], [28]. We thus are more interested
in building an efficient and effective segmentation network
that is friendly for mobile devices.

One simple way to accelerate the segmentation per-
formance is to use a lightweight backbone network, like
MobileNetV2 [29], MixNet [30]. Whereas, with complex seg-
mentation prediction modules, the efficiency on handheld
devices is still not guaranteed. In terms of segmentation
models used in previous sky replacement methods [9], [10],
such a requirement of fast inference speed is still left without
consideration.

In summary, our approach differs from the segmentation
components in previous sky replacement methods [9], [10]
in that we develop a novel and efficient segmentation model
that allows our approach to outperform previous works in
both processing speed and quality.

2.2 Image and Video Matting

Image or video matting is the most commonly used tech-
nique for background replacement. Matting can produce
visually more pleasing composites than segmentation tech-
niques but often requires human interactions (annotations)
or known background information [31]. Examples include
traditional trimap-based matting methods (e.g., Poisson
matting [32], closed-form matting [6], KNN matting [33],
information-flow matting [34]), neural network trimap-
based matting (e.g., context-aware matting [35], index mat-
ting [36], and sampling-based matting [37]).

However, most of the aforementioned methods cannot
achieve real-time performance on mobile devices since they
mainly concern the matting quality rather than efficiency. In
this paper, we do not directly perform the image matting
process to generate the mask map. Instead, we generate
high-quality segmentation results automatically in real time
on mobile devices and then refine the results using the
matting technique of [12] while keeping soft transitions at
the segmentation boundaries.

2.3 Image and Video Sky Replacement

There have been several methods dedicated to sky replace-
ment. For example, Lalonde et al. [14] used a traditional
rule-based model to remove sun and clouds from the sky.
Kaufman et al. [13] performed sky enhancement on photos
by analyzing the color, position, and shape of sky regions.

On the other hand, sky regions can also be detected
and segmented by performing semantic scene parsing on
input images, which helps better understand the overall
image content and layout [38]. Representative methods of
scene parsing include exemplar-based label transfer [39]
and superpixel matching [40]. To compose the replacement
result, Halperin et al. [41] used a small CNN network to
segment the sky region and estimate camera motion. This
method, however, is more appropriate for far-field videos
than for near-view videos. The latter, on the other hand,
are frequently shot by AR applications. Tsai et al. [9] used
FCNN segmentation both to segment the sky and to retrieve
candidates from which to transfer sky, based on semantic
layout similarity. Zou [10] proposed a purely vision-based
approach with motion estimation of video for dynamic sky
replacement and harmonization. However, most of them
tend to focus on offline image/video editing that does not
require real-time performance. Tsai et al. [9] mentioned
that it took at least 0.1 seconds to get corresponding sky
segmentation results on a desktop platform. Even with
a modern desktop-level GPU, Zou’s method [10] is only
capable of achieving 24 FPS with a Resnet50 CNN backbone.
This demonstrates that when it comes to achieving real-time
speed on mobile devices, the computation costs of those
methods are prohibitively expensive. To meet real-time
requirements, we instead elaborately design a lightweight
network structure and leverage spatial and temporal infor-
mation from camera frames. We assess our approach’s real-
time performance on both desktop and mobile devices.

To our knowledge, there are only very few methods
of video sky enhancement that achieve near-real-time per-
formance on mobile devices. Fakeye [11] extracts sky re-
gions in real time on smartphones by leveraging the y-
coordinate and RGB color channels of each pixel. However,
their method can only achieve an mIoU (an accuracy metric,
see Sect. 4.3) of 76.89%, introducing noticeable segmentation
errors. In contrast, we use deep learning to significantly
improve prediction accuracy and refine spatial-temporal
correlation steps to achieve better visual results.

3 METHOD

In this section, we will describe our fast sky replacement
method. The overview of our method is shown in Fig. 2. In
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Fig. 2. The pipeline of our real-time sky replacement. It mainly consists of two parts: Fast Sky Segmentation and Refinement. With mobile camera
frames and IMU data as inputs, we first estimate the sky regions using a pre-trained deep neural network FSNet to obtain rough mask maps.
FSNet is an efficient single-image sky segmentation network following an encoder-decoder architecture. The encoder includes three Depth-wise
Separable convolution [29] modules and two groups of our novel FS-conv (Fast Sky segmentation convolution) blocks as feature extraction modules.
The decoder includes two multilevel 2× upsampling feature fusion modules and an 8× upsampling as the pixel-wise segmentation classifier. The
dimensions above the each module are the output dimensions. The mask maps from FSNet are then refined by a highly parallelized constraint
calculation to maintain temporal, position, and color consistency, and they are further improved with more edge details and soft transitions by
leveraging an image matting method. Finally, the fine-tuned mask map is used to blend the color-harmonized camera frames with the virtual stylized
skyboxes.

the first step, each camera video frame is passed through
a lightweight encoder-decoder for real-time sky segmenta-
tion (Sect. 3.1), resulting in a binary mask image. In the
refinement step (Sect. 3.2), the segmented mask map is
then adjusted and refined by an efficient constraint calcu-
lation (Sect. 3.2.4) with the temporal (Sect. 3.2.1), position
(Sect. 3.2.2), and color (Sect. 3.2.3) consistency constraints.
The refined segmentation result is matted further using the
Image Guided Filtering [12] algorithm to produce a result
with soft edge details (Sect. 3.2.5). Following the completion
of all of the preceding steps, the matte image is used as
an alpha mask map to compose the actual frame and the
stylized sky.

3.1 Real-time Sky Segmentation
We will first introduce our FS-conv block, a novel
lightweight feature extraction module (see Sect. 3.1.1). Then
we will go over the details of FSNet (see Sect. 3.1.2), a
lightweight encoder-decoder network that includes FS-conv
groups. Finally, the FSNet segmentation results are con-
verted and fed into the refinement step to correct minor
segmentation errors.

3.1.1 FS-conv block
Fig. 3a depicts our newly developed deep feature extraction
module, FS-conv block. An FS-conv block captures larger
spatial correlations while simultaneously reducing the num-
ber of parameters by leveraging Depth-wise Separable Con-
volution [42] and Dilated Convolution [43]. The former
splits the convolution computation into two steps: depth-
wise and point-wise. Depth-wise convolution, as shown on
the right side of Fig. 3a, employs a single convolutional
filter for each input channel. Dilated Convolution, depicted
on the left side of Fig. 3a, expands the kernel by inserting
holes between its consecutive elements, thereby increasing
the receptive field of the feature map. In addition, at the end
of the FS-conv block, a channel shuffle operation is used

H×W×C1 H×W×C1H×W×C1 H×W×C1

Conv

FS-conv block

Conv Shuf�le

Depth-wise separable convolution
+ BN + Activation

Dilated convolution
+ BN + Activation

H×W×C H×W×C
H×W×C

H×W×C1
H×W×C

(a) The structure of an FS-conv block

FS-conv
group = FS-conv

block ×10 (8)

(b) The numbers of blocks in FS-conv groups

Fig. 3. Detailed illustrations of FS-conv block and FS-conv group. (a)
The main components of an FS-conv block are dilated convolution and
depth-wise separable convolution, with a channel shuffle operation to
permeate the information. (b) The numbers of blocks in FS-conv groups
are 10 and 8 (10 for the first FS-conv group and 8 for the second).

to allow information interaction across different channels.
Fig. 3b shows the number of FS-conv blocks in each FS-conv
group.

