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Traffic Simulation
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Abstract—Virtual traffic benefits a variety of applications, including video games, traffic engineering, autonomous driving, and virtual
reality. To date, traffic visualization via different simulation models can reconstruct detailed traffic flows. However, each specific
behavior of vehicles is always described by establishing an independent control model. Moreover, mutual interactions between vehicles
and other road users are rarely modeled in existing simulators. An all-in-one simulator that considers the complex behaviors of all
potential road users in a realistic urban environment is urgently needed. In this work, we propose a novel, extensible, and microscopic
method to build heterogeneous traffic simulation using the force-based concept. This force-based approach can accurately replicate
the sophisticated behaviors of various road users and their interactions in a simple and unified manner. We calibrate the model
parameters using real-world traffic trajectory data. The effectiveness of this approach is demonstrated through many simulation
experiments, as well as comparisons to real-world traffic data and popular microscopic simulators for traffic animation.

Index Terms—Traffic simulation, simulator, detailed traffic flow, heterogeneous, social force.
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1 INTRODUCTION

IN recent years, with the popularity of virtual reality and
autonomous driving, high-fidelity traffic simulators have

become an effective tool that can provide various traffic con-
ditions for virtual city generation and autonomous vehicle
testing prior to real-world road driving [1], [2], [3]. In a com-
plex traffic environment, vehicles, pedestrians, and cyclists
constitute three important road users. Indeed, they also
posses inseparable relationships and complex interactions
in the real world. Accurately simulating their respective
behaviors and interactions in transportation networks is
critical to the future development of urban environments
and traffic safety. Consequently, there is an urgent need for a
simulator that considers all potential road users in a realistic
urban environment.

In the computer graphics community, vehicles and
pedestrians have always been studied separately. A vast
amount of literature exists on modeling and simulating
traffic flows or pedestrian crowd dynamics, using either
agent-based microscopic or continuum-based macroscopic
methods [4], [5], [6]. However, all of the investigations were
carried out under the assumption of ideal traffic environ-
ments. Modeling of non-ideal real-world traffic scenarios
remains a less explored research topic. In addition, current
existing traffic simulators (SUMO [7], SimMobility [8], and
Vissim [9]) model the behaviors of vehicles, pedestrians,
bicycles, and their interactions discretely. Furthermore, each
specific behavior of each type of road user, such as vehicle
acceleration, lane change, and interaction with pedestrians,
is also modeled and controlled in different ways. Such
non-unified approaches are complicated and inefficient in
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Fig. 1. Example of mixed traffic simulation result generated by our
calibrated force-based approach.

generating complex virtual traffic environments.
Recently, in the field of autonomous vehicle testing,

some efforts have been made to generate powerful virtual
mixed traffic scenarios. For example, the Apollo simulation
platform [10] and Best et al.’s work [11] implement two
non-vehicle traffic participants in simulation: pedestrians
and cyclists. The behaviors of these non-vehicle road users,
however, have been pre-defined and cannot react to vehicle
motion in real time. The Carla simulator [12] introduces
dynamic pedestrians into the simulation. However, the in-
teraction between vehicle and pedestrian is handled in a
simple predefined way: in an interaction, the pedestrian
stops to wait for a few seconds to sense any vehicles, and
then walks away without considering the existence of the
vehicles. From this perspective, current existing simulators
make decisions of autonomous vehicle movement in a reac-
tive manner without considering mutual influences and real
interactions between vehicles and other potential road users.
As a consequence, creating a mixed simulation environment
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consisting of mutual influences and interactions among
vehicles, two-wheelers, and pedestrians, is highly desired
for autonomous vehicle testing.

In this paper, we focus on modeling heterogeneous
traffic composed of various types of road users by a uni-
fied approach. We propose a simple, efficient, and scalable
force-based framework to simulate the behaviors of vehicles,
pedestrians, bicycles, and their interactions in a unified
manner, in which any detailed behavior for each type of
road user can be attributed to a specific force.

Specifically, there are several essential force terms in the
presented method to model the behaviors of pedestrians,
vehicles and bicycles: first, a term describing acceleration
towards the desired velocity and movement target; second,
a term reflecting that an agent maintains a certain distance
from its neighboring agents; and third, a term describing an
agent’s relationship with static obstacles or lane boundaries
for vehicles and bicycles to describe their lane-keeping
behaviors. For vehicles and bicycles, an additional term
modeling attractive effects is also requisite to simulate lane-
changing behaviors. Moreover, interactions among different
kinds of traffic agents are introduced as environmental feed-
back in the force form into their behavior control models.
In order to make individual behavior in the simulation
as realistic as that in real traffic, we calibrate the model
parameters using traffic trajectory data obtained in the real
world. Fig. 1 shows an example of mixed traffic simulation
results generated by our calibrated force-based approach.

The main contributions of this work can be described as
follows:

• It introduces a novel, scalable, calibrated approach
based on the force-based concept to simulate complex
virtual mixed traffic.

• Unlike previous traffic simulation methods, it intro-
duces a unified model for various detailed behaviors
of vehicles, including acceleration/deceleration, lane
keeping, and lane changing behavior.

• It provides a viable solution for describing interac-
tions among different types of road users in simula-
tion.

2 RELATED WORK

In this section, we first review previous related crowd
simulation models and traffic synthesis methods. We then
describe prior works on calibration of microscopic traffic
models.

2.1 Crowd Simulation Methods
Agent-based crowd simulation models treat each person in
the crowd as an intelligent agent with its own proprieties
and goals. Each agent makes a decision individually from its
neighborhood information for every time-step. Researchers
have developed a variety of microscopic control models
[13], including velocity-based and force-based models. In
the velocity-based model, each agent selects a velocity by
minimizing a given cost function. These methods include
velocity obstacles (VO) and its several variants [14], [15],
[16], [17], [18]. In the force-based model, each agent receives
virtual forces generated from the spatial or social relation-
ship between the agent and its neighbor. The Social Force

Model (SFM) for pestrian dynamics by Helbing et al. [19],
[20] are widely uses in the crowd simulation community.

In addition to the detailed modeling of crowd behaviors,
there have been several attempts to introduce real captured
crowd data into multi-agent simulation. By learning behav-
ior patterns from real-world samples [21], [22], [23], [24],
[25], [26], [27] and extracting real-world trajectories from
videos, natural crowd behaviors can be synthesized [28],
[29], [30], [31], [32].

