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6 Abstract—Interactive multi-agent simulation algorithms are used to compute the trajectories and behaviors of different entities in

7 virtual reality scenarios. However, current methods involve considerable parameter tweaking to generate plausible behaviors. We

8 introduce a novel approach (Heter-Sim) that combines physics-based simulation methods with data-driven techniques using an

9 optimization-based formulation. Our approach is general and can simulate heterogeneous agents corresponding to human crowds,

10 traffic, vehicles, or combinations of different agents with varying dynamics. We estimate motion states from real-world datasets that

11 include information about position, velocity, and control direction. Our optimization algorithm considers several constraints, including

12 velocity continuity, collision avoidance, attraction, direction control. Other constraints are implemented by introducing a novel energy

13 function to control the motions of heterogeneous agents. To accelerate the computations, we reduce the search space for both collision

14 avoidance and optimal solution computation. Heter-Sim can simulate tens or hundreds of agents at interactive rates and we compare

15 its accuracy with real-world datasets and prior algorithms. We also perform user studies that evaluate the plausible behaviors

16 generated by our algorithm and a user study that evaluates the plausibility of our algorithm via VR.

17 Index Terms—Multi-agent model, heterogeneous group, data-driven method, physically driven simulation

Ç

18 1 INTRODUCTION

19 MANY virtual reality and training systems need to be
20 able to simulate different types of agents, includ-
21 ing human crowds and traffic. Applications include VR
22 therapy for crowd phobias, traffic agents for autono-
23 mous driving, urban design and planning, driving sim-
24 ulators for education and entertainment, etc. It is
25 important to simulate the behaviors and trajectories of
26 different types of agents, including pedestrians and
27 vehicles, and the interactions between such heteroge-
28 neous agents. Furthermore, it is important to develop
29 general plausible algorithms that are applicable to a
30 wide variety of scenarios.
31 There are extensive works on interactive multi-agent sim-
32 ulation, including crowd simulation and traffic simulation.
33 These works include techniques based on rule-based meth-
34 ods [1], physics-based simulations [2], [3], vision-based meth-
35 ods [4], energy-based models [5], data-driven methods [6],

36[7], and combinations of these approaches [8], [9]. These
37methods are flexible and have been successfully applied to
38different scenarios. However, they often use many parame-
39ters and require a significant amount of effort to achieve
40good results that are plausible and match the behaviors
41observed in real-world scenarios. Furthermore, the results of
42these methods often seem too regular because all the agents
43have similar locomotion or movement patterns.
44With the improvement of data acquisition techniques,
45more data-driven methods are emerging. Most of these
46methods are patch-based or use real-world agent trajecto-
47ries [2], [9], [10], [11]. These methods extract patches or tra-
48jectory segments from input datasets and either connect
49them with some rules or use them to learn some characteris-
50tics of an agent’s motion. With these methods, users can
51generate more plausible or more accurate results than with
52traditional rule-based or physics-based simulation methods.
53However, the variety of the simulation results depends on
54that of input data. If the amount of input data is small, the
55simulation results will be periodic and monotonous.
56Most of the existing methods only apply to one kind of
57agent, e.g., only human pedestrians or only vehicles. In con-
58trast, we want to use a general method to model the behav-
59iors of different kinds of agents in a heterogeneous setting
60while retaining the motion features of each kind of agent.
61This is important in many situations like simulating the
62motion trajectories and interactions between cars and
63humans at a traffic crossing. Data-driven methods can help
64us with simulating interactions between heterogeneous
65agents by preserving the motion features of each kind of
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of66 agent. However, data-driven methods depend on the input