3.1.2 Lightweight Network Structure
We design a new lightweight network structure, FSNet,
based on the FS-conv block, as shown in Fig. 2. Its goal is
to improve segmentation efficiency and extract multi-scale
features from different levels to refine prediction results.

FSNet is made up of an encoder and a decoder. First,
the encoder uses three Depth-wise Separable Convolution
modules to reduce the size of the feature map to 1/8 of
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TABLE 1
The architecture details of FSNet. Output sizes are given for an

example input of 3× 480× 480.

Operator Channel Number Stride Kernel Output
(C ×H ×W )

En
co

de
r DSC 64 3 2 7× 7 64× 60× 60

FS-conv 64 1 2 3× 3 64× 30× 30
FS-conv 64 9 1 3× 3 64× 30× 30
FS-conv 128 1 2 3× 3 128× 15× 15
FS-conv 128 7 1 3× 3 128× 15× 15

D
ec

od
er Upsampling - - - - 192× 30× 30

Upsampling - - - - 256× 60× 60
conv 256 1 1 1× 1 256× 60× 60

Upsampling - - - - 2× 480× 480

the original input image. Next, in order to exploit high-
level semantic information and reduce the computational
cost even further, we built two FS-conv groups composed
of stacked FS-conv blocks. The decoder receives features
with varying resolutions and fuses them together before
upsampling them to the original size. A softmax layer is
used at the decoder’s end to make the final prediction (2
categories for each pixel: sky and non-sky). To keep our
network lightweight, we simply use bilinear interpolation
to upsample the 1/8 prediction result.

Table 1 shows the architecture of the best network model
based on our experiments. DSC’s best architecture is as
follows: kernel=7 × 7, stride=2, and padding=3. The best
architectures for standard convolution and FS-conv groups
are: kernel=3×3, stride=1, and padding=1. It is worth noting
that the first FS-conv block in each FS-conv group reduces
the size of the feature map by half (i.e. stride=2). During
training, we employ the cross entropy loss to optimize the
entire network.

In Table 2, we compare the performance of various
FSNet network on the ADE20K validation set. The result
was obtained using the ADE20K dataset and the identical
training settings, with an input resolution of 512 × 1024.
According to the experimental data, setting f = 10 and
s = 8 yields the best segmentation accuracy.

3.1.3 Real-time Inference
After deploying to a mobile platform with a third-party in-
ference [44], we observe that it can reach real-time inference
speed under 480 × 480 (or 640 × 360) input, and the mask
maps are upsampled to the original size (for example, 1920
× 1080) to get the final composite results.

Let I represent an input frame from the camera, and
fsegi ∈ [0, 1] denote the classification value for the i-th pixel.
This value indicates the probability that a pixel is within
the sky regions. All the values fsegi form a vector, denoted
as fseg . The binary classification for fseg by using a simple
threshold of 0.5 gives us Pseg . Fig. 4 gives several examples
of I, fseg , and Pseg , separately.

Although the output of the network Pseg might already
achieve overall high classification accuracy, directly treating
the classification results as a sky mask map would easily
cause blending artifacts at the segmentation boundaries
[10]. For example, minor errors are obtained in the bottom
right figure in Fig. 4. Such errors dramatically occur over
consecutive frames, leading to unstable results. To solve this
issue, we consider refining the segmented images in a post-
process to obtain more desirable matting results.

TABLE 2
Performance comparison on the ADE20K validation set with various
FSNet network architectures, where f and s represent the number of
blocks in the first and second groups, respectively. The best model

performance is shown in bold.

f s Params mIoU (see Sect. 4.3)
4 8 0.82M 81.25%
6 6 0.83M 82.94%
8 8 0.85M 86.46%
10 8 0.87M 90.17%
10 6 0.83M 84.68%
16 12 1.22M 88.31%

(a) I (b) fseg (c) Pseg

Fig. 4. Input and output examples of our sky segmentation network.
(a) Sampled frames of a mobile camera I. (b) Network output results
fseg , mapped to a colormap for illustration. (c) The binary classification
masks Pseg computed from fseg . The sky pixels are displayed with the
semi-transparent light red color for illustration. Note that some pixels are
classified as wrong results, which will be fixed in the refinement step.

3.2 Mask Map Refinement

In this section, we aim to correct those misclassified pixels
that were mentioned in the previous section efficiently.

After experimenting with a variety of sky replacement
scenarios, we summarize three types of pixels or objects
that might lead to common and visually noticeable misclas-
sifications: (1) some pixels of clouds in the sky regions; (2)
some objects on the ground with colors similar to the sky
regions, such as windows or water surfaces; (3) some objects
close to the sky regions with complex boundaries (e.g., roofs,
leaves).

To address these misclassification cases, we design a
temporal constraint of correlating between the previous and
current frames to refine the first type of misclassification
(Sect. 3.2.1). We solve the second one by identifying the po-
sition where the sky appears in the viewfinder (Sect. 3.2.2).
For the third one, we propose an adaptive color consistency
constraint to refine complex boundaries and objects close to
the sky regions but with significantly different colors against
the sky regions (Sect. 3.2.3). Note that this constraint cannot
solve all the third misclassification cases, since some error
pixels might have similar colors to the sky regions. As the
next step in this section, a parallelized constraint equation
is used to unify the constraints into a single framework,
to compute a refined mask map in parallel Sect. 3.2.4.
Following that, we employ a fast image matting method
to add extra alpha values to the mask map Sect. 3.2.5.
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(a) input (b) frame t (c) frame t+7 (d) frame t+9

(e) reprojecting (f) frame t (g) frame t+7 (h) frame t+9

Fig. 5. Illustration of mask maps with and without temporal consistency
refinement. In this example, we focus on the sky regions in frames t,
t + 7, and t + 9 with obvious improvements after refinement. (a) An
original frame from a camera video. (b), (c) and (d) Binary segmentation
results by our network, showing temporal instability (jitter) over frames.
Note that image-based semantic segmentation networks generally suf-
fer from such a jitter problem. (e) A composite image of reprojecting
the pixels of the previous frame to the current frame t (G channel) by
using the projection matrices estimated based on IMU data (R channel).
We only use one channel of each frame for illustration. Note that the
pixels in sky regions are perfectly aligned. (f), (g) and (h) Corresponding
segmentation results by our temporal consistency refinement. The sky
regions now have a more stable appearance.