Different from the above-mentioned crowd simulation
methods that mainly focus on pedestrian crowd simulation,
we are interested in developing a unified and scalable
framework for mixed traffic simulation, and the framework
is expected to be able to deal with the detailed complex
interactions among vehicles, bicycles, and pedestrians.

2.2 Traffic Control Models
In traffic simulation, there are two kinds of widely-used
traffic control models, based on the expression level of
simulation details: continuum-based macroscopic models
and agent-based microscopic models.

Macroscopic methods describe vehicles’ behaviors and
interactions at a low level of detail: a traffic stream is
represented by a continuum, in terms of speed, flow, density,
etc. [33], [34]. In the field of transportation, researchers have
developed a number of macroscopic models, such as the
well-known Lighthill-Whitham-Richards (LWR) model [35],
[36], the Payne-Whitham (PW) model [37], [38] and the
Aw-Rascle-Zhang (ARZ) model [39], [40]. In the field of
computer graphics, Sewall et al. [41] extended the single-
lane ARZ model to handle multi-lane traffic simulation by
introducing a lane-changing model and utilizing a discrete
visual representation for each vehicle. Wang et al. [42] fo-
cused on lane-changing behavior in flow-based continuum
traffic simulations. In general, macroscopic methods are
computationally efficient, but not suitable for simulating
street-level traffic, which consists of rich interactions among
individual cars.

In contrast, a microscopic model treats each vehicle as
an autonomous agent, whose behavior is controlled based
on instantaneous states of surrounding vehicles and road
information. According to car-following principles [43], re-
searchers have derived a variety of microscopic control
models, including the optimal velocity model [44] and the
intelligent driver model (IDM) [45]. Shen et al. [5] combined
IDM with a flexible lane-changing model for urban traffic
simulation. Chao et al. [6] modeled vehicles’ interaction
behaviors with pedestrians for mixed traffic simulation. The
work of Garcia-Dorado et al. [46] provided users with the
flexibility to specify a desired vehicular traffic behavior to a
road network. Microscopic methods can simulate complex
vehicle behavior details, but only afford a limited scale of
traffic due to their computational requirements. To address
this issue, Sewall et al. [47] presented a hybrid traffic
simulation model by integrating continuum- and agent-
based methods to balance the trade-off between quality and
efficiency at runtime.

2.3 Data-driven Traffic Visualization and Simulation
With the development of advanced sensing hardware and
computer vision techniques, empirical traffic flow datasets
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in the form of video, LiDAR, and GPS sensors are becoming
increasingly available. Traffic visualization techniques based
on existing data collections have also received notable at-
tention in recent years. The works of Sewall et al. [48] and
Wilkie et al. [49] reconstructed traffic flow from temporal-
spatial data acquired by in-road sensors. In addition, re-
searchers simulated the process of lane-changing in traffic
simulation from a pre-collected vehicle trajectory dataset
[4], or learned individual-specific driving characteristics
from vehicle trajectory data extracted from driving video
samples [50]. Recently, Li et al. [51] proposed a city-scale
traffic simulation framework from mobile vehicle data (i.e.,
GPS traces) using statistical learning and metamodel-based
optimization. Chao et al. [52] synthesized new vehicle tra-
jectories through the combination of texture synthesis with
microscopic traffic behavior rules, given a limited set of
vehicle trajectories as the input samples. It is noteworthy
that real-world traffic datasets from the Federal Highway
Administration’s Next Generation Simulation (NGSIM) [53]
are used in the above works.

2.4 Traffic Model Calibration

The performance of traffic models largely depends on the
parameter sets that they utilize to describe and control
vehicle motion. Researchers have proposed several methods
for calibrating traffic simulators with reference to real-world
traffic data. During the model calibration process, the model
parameters need to be adjusted until an acceptable match is
identified between agent behavior in the simulation and that
in the observed data.

Engineering judgment and trial-and-error methods re-
main widely employed, especially in industry [54]. More
systematic approaches, including the gradient method [55]
and the genetic algorithm [56], take the model calibration
process as an optimization problem to solve: search for a
combination of parameter values to minimize the objec-
tive function (usually an error term). Kesting and Triber
calibrated and compared IDM and the Optimal Velocity
model with the Bosch GmbH dataset using the genetic
algorithm [57], [58].

3 FORCE-BASED FRAMEWORK

We present a two-layer force-based framework for hybrid
traffic simulation, where the top layer separately calculates
the detailed movement of each kind of road user, and
the second layer describes the interaction between differ-
ent road users, i.e., pedestrian-vehicle, pedestrian-bicycle,
and bicycle-vehicle interaction. Inspired by the social force
model [19], [20], [59], [60] for pedestrian dynamics, par-
ticipants in mixed traffic behave as if they are driven by
‘forces’ of their desires, neighboring participants, and the
surrounding environment (e.g., road structures, walls, or
buildings). Assuming that individual i is an arbitrary road
user in a mixed traffic flow, its movement can be determined
by a combination of sociopsychological and physical forces.
The total effect force Fi (t) is defined as follows:

Fi (t) =F0
i (t) +

∑
j( 6=i)

Fij (t) +
∑

W
FiW (t)

+
∑

o
Fio (t) + ξi,

(1)

where the driving force F0
i (t) reflects the individual’s inten-

tion to move to a certain destination at a desired speed; the
repulsive force Fij (t) describes the effects of interactions
with its neighboring individuals j; FiW (t) measures the
repulsive effects of the built environment W ; Fio (t) is
introduced to describe the interaction with other categories
of road users; and ξi is a fluctuation term added to account
for random variations.

The driving force F0
i (t) describes individual i’s motiva-

tion to move with an expected velocity v0
i (t) by adapting

the actual velocity vi (t) within a certain relaxation time τi
[20]:

F0
i (t) = mi

v0
i (t)− vi (t)

τi
= mi

v0
i (t)− vi (t)

v0
i (t)

ai, (2)

where mi is the mass of individual i; and ai represents the
desired acceleration.

In our framework, the repulsive force Fij from a certain
neighbor j is presented in different forms according to
different characteristics of various kinds of road users. For
pedestrians, this force is defined as a combination of social-
psychological and physical forces, describing the psycho-
logical tendency of two pedestrians to move away from
each other, and the physical contact force when they are
in contact with each other. For motor vehicles, the repulsive
force comes from all neighboring vehicles in sight within
the current and adjacent lanes. For a specific neighboring
motor vehicle j, the form of the force is designed differently
depending on its located lane. For bicycles, this force is
defined as a combination of the direct repulsive force for
collision avoidance and the force for overtaking.

In mixed traffic scenarios, the environmental force FiW

describes constraints of the lane boundary W on individual
i. For different types of road users, the influence of the built
environment is analogous in form, but the magnitude of
the force varies with the sensitivity of different types of
individuals to distance:

FiW (t) = Uie
|rWi +vW

i Ti|
Ri nW

i , (3)

where Ri is the sensitivity coefficient of individual i to
distance; Ui is the scale factor of the environmental force;
rWi represents the distance between individual i and lane
boundary W ; nW

i is the unit vector pointing from the
nearest position of lane boundary axis to individual i; vWi
means the velocity component in the direction of nW

i ; and
Ti is the reaction time.

We define the interaction force Fio (t) as the environ-
mental influence, respectively, for the interactions between
vehicles and pedestrians, vehicles and bicycles, and pedes-
trians and bicycles. Interacting individuals treat each other
as environmental impacts and compute feedback on them-
selves. For vehicle-bicycle interactions, the form of the in-
teraction force varies with different positional relationships
between them. Vehicle-pedestrian and bicycle-pedestrian in-
teractions take place at pedestrian crossings, which include
the decision-making mechanism and the feedback-intrigued
action process. It is worth noting that, as pedestrian behav-
iors are computed using the popular social force model [19],
[20], we will focus on the force modeling of vehicles and
bicycles, which will be elaborated in Sec. 4.
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Fig. 2. The sight range (in the red sector) of a vehicle c, and its repulsive
forces Fcp and Fcq from surrounding vehicles in the current and adja-
cent lanes. The environmental force FW

i of two-side lane boundaries
(WU and WL) is also shown here, denoted as FcWU

and FcWL
.

4 FORCES FOR BEHAVIORS IN MIXED TRAFFIC

4.1 Force-based Model for Vehicles

For mixed traffic simulation, models should include as
many complex traffic behaviors as possible, yet be com-
puted in an efficient manner. However, in existing micro-
scopic traffic simulators [5], [7], [8], [9], [45], [61], each spe-
cific behavior of vehicles, such as acceleration/deceleration
and lane changing, is modeled and controlled one by one.
In addition, these methods often focus on vehicle movement
in the forward direction, but very limited efforts have been
attempted on simulating vehicle dynamics in the lateral
direction in traffic simulations, such as the influence from
lane boundaries and neighboring vehicles in the field of
view. Moreover, existing lane-changing models [62], [63],
[64] in the intelligent transportation field only focus on the
decision-making process of the vehicle lane-changing, but
ignore the subsequent execution process of that maneuver.

To overcome these constraints, we propose a force-based
simulation model for vehicles that uses forces to describe
the vehicle’s internal desires and its interactions with the
external environment, thereby guiding the vehicle’s behav-
iors by integrating the effects of various forces. The force
terms are designed according to the characteristics of vehicle
movements:

• Drivers mainly drive in a car-following mode. How-
ever, the vehicle’s movement is also affected by all
neighboring vehicles in the field of view.

• Drivers must keep driving within lane markings and
adhere to traffic regulations.

• Drivers tend to change lanes to take advantage of the
allowable speed in a target lane or to cope with some
imperative factors, such as the end of the current
lane.

4.1.1 Repulsive Forces between Vehicles
When moving along a traffic flow, a vehicle c is subjected to
repulsive forces from all neighboring vehicles within sight
in its current and adjacent lanes. As illustrated in Fig. 2, due
to the lane-keeping rules in traffic, the impact of the vehicle
q in adjacent lanes on vehicle c is far less than that of the
front vehicle p in the current lane, in the absence of lane
changing. Therefore, we design the repulsive force Fcj from
a certain neighbor j in different forms.

Influence from vehicles in adjacent lanes: The force
from a neighboring vehicle q in the adjacent lane (blue
vehicle in Fig. 2) is mainly associated with its distance and
direction to vehicle c, defined as follows:

Fn
cq (t) = Uce

− rcq
Rc ncq, (4)

where Uc is the scale factor; Rc is the vehicle’s sensitivity
coefficient to distance; rcq is the distance between vehicle q
and c; and ncq is the unit vector pointing from vehicle q’s
center to vehicle c’s center.

Influence from the vehicle in the current lane: Ac-
cording to the car-following phenomenon [43] in real-world
traffic, vehicle c’s behavior in the current lane is mainly a
response to its leading vehicle p (green vehicle in Fig. 2),
for the purpose of maintaining a safe gap to vehicle p while
seeking its desired velocity during driving. The intelligent
driver model (IDM) [45] is a popular microscopic model
to describe this car-following behavior, and has been well
calibrated to demonstrate its performance using real-world
trajectory data [57]. Therefore, we utilize the braking decel-
eration term in IDM to approximate the repulsive force Ff

cp

of vehicle c from its leading vehicle p. Specifically, force Ff
cp

can be defined as a function of vehicle c’s velocity vc, its
bumper-to-bumper distance s, and relative velocity ∆v to
leading vehicle p:

Ff
cp (t) = −bc

(
s∗

s

)2

nc, (5)

s∗ = s0c + vcTc +
vc∆v

2
√
acbc

, (6)

where the parameters (ac, bc, s
0
c , Tc) are constant for each

vehicle, which describe its basic driving capability; ac and
bc are, respectively, vehicle c’s maximum acceleration and
comfortable deceleration; s0c is jam space headway; Tc is
the desired safety time headway; and nc is the unit vector
denoting the current direction of vehicle c’s movement. The
repulsive force Ff

cp is not only related to the gap distance
between the two vehicles, but also to the velocity difference
between the two and the speed of the current vehicle. This
can ensure that when the speed difference between two
vehicles is large, the current vehicle will be subjected to
a greater repulsive force, thus avoiding the occurrence of
sudden braking as the two vehicles are too close to each
other. Moreover, incorporating vehicle c’s current velocity
vc and the driver’s reaction time Tc can guarantee that the
safety distance is maintained at a relatively high speed.

4.1.2 Force for Lane Changing
A vehicle generally performs lane changing if it can go
faster in a target lane. According to the lane-changing model
proposed by Kesting et al. [61], the incentive condition for a
lane-changing decision of vehicle c is fulfilled if the utility of
a possible lane change for motor vehicle c is larger than the
influence on the involved neighbors (the original follower o
in the original lane, and the new follower n in a target lane),
which is typically measured in acceleration values:

ãc − ac + λc (ãn − an + ão − ao) > ∆athc , (7)

where the first two terms refer to the acceleration gain
of a possible lane changing for vehicle c and the other
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terms indicate the acceleration loss of the original and new
followers; ãc denotes the new acceleration for vehicle c after
a prospective lane change; and ac denotes its acceleration
prior to the lane change. The politeness factor λc deter-
mines to which degree these successors influence the lane-
changing decision of vehicle c. ∆athc is the lane-changing
threshold which prevents lane changes for marginal advan-
tage [5].