Finally, a simple color harmonization is used to achieve
better composite results Sect. 3.2.6.

3.2.1 Temporal Consistency Constraint

In order to solve the potential instability caused by pixels
of clouds in the sky regions that are not correctly classified,
we rely on pixel-level correspondence between the previous
and current frames to filter out the misclassification errors.
Several commonly used correspondence methods are depth
estimation [45], feature point method [46], and optical flow
method [47]. However, these methods may fail due to the
scarcity of features in sky regions, or too slow. Instead,
we note that the sky regions can be considered to be at
infinity from a user’s perspective. Meanwhile, the motion
of a handheld device is relatively continuous for a short
period of time, meaning that the motion displacement of
sky regions can be ignored between two adjacent frames.

Based on these observations, we use a homography
matrix [48] H∆t to obtain the pixel-level correspondence
between frames t− 1 and t for the sky regions:

H∆t = KR∆tK
−1 = K(RtR

−1
t−1)K

−1, (1)

whereK is the camera projection (or intrinsic) matrix, which
can be retrieved from the device properties. Rt−1 denotes
the rotation matrix at time t− 1 and Rt denotes the rotation
matrix at t, which can be easily obtained from the IMU data.
H∆t reprojects the pixels of frame t − 1 to align with the
pixels of frame t, as shown in Fig. 5e.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Illustration of mask maps with and without position consistency
refinement. (a), (b) and (c) Examples of aligned sky regions constrained
by different IMU data. (d) An input video frame. (e) Incorrect segmenta-
tions typically occur at the edge where the sky meets the sea. (f) The sea
regions are correctly distinguished from the sky regions by our position
consistency constraint method.

Finally, we calculate the constraint wtemp
i,t for temporal

consistency. At each frame t, the per-pixel wtemp
i,t is calcu-

lated as follows:

wtemp
i,t =

{
1 if D2(Ii,t, Ii,t−1) < εtemp,
0 otherwise. (2)

where t − 1 indicates the value computed in frame t − 1
and reprojected by H∆t. In practice, H∆t is applied on the
UV coordinates of sampled textures on GPUs. D2 denotes
the Euclidean squared distance. We use the HSV color space
to calculate D2, since the HSV model corresponds to the
human perception of color similarity [49]. εtemp (Table 3)
represents for a small quantity of error. The above equation
is designed to maintain the sky regions as consistent as
possible between consecutive frames.

Fig. 5 shows an example of the effect of enforcing tem-
poral consistency. The top row shows segmentation results
from Sect. 3.1. Some false negative pixels bring instability
over frames. After using the constraint, these pixels are
corrected, as shown in the bottom row of the figure.

3.2.2 Position Consistency Constraint
As we all know, the sky regions cannot appear in the lower
part of the viewfinder of a smartphone when one holds the
device strictly vertically (we called this the standard pose,
assuming that a user is standing on or near the ground
rather than high in the air). However, in practice, the local
vertical direction of a captured frame is not always oriented
perpendicularly to the ground, as the user may rotate the
device freely when taking a photo. That is the reason why
we do not use the vertical position constraint in the segmen-
tation network. Fortunately, we can perform the constraint
refinement by using IMU data after the segmentation step is
finished.

The rotation matrix Rt derived from IMU data (also
mentioned in Sect. 3.2.1) is actually the rotation matrix from
the camera space to the world space, and the camera pro-
jection matrix K helps transform frames from local camera
coordinates to Normalized Device Coordinates (NDCs, de-
noted as n). Similar to Equation 1, we obtain the correspon-
dence between ni,t at frame t and ni,std of the standard pose
(i.e., people are positioned at the world space coordinate
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origin, holding the device strictly vertically, with horizon
lines running parallel to the x-axis and perpendicular to the
y-axis. Therefore, the matrix that transforms the standard
pose from the world space to the local camera space is an
identity matrix, E). More specifically, we have:

ni,std = (K(ERt)K
−1) · ni,t. (3)

Then, we use the y-direction (vertical) of ni,std to obtain the
position constraint. It can be written as:

wpos
i,t = smooth((0, 1, 0, 0) · ni,std), (4)

where wpos
i,t denotes the position constraint that the sky

regions are not allowed to appear in the lower part of
ni,std. smooth(x) ∈ [0, 1] is a smooth transition function
to avoid sharp borders. For example, smooth(x) = 0.5 +
0.5 ∗ tanh(20x) is used in practice in Fig. 6.

The top row of Fig. 6 shows examples of aligned sky
regions constrained by different IMU data, i.e., using the
IMU data to identify the position of horizon lines [50]. The
regions below the horizon will never have sky pixels. The
bottom row of Fig. 6 shows the correction of false positive
pixels in daily shooting scenes by the position constraint. In
addition, the constraint does not refine those non-sky objects
above the horizon (such as trees and buildings or objects
that obscure the user when shooting from an elevated
perspective). These objects will be refined in the next step.

3.2.3 Color Consistency Constraint

As described at the beginning of Sect. 3.2 as well as in
the previous paragraph, there might be some objects close
to the sky regions with complex boundaries, thus leading
to misclassification. These objects or pixels could not be
refined by the temporal or position constraint since they
tend to be near the segmentation boundaries, where the

(a) (b) (c)

(d) (e) (f)

Fig. 7. Illustration of color consistency improvement. (a) and (d) denote
fseg from Sect. 3.1. (b) and (e) are mask maps without color consis-
tency improvement. (c) and (f) are mask maps with color consistency
improvement. Note that color consistency is not always correct since it
loses local color features. Note that we only refine the pixels with weakly
classified values which (fsegi − 0.5) < εcol. This figure shows two types
of scenarios that can be refined using color-based correction methods:
the top row shows the ability to refine incorrectly classified pixels with
significant color differences from the same class; the bottom row shows
the ability to preserve outlines of small objects like leaves.

pixels fail to be aligned by IMU data or be judged as non-
sky regions. To solve this problem, we present a new color-
based sky-aware constraint to improve pixels that have sig-
nificantly different colors against the sky regions. Since com-
mon color-based background segmentation methods such
as histogram-based [51], clustering-based [52], and fuzzy-
based [53] methods do not support real-time performance,
we design a thresholding-like color constraint by taking the
average color of the sky regions and the average color of
neighbor pixels into account.