If the incentive criterion (Eq. 7) is satisfied, the lane
changing is performed by introducing an attraction force
Fcl

c from the target lane to vehicle c. Since the attraction
force is to counteract the lane-keeping constraint from the
current lane boundary, Fcl

c can be computed akin to the
environmental force FcW from current lane boundaries,
using Eq. 3.

4.2 Force-based Model for Bicycles
Similar to the simulation control model of vehicles and
pedestrians, the behavior of bicycles in a mixed traffic flow
can also be described by employing the force-based concept.
However, unlike the ways in which pedestrians and vehi-
cles interact with their neighbors, bicyclists possess their
own characteristics when interacting with neighbors. First,
bicycles generally do not move in a car-following manner,
and utilize lateral space to a greater extent than do motor
vehicles. Second, unlike pedestrians, bicyclists tend to adjust
their motions, rather than completely stop and wait when
an event occurs, in order to reduce the amount of required
physical exertion.

Therefore, we describe a bicycle k’s repulsive force Fkj

from its neighbor j with two force components: the direct
repulsive force FR

kj for collision avoidance and the force FE
kj

for overtaking:

Fkj (t) = FR
kj (t) + φk (t)FE

kj (t) , (8)

φk (t) =

{
1, r̃kj ≤ dEk
0, r̃kj > dEk

(9)

where φk (t) is a discriminant function; r̃kj is the horizontal
distance between bicycle k and j; and dEk is the distance
threshold for overtaking.

The direct repulsive force FR
kj for collision avoidance

is used to describe a cyclist’s conscious response to avoid
collisions with other bicycles nearby. In accordance with a
bicycle’s shape, we use an ellipse to define a bicycle’s safety
space in a certain period of time, and use the semi-minor
axis of the ellipse to measure the degree of other bicycles’
influence. As shown in Fig. 3,B is the semi-minor axis of the
ellipse, and the relative velocity (∆v = vk − vj) of bicycle
k to j lies on the semi-major axis of the ellipse. The position
of bicycle k is the focus of the ellipse, and the neighboring
bicycle j is located on the circumference of the ellipse. A
smaller B means a shorter distance between bicycle k and
j, which results in a larger repulsive force FR

kj . Formally, the
force can be computed as follows:

FR
kj (t) = Uke

−B/Rknkj , (10)

B =
1

2

√
(‖rkj‖+ ‖rkj −∆v∆t‖)2 − (‖∆v∆t‖)2, (11)

where Uk and Rk represents the scale factor and the coeffi-
cient of sensitivity to distance, respectively; rkj is the vector

−

Fig. 3. Bicycle k’s repulsive forces from its neighbor bicycle j. The
green ellipse area denotes the safety space of bicycle k. The bicycle
k’s repulsive force Fkj from its neighbor j can be decomposed into two
force components: one direct repulsive force FR

kj for collision avoidance,
and one force FE

kj perpendicular to it for overtaking.

pointing from bicycle k to j; ∆t is a time step; and nkj is the
unit vector from bicycle j to k.

At the same time, the overtaking force FE
kj is introduced

to describe bicycle k’s flexible behavior when confronted
with obstacles or congestion. The direction of FE

kj is per-
pendicular to direct repulsive force FR

kj and the magnitude
is proportional to FR

kj :

FE
kj (t) = αk

∥∥∥FR
kj (t)

∥∥∥nV
kj , (12)

where nV
kj is the unit vector perpendicular to FE

kj ; and αk is
the scale factor.

4.3 Interactions in Mixed Traffic

In real-world traffic scenarios, pedestrians, bicycles, and
vehicles have very complex interactions between each other.
In some cities, there are no lanes designated for bicycle
use; bicycles are supposed to move on either driveways
or sidewalks. In other cases, even with bicycle lanes, some
bicyclists prefer to ride in the lanes of other road users.
On the other hand, pedestrians crossing a road while ne-
glecting traffic signals is a common problem globally. In
this section, we model vehicle-bicycle interactions, bicycle-
pedestrian interactions, and interactions between vehicles
and pedestrians crossing a road. In keeping with our force-
based framework for each kind of road user, the mutual influ-
ences of the involved interacting individuals are measured
in terms of forces and encoded as environmental feedback
into their own behavioral control models.

4.3.1 Vehicle-Bicycle Interactions

To model vehicle-bicycle interactions, the interaction force is
designed to take one of two different forms, depending on
the positional relationship between bicycle k and vehicle c
(see Fig. 4).

For vehicle c, if there is a side-by-side bicycle k in the
sight range (the light green area), it will receive a lateral
force from k for collision avoidance (Fig. 4 (a)). However, if
bicycle k is traveling in the near front, vehicle c will receive
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(b)  k in front(a)  k on the side

Fig. 4. Vehicle c receives repulsive force Fck from bicycle k in an
interaction.

a rearward force for deceleration (Fig. 4 (b)). Accordingly,
vehicle c’s interaction force Fck from bicycle k is defined as:

Fck (t) =

Uce
− sc

Rc nck, k by side

−bc ∗
(
s0c+vcTc

sck

)2
nc, k in front

(13)

where sck denotes the distance between vehicle c and bicy-
cle k; vc is the velocity of the vehicle; nck is the unit vector
pointing from bicycle k to vehicle c; and nc represents the
moving direction of vehicle c. Uc andRc are the same factors
in Eq. 4. The constant parameters (bc, Tc, s0) describe vehicle
c’s basic driving capability, which have the same meanings
as those in Eq. 5.

Correspondingly, the interaction force Fkc subjected on
bicycle k can take one of two different forms, depending
on the positional relationship between k and c: whether the
vehicle is on the side or in front. The force is formulated
akin to Eq. 13.

4.3.2 Interactions with a Road-crossing Pedestrian
A pedestrian i’s interaction with vehicles is conducted per
lane. He or she perceives the surrounding traffic conditions,
and the approaching vehicles correspond to his or her
stimuli. Based on this perception, pedestrian imakes a walk-
or-wait decision based on gap acceptance [65], [66] to judge
whether the current distance gap between him or her and
the approaching vehicle c can ensure a safe crossing. Both
the pedestrian’s predicted crossing time ti and the vehicle’s
estimated passing time tc are computed. The crossing is con-
sidered as safe if ti is less than tc. Otherwise, the pedestrian
needs to wait for the next longer gap.