We use Isky to represent a color image copied from I (I
has already been mentioned above), but only containing the
pixels of the sky regions (the colors of the rest of the image
are always set to black). We use N to indicate the number of
all pixels in I, fseg , Pseg and Isky , since these images share
the same size as sampled textures on GPUs. Similarly, we
use Nsky to indicate the number of pixels belonging to the
sky regions.

Then we start to estimate the mean color in the sky
regions csky = (R,G,B), which is a vector of three color
channels. Here, the sky regions are obtained from the
previous sky segmentation step. The fundamental way to
calculate csky is by summing the colors of all-sky pix-
els and dividing the result by the number of sky pixels:
csky = 1

Nsky

∑
i∈N Ii ∗ P seg

i . However, the time complexity
of this step is O(N) in the number of pixels N . A time
complexity O(N) of such computation of each frame would
result in hundreds of milliseconds, making real-time per-
formance difficult to achieve. Thus, we exploit a speedup
strategy using a box filter with a k × k kernel to achieve
parallel calculation. The GPU implementation of a box filter
is data-paralleled at each pixel. First, the mean colors of Isky
and Pseg can be written as:

Isky =
1

N

∑
i∈N

Ii∗P seg
i , andPseg =

1

N

∑
i∈N

P seg
i =

1

N
Nsky.

(5)
In Equation 5, P seg

i is a binary classification value. If its
value is 1, the pixel is in the sky region, and vice versa.
Thus Pseg can be simplified by summing the number of
pixels in all the sky regions and dividing by N . Substituting
Equation 5 into the fundamental equation of csky , we can
obtain:

csky =
1

Nsky

∑
i∈N

Ii ∗ P seg
i =

1

NPseg
NIsky =

1

Pseg
Isky.

(6)
Then we replicate the filter logkN times of downsampling

to get the mean colors of Isky and Pseg , and then get csky .
The time complexity of calculating the mean color of an
image is k logkN .

Our task is to evaluate whether a pixel is closer to csky

or closer to the mean color of its neighbor pixels cbluri , i.e.,
1
R2

∑
j∈Si

Ij (where R is the size of a squared window S).
We use Bcol

i to indicate the estimated classification value. It
is described as:

Bcol
i = D(Ii, c

sky) < D(Ii, c
blur
i ). (7)

Similar to Equation 2, the Euclidean distance function D is
determined in the HSV color space.

It is worth noting that this straightforward color-based
classification may not produce good segmentation results.



JOURNAL OF IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. X, AUGUST 2022 8

As a result, only pixels with low classification values are
refined using this method. As stated in Sect. 3.1.3, the range
of fsegi is [0, 1], which means that the closer the value of fsegi

is to 1 (or 0), the more probable the i-th pixel is in the sky
(or non-sky) areas. Therefore, we only refine pixels with low
fsegi values (0.5 in our experiments). The constraint range is
described using wcol

i , which is expressed as follows:

wcol
i =

 1, if (fsegi − 0.5)2 < εcol

0, otherwise
, (8)

where εcol (listed in Table 3) is a threshold indicating the
active range of the color consistency constraint. For the sake
of clarity, we omit the subscripts showing the time since we
only address one frame at a time in this paragraph. That is,
wcol

i,t and Bcol
i,t (which will be further used in Equation 9) are

simplified to wcol
i and Bcol

i , respectively.
Two examples in Fig. 7 show the impact of color con-

sistency constraint. In the top row of the figure, the roof
pixels are successfully corrected because the colors of these
pixels have D values closer to cbluri . The bottom row shows
the corrections around boundaries. Such artifacts are less
obvious after the color refinement step.

3.2.4 Parallelized Constraint Calculation
To obtain a per-pixel refinement calculation for the fast sky
replacement task, we put all the constraints together as
follows:

Pi,t =w
pos
i,t ∗

(wtemp
i,t ∗ Pi,t−1 + (1− wtemp

i,t )∗
(wcol

i,t ∗Bcol
i,t + (1− wcol

i,t ) ∗ P
seg
i,t )),

(9)

where Pi,t and Pi,t−1 denote the refined pixel at frames
t − 1 and t, respectively. wtemp

i,t is the temporal consistency
constraint (see Equation 2). wpos

i,t is the position consistency
constraint (see Equation 4). wcol

i,t and Bcol
i,t are color consis-

tency parameters defined in Equation 8 and Equation 7,
respectively. All the values of Pi,t form the refined mask
map Pt.

From Equation 9, we can see that Pt is only related to
frames t−1 and t of the i-th pixel. Therefore, we can perform
a highly parallelized calculation for Pt, which will greatly

(a) (b) (c)

Fig. 8. A typical example showing the effectiveness of the entire refine-
ment step. (a) An input camera frame. (b) The poor segmentation result
without refinement. Note that the car below the horizon and the regions
close to the building are misclassified. (c) The result with our refinement
method.

(a) (b) (c) (d)

Fig. 9. An example of image matting improvement. (a) Part of an input
camera frame. (b) Pseg from Sect. 3.1. (c) Our refined mask map. (d) A
gradual transition at the intersection boundaries is obtained after matting
the mask map.

improve the execution speed. Fig. 8 is a typical example
showing the effectiveness of the refinement steps.

3.2.5 Fast Image Matting
To obtain a final matting map Q = G(I,P, εmat, Rmat,
smat), we use an efficient implementation [54] of Guided
Image Filtering [12] to add extra alpha values to the pixels
of edges. Here, G represents their guided filtering function,
and εmat, Rmat, smat are the regularization parameter, size
of the filter window, and subsampling ratio, respectively.
Fig. 9 shows a comparison of outputs obtained with and
without taking the guided filtering step.

3.2.6 Color Harmonization
Since the stylized skybox is pre-defined, it may not match
the style of a natural environment. To achieve better com-
posite results, we multiply the pixels of non-sky regions by
the ambient color of the skybox in the final shader. Note
that while color (style) transfer techniques [55], [56] might
achieve better harmonization, we have to make trade-offs to
ensure the efficient execution of our method.

4 RESULTS AND ANALYSIS

We evaluate the proposed algorithm for rendering compos-
ite images with stylized skyboxes by casually capturing a
large number of videos involving different types of scenes
from handheld smartphones.

4.1 Implementation Details
In order to test the AR effects on off-the-shelf smartphones,
we choose Unity® software3 as a cross-platform running
environment and embed the network module as a C++
native plugin. We also adopt the ARFoundation package,
which is a package officially supported by Unity® software,
for accessing the camera frames and IMU data of smart-
phones. Fig. 10 shows a complete pipeline for producing
the MobileSky AR application.