When pedestrian i is walking, the mutual influence
between the pedestrian and the involved vehicle is quan-
tified in terms of forces, and is incorporated into their
original behavior control model as environmental feedback
to drive their motions. Pedestrian i usually slows down at
the beginning of crossing due to concerns about vehicle c’s
arrival time, and after successfully cutting in, the pedestrian
tends to accelerate significantly due to the psychological
impact of wanting to leave the danger zone. Inspired by
Steven’s psychophysical power law [67], we model this kind
of dynamic behavior pattern, and compute the interaction
force Fic received by pedestrian i from vehicle c as follows:

Fic (t) = βis
0.67
ic nic, (14)

where βi is a scale factor; sic is the distance between pedes-
trian i and vehicle c; and nic is the unit vector pointing from
c to i.

When facing a pedestrian i trying to cross a road, vehicle
c tends to decelerate for safety. This situation is similar to

1
2

3

Virtual lane

Fig. 5. Illustrative relationship between a pedestrian and the involved
bicycles.

∆

B

Fig. 6. Collision judgment of a bicycle b with its front pedestrian i.

the sudden crossing of a bicycle, as depicted in Fig. 4(b).
Therefore, we calculate the interaction force Fci received by
vehicle c from pedestrian i similarly as Fck in Eq. 13.

4.3.3 Pedestrian-Bicycle Interaction
Mutual interactions that are similar to those described above
also occur when pedestrian i cuts into the bicycle lane
and interacts with bicycle b. The pedestrian has to make
a walk-or-wait decision based on a safety judging criterion.
If walking, the mutual feedback of the pedestrian and the
involved bicycles is computed.

Unlike pedestrian-vehicle interaction, however, a pedes-
trian needs to consider interactions with multiple bicycles,
because bicycles are more flexible than vehicles and always
move side by side in a very short distance. Here, we define
a “virtual lane” for a pedestrian’s accurate gap-acceptance
judgment and walk-or-wait decision making. As shown in
Fig. 5, the virtual lane is constructed with a width of D and
pedestrian i’s current position as the starting boundary. In
the decision-making process, the pedestrian i considers all
bicycles in the virtual lane (b1 and b2 in Fig. 5). For each
bicycle, compute pedestrian i’s estimated crossing time ti
and bicycle b’s predicted passing time tb. The computation
method is similar to that used in the pedestrian-vehicle
interaction process. Then, the bicycle b with the smallest
value of ti

tb
will be treated as the current interaction agent to

have an interaction with pedestrian i. After pedestrian i has
passed bicycle b, the virtual lane needs to be reconstructed,
and a new round of decision making is initiated.

When crossing, pedestrian i is affected by the force of
bicycle b, and the form of the force is similar to that in the
pedestrian-vehicle interaction (Eq. 14).

At the same time, bicycle b’s movement would be af-
fected by pedestrians in the field of vision. When a moving
pedestrian i appears in front of, and close to the bicycle,
the cyclist would assess whether a collision would occur
by calculating the relative velocity vbi between them. To
emulate this judgment, we first simplify the bicycle to an
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Fig. 7. Visualization of real-world traffic trajectory data which are applied
to calibration of our proposed force-based model.

eclipse (see Fig. 6) with forward velocity of vb, and then
construct a circle C with the center of pedestrian i, the
radius equal to the semi-major axis of the bicycle b, and the
forward velocity of vi. Subsequently, we draw a dashed line
A extending from the bicycle, and taking the vector of rel-
ative velocity vbi as the direction. If there is no intersection
between the dashed line and the circle, it is considered as no
collision, and bicycle b’s movement would not be affected
by pedestrian i. Conversely, collisions may occur if there is
an intersection between A and C . The cyclist will gradually
change the moving direction to avoid a collision with the
pedestrian, while attempting to follow the original moving
trajectory to the maximum extent until the dashed line is
tangent to the circle, i.e., the dashed line A moves to B
in Fig. 6. Accordingly, ∆v denotes the minimum velocity
change required for shifting the dashed line to be tangent to
the circle. Based on this, we define a force Fbi subjecting on
bicycle b from pedestrian i as follows:

Fbi (t) =
∆v

Ti
, (15)

where Ti is mentioned in Eq. 3.
On-line simulation: Up to now, the detailed behavior

of each road user in a mixed traffic flow has been modeled
by applying the described force-based method. Based on a
given initial state (position and velocity) of each road user,
our method can simulate sophisticated behaviors of various
road users and their interactions. Taking into account the
potentially complex environment required for virtual urban
traffic simulation, more microscopic behaviors of arbitrary
road users can be easily integrated into the current simula-
tion framework by adding more specific forces. In addition,
in order to make the simulation results more consistent with
real-world traffic, we calibrate the proposed force-based
model using real-world traffic trajectory data, which will
be described in detail in Sec. 5.

5 CALIBRATION

We use a heterogeneous traffic trajectory dataset provided
by Apollo Scape [68] to calibrate the proposed model. The
dataset was collected on urban streets using an Apollo
acquisition car during rush hours, in which vehicles, pedes-
trians, and motorcycles/bicycles are detected and tracked

(Fig. 7). Each individual’s trajectory is recorded in a 1-
min sequence at 2 fps intervals, containing the information
of frame ID, object ID, object type, 3D position, length,
width, height, orientation, speed, and acceleration. As a pre-
processing step, the trajectory data are filtered by a Gaussian
filter with a filter length of three to reduce the influence of
noise on the model calibration performance.

Given the real-world traffic data, the calibration task is
to determine the specific optimal parameter set of the force-
based model that best fits the given trajectory for each traffic
participant. Table 1 summarizes the model parameters that
need to be calibrated and their empirical values. The calibra-
tion process can be formulated as an optimization problem,
in which the model parameters need to be adjusted until
an acceptable match is found between the simulated model
dynamics and the observed agent behavior.

TABLE 1
Parameter values used in our experiments.

Parameter Value Description
ξi [2.0, 6.0] fluctuation term for total effect force
ai [0, 35] agent’s desired acceleration
v0
i [2.0, 6.0] agent’s optimal velocity
τi [0.3, 10] relaxation time for acceleration

Ui, Uc, Uk [0.0, 1.0] scale factor of force
Ri, Rc, Rk [0.0, 1.0] sensitivity to distance

Ti [0.5, 0.6] agent’s reaction time
ac [2.0, 3.5] vehicle’s maximum acceleration
bc [2.0, 3.5] vehicle’s comfortable deceleration
s0c [1.5, 2.5] vehicle’s jam space headway
Tc [1E-5, 5] vehicle’s desire safety time headway

∆athc [0.0, 3.0] vehicle’s lane changing threshold
λc [0.0, 1.0] vehicle’s politeness in lane changing
dEk [1E-5, 2.0] distance threshold for bicycle’s overtaking
αk [1E-5, 2.0] scale factor of bicycle’s overtaking force
βi [1E-5, 1.0] scale factor in vehicle-pedestrian interaction

5.1 Objective Functions
For the optimization, an objective function is needed as a
quantitative measure of the error between simulated behav-
ior and observed behavior. Taking into account the dissim-
ilar behavior patterns of different types of road users, we
uniformly adopt the difference between the simulated posi-
tion and the actual position as the error measure. Inspired
by Chao et al.’s work on vehicle behavior diversification
[50], we design the objective function using a mixed error
metric as follows:

Fmix [ssim] =

√√√√ 1

〈|sdata|〉

〈
|sdata − ssim|2

|sdata|

〉
, (16)

where sdata and ssim are the directed segments, respectively,
in real trajectory and simulated trajectory within one time-
step. Operator 〈·〉 represents the temporal average of a time
series of duration (1 ∼ N frames in our implementation),
expressed as:

〈|s|〉 =
1

N

N∑
i=1

|si|. (17)

5.2 Optimization with Adaptive Genetic Algorithm
We employ an adaptive genetic algorithm (AGA) to search
for the optimal parameter set of the force-based model for
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each road user using the given real-world traffic trajectory
data. The algorithm can be implemented as an iterative
procedure that consists of a constant-size population of
individuals. Each individual in the population represents
a possible solution to the optimization problem. The genetic
algorithm attempts to find the best solution to the problem
by genetically propagating the population of individuals.
The pseudo-code description of AGA is given in Algo-
rithm 1.

Algorithm 1 Adaptive Genetic Algorithm
Input: population size N , parameters’ range set PRS.

1: gen← 1
2: P [gen]← GenerateInitialPopulation (PRS,N)
3: while terminating conditions are not met do
4: Evaluate the fitness of each individual in P [gen]
5: S [gen]← RWLSelection(P [N ])
6: while |S [gen]| ≤ N do
7: Select two individuals in S [N ]
8: Compute the crossover rate pc
9: NP [gen]← Crossover (S[gen], pc)

10: Compute the mutation rate pm
11: NP [gen]←Mutation (NP [gen] , pm)
12: P [gen+ 1]← ElitistSelect (P [gen] , NP [gen])
13: end while
14: gen← gen+ 1
15: end while
16: return the optimal parameter set

The adaptive genetic algorithm consists of the following
steps:

1. Generate the initial generation P [1]. Suppose that there
are N individuals in each generation. In order to repre-
sent the n parameters to be calibrated in each individual,
each individual is encoded into a binary string, where
each parameter is initialized with the empirical value
range PRS (listed in Table 1).

2. Calculate the fitness of each individual. According to the
principle of survival-of-the-fittest in nature, individuals
with higher fitness are more likely to be selected as can-
didates for the subsequent generation. For our problem,
we map the objective function Fmix defined by Eq. 16 to
the fitness function Ffitness, which is defined as:

Ffitness =
1

1 + Fmix
, (18)

3. Select candidates using the Roulette Wheel Selection Al-
gorithm [50] to achieve survival-of-the-fittest. Basically,
the algorithm replicates individuals with higher fitness
and eliminates individuals with lower fitness.

4. Crossover and mutation. The crossover operator com-
bines two individuals to produce a new individual,
with the possibility that good solutions can produce
better ones. Specifically, we use the two-point crossover
method, in which the operator randomly selects two
crossover points in the binary string, and then inter-
changes the two binary strings between these points to
generate two new individuals. After this, the mutation is
used to achieve genetic diversity by altering one or more
bit values in binary strings.

(a) (b) (c)

Fig. 8. Examples of interactions between different road users in the
generated mixed traffic scenario: (a) pedestrian-vehicle interaction, (b)
bicycle-vehicle interaction, and (c) bicycle-pedestrian interaction.

5. Retain the most elite individuals of the current generation
to the next generation. Since the operators in Step 4 are
random, the best-fitted individuals may be destroyed
during the process. To avoid this situation, an elitist
retention strategy is introduced. Specifically, compare the
best individual in the new population after Step 4 with
the parent population in Step 3. If the fitness is higher, it
indicates that the population has developed toward the
optimal solution. Otherwise, the worst half of individuals
of the new population will be replaced by the best half of
the parent population.

6. Repeat 2, 3, 4, and 5 until the terminal conditions are met.
The termination criterion is specified by a fixed error for
at least a given number of generations, or reaching the
maximum number of iterations.
Using the calibrated parameter set, we can simulate

mixed traffic similar to the given real-world traffic data.
Considering the various behavioral characteristics of road
users in different cities, further fine-tuning can be employed
based on the calibrated parameters to realistically simulate
complex traffic behaviors in various scenarios.

It is worth noting that besides the AGA, other nonlinear
optimization methods, such as Particle Swarm Optimization
(PSO), Simulated Annealing (SA), a combination of genetic
and greedy algorithms (GA+G) [69], and the Covariance
Matrix Adaptation Evolution Strategy method (CMA-ES)
for Automated Parameter Fitting [70], can also be employed
for the model calibration process.

6 SIMULATION RESULTS

To demonstrate our force-based simulation framework, we
generate mixed traffic flow on a road without any traffic
signs (Fig. 1). Fig. 8 shows snapshots of the representative
interactions between different types of road users in our
synthesized mixed traffic flow.

Timing performance: To determine the timing perfor-
mance of our force-based simulation method, we conducted
a series of experiments with different numbers of indi-
viduals in mixed traffic, in which the ratio of vehicles,
bicycles, and pedestrians was 1:2:3. All of the timings were
obtained with a 64-bit laptop machine with a 2.90 GHz
Intel CoreTMI9-8950HK processor, 32 GB memory, and a
Nvidia GeForce GTX 1080 video card. Fig. 9 illustrates
the runtime performance of our method in terms of agent
number. It can be seen that the computational costs scale
approximately quadratic with the number of road users.
Moreover, our approach can simulate approximately 1,200
agents in real time (30 fps) and 1,800 agents at interactive
rates (10 fps). The efficient time performance indicates that
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Fig. 9. Computation time per simulation step of our method.