Training Details. Most well-studied segmentation
datasets do not cover rich sky scenes, such as CamVid [57]
and Cityscapes [20], which are limited to data captured in
urban landscapes from a driving car. We thus do not adopt
such data to train our model. As for other segmentation
datasets, like MS-COCO [58], Pascal-Context [59], COCO-
Stuff [58], they only focus on “things” such as salient objects
but not on “stuff” like major scene background components

3. https://unity.com/

https://unity.com/
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Fig. 10. The structure of our implementation.

so that they are not able to provide sufficient information
of sky. Hence, we prefer to use ADE20K [60], a dataset con-
taining indoor or outdoor sky scenes, as the main training
dataset. To make the network be more sensitive to chang-
ing weather and environments, we combine the ADE20K
[60] and SkyFinder [15] datasets to train our segmentation
model. In detail, ADE20K is annotated with 150 different
classes covering the most common things. SkyFinder only
contains sky annotation information, which accounts for
providing annotated sky under different weather condi-
tions. We discard all the image patches with sizes less than
480×480 to fit with the crop size. To avoid overfitting,
we perform commonly used data augmentation, such as
randomly scaling the image in the range of 0.5 to 2.0 and
randomly horizontal flipping with probability 0.5. On two
RTX 2080Ti GPUs, all models are trained with 160 epochs.
The Cross-Entropy loss is used as the objective function.
We adopt mini-batch stochastic gradient descent (SGD) [61]
to optimize the network with momentum 0.9 and weight
decay 0.0005 and set the batch size of each iteration to
16. Meanwhile, the “poly” learning rate strategy is also
applied during training where the initial rate is multiplied
by (1 − iter

maxiter
)power per iteration with power 0.9 [24] to

drop the learning rate. The initial learning rate of training is
set to 0.01.

Mobile Network Inference Engine. Currently, there are
not many options for mobile deep learning frameworks.
Several representative and released mobile deep inference
frameworks are MNN4 [44], NCNN5, PyTorch Mobile [62]
and so on. According to their publicly available docu-
mentation, the performance among these frameworks does
not differ significantly. Therefore, we select MNN as the
inference engine of the network in our implementation for
its easy-to-use APIs. We first utilize PyTorch [62] on a PC
platform to build and train FSNet. The trained model is then
converted to an MNN model file through MNN Convert
Tools. Both the training and converting steps harness two
NVIDIA RTX 2080Ti GPUs. The model file and inference
engine library are then packaged into an executable and
deployed to a smartphone. The MNN inference engine is
deeply optimized for parallel computing, which is particu-
larly suitable for implementing our parallel network.

4. https://github.com/alibaba/MNN
5. https://github.com/Tencent/ncnn

TABLE 3
Parameters of Sect. 3.2 and their default settings. All results shown in

the paper and the supplementary material were generated with the
same parameter settings.

Parameter Value Section Description
εtemp 0.01 3.2.1 Error threshold parameter
εcol 0.0225 3.2.3 Error threshold parameter
R 5 3.2.3 Size of each squared window Si

εmat 0.01 3.2.5 Regularization parameter
Rmat 16 3.2.5 Size of the filter window
smat 4 3.2.5 Subsampling ratio

It is worth noting that our converted MNN model file
and the MNN inference engine are relatively small in size.
Specifically, the size of our model file is only 6.34MB, and
the size of the engine library is 1.91MB and 5MB for Android
and iOS, respectively. With the lightweight models, our
algorithm is friendly to those mobile applications that prefer
to keep a small file size.

GPU Parallel Shaders. To implement the map refining
method from Sect. 3.2 and guided image matting from
Sect. 3.3, we calculate all the functions mentioned above by
either using fragment (pixel) shaders (which are executed in
GPU parallel) or designing a list of graphics commands. In
particular, we use an efficient version of the Image Guided
Filter [12], which is also mentioned in [54] and implemented
in GPU parallel. Please refer to their work for more details.

AR Scene Generation. We use the obtained matting
maps as alpha masks to blend real camera frames with a pre-
defined virtual stylized skybox. The rotation of the virtual
AR camera is controlled by IMU data. In addition, we use
PBS (Physically-Based Shading) to render virtual objects for
a realistic appearance.

Parameters. Table 3 lists all the parameters of Sect. 3.2
and their default settings. All results shown in the paper
and the supplementary material were generated with the
same parameter settings.

4.2 Effects and Performance

Fig. 11 shows a subset of the generated composite video
sequences, and more comparisons and results are avail-
able in the supplementary materials. Experimental results
demonstrate that our algorithm can handle input images
with various scenes and generate a diverse set of visually
pleasing sky backgrounds.

Besides this, we test the execution time of our method
on several smartphones. As shown in Table 4, the chosen
segmentation network takes around 27.4∼30.3 ms per frame
using the CPU (note: the GPU implemented version has
a generally consistent cost time, which is commonly the
case according to MNN’s experimental performance). Mask
map refinement takes about 1.3∼1.7 ms. Fast guided image
matting takes about 2.2∼2.9 ms. The total execution times
include tracking with rotation measurements from the de-
vice’s sensor (i.e., gyroscope), streaming camera frames, and
rendering composite videos. The reported data shows the
abilities of our method to replace sky as a powerable AR
effect in real time.

https://github.com/alibaba/MNN
https://github.com/Tencent/ncnn
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Fig. 11. Results of the proposed method: sampled frames of composite videos with stylized sky backgrounds. All the results are processed with
color harmonization (see Sect. 3.2.6).

TABLE 4
Breakdown of the average timings (in ms) of the different stages in our
pipeline on mid- and high-end phones. These values were obtained by

running the whole application on real smartphones.

Device Video Size Segment Refine Matting Others Total
iPhone 11 Pro 640*360 30.3 1.7 2.6 1.2 35.8
iPhone 12 640*360 26.9 1.4 2.2 0.9 31.4
XiaoMi 11 640*360 28.3 1.3 2.9 0.9 33.4
Oppo Find X3 Pro 640*360 27.4 1.7 2.8 0.8 32.7

4.3 Evaluation Metrics

To quantitatively evaluate the quality of the proposed
method, we use three metrics, including mIoU [21], MPA
[21], FPS, and conduct two user studies, each of which
measures a slightly different aspect of the quality.

mIoU. mIoU (mean Intersection over Union) is one of
the most commonly used metrics in semantic segmentation.
It essentially quantifies the percent overlap between the
target mask and our prediction output. We use this metric
to evaluate the quality of semantic segmentation results and

the quality of the refined results. Specifically, this metric is
defined as follows:

mIoU =
1

k

k−1∑
i=0

pii∑k−1
j=0 pij +

∑k−1
i=0 pji − pii

, (10)

where pij means the number of the pixels of class i predicted
to belong to class j. In other words, for a specific class i, pii,
pij and pji denote true positive, false positive, and false
negative, respectively. k is the number of categories. Since
the sky segmentation network classifies pixels into two
categories, k = 2. mIoU is evaluated in Sect. 4.4, Sect. 4.5
and Sect. 4.6.