(a) Our Force-based Approach

(b) Car-following Microscopic Method [25]
Frame #1 Frame #58 Frame #154

Frame #1 Frame #58 Frame #154

Fig. 10. Snapshots of a vehicle’s (in green color) motions when a near-
front vehicle (in yellow color) in the adjacent lane attempts to change
lane (58th frame), and soon afterwards moves back to its original lane
due to the failure of lane changing (154th frame). The motions of
the green vehicles are computed using (a) the force-based approach
proposed in this paper, and (b) the car-following microscopic method
(IDM) [45].

our approach can be straightforwardly plugged into various
existing traffic simulation systems for autonomous vehicle
testing and animation generation.

Interactions between vehicles: As shown in Fig. 10, we
tested a green vehicle’s response in a scenario in which
a near-front yellow vehicle in the adjacent lane attempts
to move into the green vehicle’s lane. The yellow vehicle
failed to change the lane and returned to its original lane.
Fig. 10 (a) shows the green vehicle’s response through our
force-based approach. At the 1st frame, both the green and
yellow vehicles stayed in their original lanes. However,
when the yellow vehicle tried to change its lane and get
close to the green vehicle (at the 58th frame), the green
vehicle attempted to avoid a collision in the lateral direction,
owing to the repulsive force from the yellow vehicle (Eq. 4).
Later, as the yellow vehicle failed to change its lane and
returned to its original lane (at the 154th frame), the green
vehicle moved back to the center of the current lane because
of the repulsive force from lane boundaries. In order to
evaluate the effectiveness of our force-based approach, we
also computed the green vehicle’s response in the same
scenario using the Intelligent Driver Model (IDM) [45]. The
model parameters for the green vehicle were set to empirical
values [5]. Fig. 10 (b) shows the corresponding simulation
results. It is observed that the green vehicle only responded
to the red vehicle in front in the same lane, and was not
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(a) Lateral Positions of Vehicles (b) Velocity of the Green Vehicle

Fig. 11. (a) The lateral positions of the green vehicle and yellow vehicle;
and (b) the velocity of the green vehicle in the forward direction (solid
line) and in the lateral direction (dotted line) when the near-front yellow
vehicle in the adjacent lane attempted to move into the green vehicle’s
lane.
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Fig. 12. (a) A snapshot of the interaction between a vehicle and a road-
crossing pedestrian, and (b) the velocities of the pedestrian and vehicle
during the interaction.

responsive to the yellow vehicle in the adjacent lane due to
the car-following rules.

To better elucidate the performance of our approach,
in Fig. 11, we show the lateral positional relationship be-
tween the green vehicle and yellow vehicle, and also list
the velocity response of the green vehicle. The time period
between the 211th and 400th frames shows that the yellow
vehicle tried to change the lane again and successfully
switched to the green vehicle’s lane. An obvious lateral
avoidance behavior of the green vehicle is observed during
lane switching of the yellow vehicle. As soon as the yellow
vehicle successfully cut in and became the leading vehicle
of the green one (near the 280th frame), the green vehicle’s
force obtained from the yellow vehicle changed from Eq. 4
to Eq. 5, which triggered the green vehicle’s emergency
braking behavior (sudden velocity decrease in Fig. 11 (b))
due to the sudden decrease in the gap between it and the
preceding vehicle.

Interaction with road-crossing pedestrians: Fig. 12(a)
shows the snapshot of an interaction between a vehicle
and a road-crossing pedestrian through our force-based ap-
proach. Fig. 12(b) shows the velocities of both the pedestrian
(red line) and the vehicle (blue line). It is observed that both
the vehicle and the pedestrian slowed down when they
sensed each other to ensure safety. Subsequently, after the
vehicle continuously decelerated, the pedestrian accelerated
to cross the lane as quickly as possible. Finally, both of
them recovered to their original status after the interaction.
Overall, the above analysis demonstrates that our force-
based approach models the pedestrian-vehicle interactions
in a realistic and smooth manner.

Bicycle-vehicle interactions: In Fig. 13, we show the
snapshots of bicycle-vehicle interactions in two different
situations described in Section 4.3.1: (a) a cyclist riding in
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interaction process: (a) the cyclist riding in front of the vehicle; and (b)
the cyclist riding near the side of the vehicle.
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Fig. 14. (a) The learning mixed error Fmix distribution of the AGA
algorithm and (b) the convergence performance for different types of
road users (vehicle #78, pedestrian #552, and bicycle #515).

front of a vehicle, and (b) a cyclist riding near the side of a
vehicle. For each case, we also present the velocities of both
the bicycle and the vehicle for comparison. The solid lines
represent the velocities in the forward moving direction,
and the dashed lines indicate those in the lateral direction.
As can be seen from Fig. 13, when the bicycle was riding
in the near front of the vehicle (from approximately 430th
to 530th frame), the vehicle decelerated significantly in the
forward direction, and its lateral movement did not change
significantly. In contrast, when the bicycle was traveling
near one side of the vehicle (from approximately 170th to
205th frame), the vehicle obviously avoided a collision with
the bicycle in the lateral direction of movement. At the
same time, there was a slight deceleration in the forward
moving direction of the vehicle. It is worth noting that, in
both interaction situations, while the vehicle was reacting,
the bicycle also accelerated away from their interaction area
and returned to its lane. As depicted in Fig. 13, there was
apparent acceleration behavior in both directions of bicycle
movement.

Performance of model calibration: We randomly select
80 road users (20 vehicles, 20 bicycles, and 40 pedestrians)
from the Apollo Scape trajectory dataset to test the perfor-
mance of our calibration algorithm. Here, we set the maxi-
mum number of generations to 500, with 100 individuals per
generation. We define convergence as maintaining within a
fixed error for at least 100 generations. The obtained error
is defined in the range of [0%, 30%], which is consistent
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Fig. 15. Comparison of simulated and actual trajectories of vehicle #78
(left), pedestrian #552 (middle), and bicycle #515 (right). Figure (a ∼
c) shows the trajectory difference, while figure (d ∼ f) displays the
velocity. The yellow curve represents actual data, and the green curve
represents simulated data.

with typical error ranges obtained in the previous studies
of model calibration [50], [57]. Fig. 14(a) shows the resulting
error distribution. Among the 80 tested individuals, 71 of
them result in an error rate of less than 30%, whereas
only 9 tested individuals lead to an error of 30% to 40% .
The results show that using the calibrated parameters, the
simulated behaviors of most individuals approximate the
real trajectories with an acceptable error rate.