MPA. Although MPA (Mean Pixel Accuracy) may not
comprehensively reflect the segmentation ability, it is mean-
ingful for evaluating our refined matting results. It can be
formulated as the following equation:

MPA =
1

k

k−1∑
i=0

pii∑k−1
j=0 pij

. (11)
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MPA is evaluated in Sect. 4.4.
FPS. The above two metrics focus on the accuracy of

methods. Since our method is eventually intended to be
executed in the viewfinder of smartphones in real time,
efficiency metrics are also important. We capture the exe-
cution time measured in FPS (Frame Per Second) to predict
whether a method will be perceived as stuttering. Usually,
an FPS of 30 or more is required in most mobile real-time
applications. FPS is evaluated in Sect. 4.4 and Sect. 4.6.

User Studies. In order to qualitatively evaluate our
method, we conducted two user studies. In particular, we
design two different tasks to evaluate the perceptual quality
and the rendering speed experience of the proposed algo-
rithm, respectively. Please refer to Sect. 4.7 for more details.

4.4 Network Quantitative Comparison

In this section, we conduct comprehensive quantitative com-
parisons of the state-of-the-art sky segmentation models to
study the superior efficiency of our segmentation model.
Recent works regard sky segmentation or matting as a key
component to achieve sky replacement, while their evalua-
tion is not very thorough [9], [10]. Since previous works only
report the performance of their own models, we reproduce
most segmentation models and evaluate them under the
same training process in order to make a fair compari-
son. The comparisons are performed on the SkyFinder and
ADE20K datasets. It is worth noting that FCN [21] was used
in previous work [9] and thus is considered as a competitor.
Besides FCN, two extra lightweight segmentation models
and another high-performance segmentation model, ENet
[63], FastSCNN [64] and DeeplabV3+ [18], are also included.
Meanwhile, we substitute the backbone of DeeplabV3+ by
MobileNetV2 [29] to evaluate the deployment performance
of such a lightweight network. The comparison includes
mIoU, MPA, inference speed (FPS), and parameters, which
are able to reflect efficiency.

Table 5 summarizes all results, and we have two obvi-
ous observations. First, among all the compared methods,
FSNet achieves the best mIoU. We use Resnet50 [16] as the
backbone for FCN and DeeplabV3+. We set the downsam-
pling stride at 16 to achieve high efficiency at the cost of
decreasing accuracy to some extent. Even though replacing
Resnet50 by MobileNetV2, the segmentation accuracy is still
lower than FSNet. For Enet and FastSCNN, due to the over-
lightweight design, they are not able to converge on a good
solution. Second, FSNet also has considerable efficiency. We
test FCN with a 640 × 360 image, and it runs only at 5.61
FPS, which is unacceptable for real-time processing systems.
Note that the inference speed of ENet and FastSCNN are
not presented in Table 5, mainly because some operators of
those models are not supported when deploying them to
mobile devices. We experimentally find that they are able to
achieve real-time speed on a general computing platform.
However, the performance of FSNet is better than that of
others by a large margin. For all models, we uniformly scale
the video size to 640 × H , ensuring a balance of speed
and precision, where H is derived based on the phone’s
aspect ratio. The above analysis shows that FSNet is the
most suitable for real-time AR applications.

4.5 Ablation Studies for Consistency Constraints

Dataset with IMU data. IMU data is required for constraint
ablation studies. However, none of the public datasets,
including ADE20K and SkyFinder, include this information.
To that end, we created a new video dataset with camera
rotation information. The dataset is created specifically in
the following steps: (1) We use handheld devices to shoot
videos in various weather (sunny, cloudy, and rainy) and
environmental (including buildings, trees, people, vehicles,
and so on) conditions, using the IMU data acquisition
interface provided by the Unity® ARFoundation package.
We save all IMU data and the exact recording moment of
each camera frame for further alignment because the frame
rates of the IMU device and the video recording module
are not synchronized. Each video lasts approximately 5∼15
seconds. There are 100 videos in total, with 50 in landscape
mode and 50 in portrait mode. (2) We align each camera
frame with the IMU data based on the exact moment of
recording. Redundant IMU information is removed, and
camera frames without IMU information are discarded. The
IMU data is then converted into 3D rotation matrices of
the camera and saved to a file. (3) We manually label the
segmentation mask map of each image frame as the ground
truth.

Ablation studies. We conduct ablation studies using
the new video dataset to evaluate the efficacy of the three
constraints described in Sect. 3.2. Table 6 displays the abla-
tion studies of four different implementations with varying
consistency constraints. Because the dataset used in this
section differs from that used in Sect. 4.4, the mIoU of the
baseline model (FSNet) is slightly different.

For most frames, we find that FSNet works well. Because
of the temporal consistency constraint, our method is able
to avoid obvious segmentation errors that appear in some
frames (see Fig. 5). The position consistency constraint is
usually beneficial in scenes with vehicle or ground puddle
reflections (see Fig. 6). Color consistency primarily deals
with boundary segmentation details (see Fig. 7), so its
improvement on mIoU is not as significant as the first two.

4.6 Comparison of Sky Replacement Methods

Next, to quantitatively assess our method and objectively
compare our method to other baseline algorithms, we com-
pare against four vision-based image (video) sky replace-
ment methods [10], [11], [65]. The evaluated results are
shown in Table 7. Since two of these methods [11], [65] do
not provide publicly available implementations, we have to
use the data in their papers to make rough comparisons.
Compared with [65], our method achieves an mIoU score
of 90.17%, higher than the 88.7% mIoU score with their
method. Note that due to the lack of missing IMU data
in the videos in the SkyFinder and ADE20K datasets, our
scores are measured before using the refinement steps, i.e.,
by using FSNet only, while theirs are measured after their
own refinement procedure. However, our method achieves
a much higher FPS (31.84 vs. 0.035). In comparison to [11],
our method has a significantly higher mIoU (90.17% vs.
76.89%).
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TABLE 5
Performance comparison of main lightweight segmentation techniques. The best model performance is shown in bold. “-” indicates the

corresponding model is not compatible with mobile platforms. Additional information of the execution time on a PC with an NVIDIA RTX 1080 GPU
is given for reference.

Model Input Size Params Package Size mIoU MPA FPS (mobile) FPS (PC)
FCN [21] 640× 360 22.43M 90MB 77.88% 87.86% 5.61 58.98
DeepLabV3+ [18] 640× 360 37.92M 151MB 75.54% 89.96% 3.47 27.67
MobilenetV2 & DeepLabV3+ [29] 640× 360 12.12M 48.6MB 82.99% 94.10% 6.03 27.67
ENet [63] 640× 360 0.4M 1.5MB 74.45% 81.80% - 56.01
FastSCNN [64] 640× 360 1.11M 4.5MB 81.22 % 85.84% - 160.74
FSNet (Ours) 640× 360 0.87M 1.7MB 90.17% 94.01% 37.17 132.02

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12. Side-by-side visual comparisons between our method and Zou [10]. (a) and (d) Input videos proposed by Zou [10]. (b) and (e) Corresponding
composite results from Zou [10]. (c) and (f) Our composite results running in real time on iPhone 12 Pro. Due to the lack of IMU data information in
the pre-captured videos, we set wtemp

i = 0 and wpos
i = 0 in these comparisons. Despite this, we still get competitive visual results. (g) The input

videos captured by ourselves with a handheld smartphone. (h) The composite video generated by using the publicly available library released by
Zou [10]. (i) Our composite results running in real time on iPhone 12 Pro.

TABLE 6
The ablation studies of eight implementations: the FSNet only, the

FSNet with temporal (T), position (P), color consistency (C) constraint,
and combinations of them, respectively. All the experiments are based

on our video dataset with additional IMU data. Because these
constraints may have overlapping refinement regions, the mIoU cannot

be simply added.

Model mIoU
Baseline (FSNet) 90.25%
Baseline + T 91.02%(+0.77%)
Baseline + P 90.87%(+0.62%)
Baseline + C 90.71%(+0.46%)
Baseline + T + P 91.08%(+0.83%)
Baseline + T + C 91.07%(+0.82%)
Baseline + P + C 90.94%(+0.69%)
Baseline + T + P + C 91.12%(+0.87%)

TABLE 7
Performance comparison of main sky replacement segmentation

techniques. The best model performance is shown in bold. “-” indicates
the corresponding result is not informed. Due to the lack of ground truth
for handheld video with IMU data, our mIoU score is measured before
the refinement steps (i.e., using FSNet only), while the mIoU scores of
[65] are reported after their own refinement steps. In contrast, [11] has

no refinement step.

Method Device Type Image Size mIoU FPS
Tsai et al., 2016 [65] 3.4GHZ Core Xeox CPU 800× 800 88.7% 0.035
Tran and Le, 2020 [11] Android - 76.89% -
Zou, 2020 [10] TiTan XP GPU, I7-9700K CPU 640× 360 86.16% 24.03
Ours iPhone 12 640× 360 90.17% 31.84

In addition, we compare against the method in [10],
using the publicly available library released by the authors6.
The fourth row in Table 7 shows the quantitative scores
of their method. Our method achieves comparable mIoU
and better FPS scores running on a mobile chip against the
desktop PC they adopted when the other conditions are the
same.

We show the composite frames of Zou [10] and ours for
side-by-side comparisons. In the top two rows of Fig. 12,
the input videos are from [10]. Due to the lack of the
IMU data information in the pre-captured videos, we set
wtemp

i = 0 and wpos
i = 0 in this comparison. Despite this,

we still get competitive visual results. In the bottom row, the
input videos were captured by ourselves with a handheld
smartphone. Our method has the ability to generate visually
pleasing results with high efficiency.

Finally, we compare our method with a few com-
mercially available alternatives, i.e., the real-time sky-
segmentation filters on TikTok and Snapchat. The com-
parison is made at the level of rendering effects since
there is no publicly available information regarding their
specific methodology and performance, making quantita-
tive comparison impossible. As shown in Fig. 13, the sky-
segmentation effect filters on Snapchat and TikTok have
varying degrees of error in discriminating between sky
and non-sky regions and exhibit more obvious artifacts

6. https://github.com/jiupinjia/SkyAR

https://github.com/jiupinjia/SkyAR
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(a) (b) (c) (d)

Fig. 13. A visual comparison of our approach to TikTok and Snapchat. (a) Input camera frames. (b) Results of Snapchat’s sky segmentation. (c)
Results of TikTok’s sky segmentation. (d) Results of our method.
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Fig. 14. Average evaluation scores for each video with x-axis sorted by
our score. Overall, the visual quality of our method is comparable to that
of FastSCNN and Zou. In addition, our method outperforms the method
without the refinement step in most videos.

near the margins. Moreover, some sky-segmentation effects
on Tiktok and Snapchat have obvious latency, while ours
always runs smoothly. In summary, our method performs
sky segmentation more efficiently and effectively than these
alternative filters.

4.7 User Studies
We have devised two user studies to objectively verify the
quality and effectiveness of our sky replacement results. We
designed two tasks for 20 participants (14 male and 6 female,
aged from 22 to 61), including 12 university students, 5
university teachers, and 3 IT company employees. All the
participants are skilled with mobile devices but have little
AR experience.

For the first task, we would like to evaluate the visual
effects of sky replacement videos produced by several of
the most competitive methods. Among the well-known
semantic segmentation models [18], [21], [29], [63], [64], we
chose FastSCNN [64] because it has a potentially real-time
performance on mobile devices and a competitive mIoU.
For the existing sky replacement methods, we chose Zou
[10] because it is dedicated to offline sky replacement and
has a publicly available library. Additionally, to validate
the effectiveness of the refinement steps of our method,
we compared our method with and without the refinement
steps. For a fair comparison, we also added the same
matting step (Sect. 3.3) to FastSCNN. Zou’s method [10]
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Fig. 15. Average visually realistic scores of different methods. Mean
values and standard deviations are expressed via bar heights and error
bars, respectively. A line connecting two bars indicates a statistically
significant difference between our method and the others (ANOVA with
post-hoc tests, p < 0.05). Ours vs Ours w/o: p = 0.025, Ours vs
FastSCNN: p < 0.001.

has its own matting step. Next, we captured 20 composite
videos with stylized skyboxes for our method (w and w/o)
using a smartphone (iPhone 12 Pro) at five common urban
locations (campus, beach, neighborhood, park, rooftop) with
both sunny and cloudy weather conditions. Since FastSCNN
cannot be deployed to the mobile MNN engine (perhaps
due to that FASTSCNN uses some operators incompatible
with the mobile platform) and the method of Zou cannot
perform in real time, we produced offline composite videos
using the same original videos for both methods. The input
size of the computed mask maps for all the methods was
640 × 360. For each video, we showed the composite re-
sults of the four methods (randomly scrambled) to every
participant and asked each of them to rate the level of
visual pleasingness for each result (10 being the best and
1 the worst). The rating scores for this task are shown
in Fig. 14, with four average scores for each video and
sorted in descending order by the scores of our method.
The figure shows that in most cases, the visual quality of our
method is comparable to that of Zou, and better than that
of FastSCNN. In a few cases, our method even outperforms
these two methods, possibly because our training process
focuses on generalization. In addition, in most videos, our
full method outperforms the method without the refinement
step (especially for videos with low scores of semantic
segmentation methods), indicating that the refinement step
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TABLE 8
ANOVA and Kruskal-Wallis analyses, as well as Shapiro-Wilk and Levene tests, were used to rate videos produced in various ways. This table
compares the four approaches statistically: our method (w) versus our method (w/o), our method (w) versus FastSCNN, and our method (w)

versus Zou’s method.