For detailed illustration, we randomly select an agent
in each kind of road user (vehicle #78, pedestrian #552,
and bicycle #515) to test the performance of our calibration
algorithm. In Fig. 14 (b), we plot how the mixed error
defined in Eq. 16 decreases over iterations. As shown in this
figure, the errors of the above three types of traffic agents
decrease dramatically in the first 50 generations, and then
all converge within 200 iterations. It is worth noting that
the curve of bicycle #515 (red line) falls into a temporary
convergence during the 25th ∼ 100th generations, and then
achieves further convergence at approximately the 150th
generation. This proves that the AGA algorithm has the
ability to avoid local optima.

Table 2 gives the specific calibrated value of each param-
eter. We apply these to the force-based model to reconstruct
the behaviors of vehicle #78, pedestrian #552, and bicycle
#515, and compare the simulated dynamics of these road
users with their empirically measured values in Fig. 15.
The yellow curves represent measured data, and the green
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TABLE 2
Calibrated parameter values by AGA algorithm.

Parameter vehicle #78 pedestrian #552 bicycle #515
ξi 2.31 4.12 1.83
ai 5.0 1.0 4.0
v0
i 6.75 1.59 2.03
τi 2.70 0.63 0.97

Ui, Uc, Uk 1.00 0.23 0.74
Ri, Rc, Rk 7.80 6.41 7.99

Ti 2.73 0.63 0.97
ac 5.0 - -
bc 2.9 - -
s0c 3.95 - -
Tc 2.72 - -

∆athc 0.62 - -
λc 0.01 - -
dEk 1.44 0.99 4.96
αk 0.015 0.027 0.06
βi 0.018 0.035 -

curves represent simulated data. Fig. 15(a ∼ c) show the
comparison of trajectory. It can be seen that the green curve
of each traffic individual is basically close to the correspond-
ing yellow curve, which indicates that the objective function
used for model calibration works well. Fig. 15(d ∼ f) show
the comparison results of velocity. It can be seen that the
velocity difference between the yellow and green curves has
been automatically reduced while optimizing with respect
to trajectory. Overall, the tests in Fig. 15 validated that
our calibrated force-based model can realistically simulate
heterogeneous traffic in the real world.

Performance of different calibration methods: In ad-
dition to AGA, we also tested four other optimization
algorithms [69] for comparing the mixed error between
simulated behavior and observed behavior (defined in Eq.
16) . These four optimization algorithms are: Greedy Algo-
rithm (G), Genetic Algorithm (GA), Simulated Annealing
(SA), and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES). In our implementation, all these methods are
calibrated on the same trajectory dataset for fair comparison.
For each method, the approximate calibration time on the
trajectory dataset is: 2.3 hours for CMA-ES, 8.1 hours for
AGA, 8.3 hours for GA, 12.6 hours for SA, and 20.4 hours for
G. Fig. 16 shows the error distributions of all optimization
algorithms. After parameter calibration, the error of most
agents can be reduced to less than 10%. Except for SA,
other methods have no obvious difference in error. The error
of AGA is slightly lower than other methods, and most
errors of AGA are below 4%. Therefore, we employ AGA
in our implementation. The errors of CMA-ES and GA are
slightly higher than that of AGA, where CMA-ES costs less
calibration time and GA takes similar calibration time as
AGA. The Greedy algorithm (G) estimates parameters with
a fixed precision using a brute force approach, and it obtains
smaller errors at the cost of longer running time. Of all five
methods, SA has the worst performance because it is diffi-
cult to get out of the local optimum when there are many
parameters (ranging from 16 to 20 in our experiments).

7 CONCLUSION AND DISCUSSION

In this paper, we proposed a calibrated force-based model
that can approximately emulate intricate urban traffic.
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Fig. 16. Error distributions of different calibration algorithms.

Pedestrians, bicycles, and vehicles are considered as the
main road users. Their behaviors are encoded in a general,
unified force-based framework, whose forces can be clas-
sified as the desire force to a target, repulsive forces with
neighbors and the built environment, and interaction forces
between different kinds of road users. The model param-
eters are calibrated to reconstruct heterogeneous traffic in
the real world. Our approach offers a simple, efficient, and
extensible method to simulate the different behavioral char-
acteristics of different road users and realistic interaction
effects in complex urban traffic environments. Experimental
results were conducted to validate the performance of our
approach by comparison with real-world traffic trajectories.

To the best of our knowledge, our model is the
first unified and scalable framework for heterogeneous
behaviors in mixed traffic scenarios. In previous crowd
simulation methods, velocity-based methods are developed
to address the local collision avoidance problem between
multiple agents, while planning-based methods are mainly
designed to deal with the global navigation problem. It is
quite difficult to use these kinds of methods to describe the
complex interactions between different types of road users.
In contrast, purely data-driven methods use real-world
traffic trajectory data as a reference and can capture more
details of individual behavior. However, obtaining specific
individual simulated behaviors through fine tuning is not
user friendly. In addition, realistic simulation results rely
on a large amount of various real-world data. However,
data collection for mixed traffic is still a challenging
and costly task. Different from the above methods, our
force-based framework is unified and scalable by attributing
any detailed behavior of each type of agent to a specific
force. In order to simulate large-scale realistic mixed traffic
in real time, we are also interested in developing a hybrid
solution that combines our force-based method with a fast
continuum model.

Although the simulation results are promising, the ap-
proach presented in this paper remains preliminary and can
be improved in several aspects. First, it would be worth-
while to model the personalized behavioral characteristics
of pedestrians, bicyclists, and drivers to generate heteroge-
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neous traffic behaviors, thereby generating more realistic
simulations. Second, for pedestrian crossing scenarios, a
pedestrian’s decision-making process is far more complex
in real-world traffic than that in our current model [71]. In
addition to the gap acceptance criterion, there are possibly
other factors that need to be considered in making walk-
or-wait decisions, such as the total number of pedestrians
crossing the road together and waiting time. Third, different
individual behaviors in the current framework are defined
by different force formulas. We are interested in simplifying
the current model, i.e., all forces are represented in the same
form, but with different parameters to indicate different
forces. Fourth, although we focus on the local interactions
of various road users, other factors such as dynamic global
route planning in a dynamically changing environment,
and the heterogeneous traffic behaviors in an intersection
scene with traffic signals, can also be incorporated into the
simulation framework.
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