between the
Four Methods

between Our Method (w)
and Our Method (w/o)

between Our Method (w)
and FastSCNN

between Our Method (w)
and Zou’s Method

Shapiro–Wilk Test p = 0.162 p = 0.471 p = 0.396 p = 0.007
Levene Test p = 0.543 p = 0.606 p = 0.963 p = 0.396
ANOVA with post-hoc tests p < 0.001 p = 0.025 p < 0.001 N.A.
Kruskal-Wallis H Test N.A. N.A. N.A. p = 0.336

TABLE 9
ANOVA and Kruskal-Wallis analyses, as well as Shapiro-Wilk and Levene tests, were used to calculate user experience scores for several AR
apps. This table provides statistical comparisons between the four AR applications: our MobileSky and FCS, our MobileSky and DL3+, and our

MobileSky and DL3+MN2.

between the Four
AR Applications

between Our MobileSky
and FCS

between Our MobileSky
and DL3+

between Our MobileSky
and DL3+MN2

Shapiro–Wilk Test p < 0.001 p < 0.001 p < 0.001 p = 0.001
Levene Test p = 0.991 p = 1.000 p = 0.787 p = 1.000
ANOVA with post-hoc tests N.A. N.A. N.A. N.A.
Kruskal-Wallis H Test p� 0.001 p� 0.001 p� 0.001 p� 0.001
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Fig. 16. Average user experience scores of four different AR applica-
tions. DL3+ stands for DeeplabV3+ [18] and DL3+MN2 for DeeplabV3+
& MobileNetV2 [29]. Mean values and standard deviations are ex-
pressed via bar heights and error bars, respectively. A line connecting
two bars indicates a statistically significant difference between the corre-
sponding systems (Kruskal-Wallis H Test, all the connecting lines have
p � 0.001). Since none of the methods except ours can run in real
time, the proposed technique significantly outperforms the other three
methods in real-time rendering experience.

further improves the quality of the composite results. Fig. 15
and Table 8 give the statistics for this task, as well as
the statistical significance of the four techniques. We used
ANOVA [66] and post-hoc tests (Tukey’s HSD test [67]) on
the rating scores. Before running ANOVA, Shapiro-Wilk [68]
and Levene [69] tests with Bonferroni correction [70] were
used to ensure that the assumptions of normality and equal
variance were not violated (p >0.025). We utilized ANOVA
and post-hoc tests to demonstrate a significant difference
between these methods after noting that the results differed
between the four methods, our method (w) and our method
(w/o), and our method and FastSCNN (p <0.05). The results
of our approach (w) and Zou’s method, on the other hand,
demonstrate that the assumption of normality was violated,
and thus we used a different non-parametric test (Kruskal-
Wallis H Test [71]).

In the second task, we expected to evaluate the user
experience of the real-time sky replacement method for
AR applications. Since not all methods can be deployed
on mobile, we only asked the participants to experience

FCN [21], DeeplabV3+ [18], MobileNetV2 & DeeplabV3+
[29], and our MobileSky. All the methods were deployed
through the MNN inference engine. The participants could
use these applications as long as they wanted but were
unaware of the correspondence between these applications
and the underlying methods. Finally, the participants rated
their usage experiences (10 being the best and 1 being
the worst). The scores for this task are shown in Fig. 16.
We used the Kruskal-Wallis H Test to evaluate the data

because the results between our MobileSky and the other
three AR applications, as well as the results between the
four AR applications as a whole, violated the assumption of
normalcy. The results are shown in Table 9. Since none of the
methods except ours can run in real time, which primarily
affects the experience, the scores of our method would be
significantly better.

4.8 Limitations and Discussions
Our method has a number of failure cases inherited from
the underlying semantic segmentation network and is also
limited to the computing power of mobile processors. We
leave the limitations to open discussions for future work.

Light Style Mismatching: Currently, the proposed algo-
rithm does not take lighting conditions into account. If the
replaced sky has a new lighting direction, the reflections and
shadows of the objects in the scene remain unchanged.

In the future, we plan to use fast light estimation meth-
ods to estimate light directions, which can be used to align
the directional light in the virtual skybox with that of in the
real world. Reflections and shadows should be eliminated
and re-synthesized to accommodate the changing light di-
rection. To alter the shadow masks, multi-view information
or 3D geometry of the scene is required.

Low Accurate Refinement for Very Heterogeneous Skies: Since
our color consistency constraint is based on the mean color,
it may not work well for heterogeneous skies such as
sunsets. To alleviate this issue, we might resort to multi-
color feature extraction methods, such as histograms or
clustering. However, they are usually not efficient enough
to meet our real-time requirements. Fortunately, for sunny,
cloudy, or gloomy skies, the use of the mean color is mostly
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workable. It is because the mean color of these skies is off-
white or light blue and is able to capture the key color
feature of the skies. This is why we need to refer to the
mean color of neighbor pixels since the color of non-sky
pixels tends to be closer to the neighbors’ mean color than
to the sky’s mean color.

Failure Replacement for Sky Reflections on Water or Win-
dows: Our method does nothing special for reflected pixels.
This is problematic for those reflected pixels above the
horizon since the color consistency constraint might mark
them as sky regions. For the reflected pixels below the
horizon, the position consistency constraint will successfully
mark them as non-sky regions.

During the evaluation of our method, we found that its
time bottleneck mainly lies in the inference of the segmen-
tation network. We believe that it is challenging to reach
60 FPS on mobile devices at this stage, but our method
outperforms other methods in terms of speed. In practical
use, 30 FPS already leads to a good visual experience. In
addition, we believe that we can achieve higher execution
speeds by optimizing our implementation, e.g., reducing
floating-point precision, reducing the number of network
layers of our method, etc.

5 CONCLUSION

We have presented a novel system for real-time sky replace-
ment for mobile AR applications. We develop a lightweight,
efficient semantic image segmentation network to obtain a
binary segmentation result for individual video frames and
design sky-aware constraints, including temporal consis-
tency, position consistency, and color consistency, to refine
binary mask maps. We show through quantitative valida-
tion that our method achieves higher performance than the
previous sky replacement methods, achieving an average
of around 30 FPS on off-the-shelf smartphones. We also
conduct two user studies to show that our results meet good
rendering results and accord with human preferences. Our
technique can expand capabilities to AR advertising, arts,
showing fantasy celestial objects, visually learning about
weather phenomena and advanced video-based visual ef-
fects.
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