67 data, and it is difficult to simulate behavior in a scenario
68 that is different from the one that generated the input data.
69 Main Results. We present a novel, heterogeneous multi-
70 agent simulation algorithm (Heter-Sim) that combines the
71 benefits of prior data-driven and physics-based simulation
72 methods to generate general and plausible simulations.
73 Our interactive approach can simulate not only heteroge-
74 neous agents while generating plausible behaviors, but
75 also scenarios different from those included in the input
76 datasets. We convert various datasets captured using dif-
77 ferent types of sensors into a uniform format and extract
78 the agents’ states, including velocity information. We
79 model the decision-making or local navigation process of
80 each agent as an optimization problem and define an
81 energy function that considers collision avoidance, attrac-
82 tion, velocity continuity, and direction control. Our energy
83 function tries to match the results with the characteristics
84 of real-world data. At a given moment, each agent chooses
85 a velocity from a dataset. We align the control directions
86 between simulation agents and real-world agents to diver-
87 sify agents’ possible behaviors and movements where there
88 is relatively less input data available. To accelerate the
89 computation, we utilize spatial continuity to reduce possi-
90 ble collisions and use the velocity continuity to reduce the
91 solution space for energy functions.
92 Overall, the novel contributions of our work include:

93 � A general, optimization-based method to simulate
94 heterogeneous multi-agent systems. We use our
95 approach to simulate crowds, traffic, and any combi-
96 nation of those agents.
97 � A data-driven scheme to improve the plausibility of
98 our simulation. We use two fast search methods
99 based on spatial continuity and velocity continuity

100 to search for possible collision-free solutions.
101 � A constraint energy function to achieve the heteroge-
102 neity of the simulation system. We use different con-
103 straint energy functions to model various constraints
104 on dynamics, traffic rules, and interactions for het-
105 erogeneous agents.
106 � A direction adaptation method to simulate more
107 kinds of scenarios. We use direction control, which
108 computes ideal directions, to guide agents in various
109 environments. Our method can simulate agents’
110 behaviors that may differ from those captured by the
111 input data.
112 We highlight the performance of our approach on differ-
113 ent scenarios in Fig. 1. In practice, our approach can gener-
114 ate plausible trajectories and behaviors for tens or hundreds

115of heterogeneous agents at interactive rates. To demons-
116trate the benefits of our method, we have conducted two
117user studies to evaluate the benefits of our method over
118prior methods while using a top-down view and an agent’s
119view. In both studies, participants exhibit significant prefer-
120ence for our method over a prior crowd simulation
121method [12] and a traffic simulation method [7]. We also
122conduct a user study to compare the user experience via VR
123and via desktop, and VR shows a better user experience
124(see Section 7).

1252 RELATED WORK

126There is considerable research in multi-agent simulation,
127including many algorithms for simulating crowds and traf-
128fic. In this section, we give a brief overview of prior methods
129for parameter estimation and data-driven simulation.

1302.1 Parameter Estimation and Real-World
131Characteristics

132Parameter estimation with real-world datasets improves the
133accuracy of simulation methods. Researchers utilize empiri-
134cal data to compute the parameters used for rule-based or
135physically-based multi-agent simulation methods automati-
136cally. Wolinski et al. [13] present a method to compute opti-
137mal parameters for rule-based or physically-based multi-
138agent simulation algorithms. Berseth et al. [14] present an
139approach that computes parameters for steering methods
140by minimizing any combination of performance metrics.
141Karamouzas et al. [15] use distortion and longitudinal dis-
142persion of the group to evaluate the results from simula-
143tions. Different from these parameter estimation methods,
144our approach finds the best velocity from real-world data-
145sets to generate realistic motions.
146Many techniques have been proposed to learn agent char-
147acteristics from empirical data and to then use them for
148multi-agent simulation. Lee et al. [16] present a crowd simu-
149lation method which use an agent model generated from
150real-world observations. Chao et al. [17] apply characteristics
151of drivers from an empirical video to an agent-based model.
152Boatright et al. [18] classify the contexts and learn the charac-
153teristics from a dataset. Charalambous et al. [19] present a
154real-time synthesis method for crowd steering behaviors
155with the temporal perception pattern. Bi et al. [20] simulate
156the process of lane-changing in traffic by learning character-
157istics from features of real vehicle trajectories. Kim et al. [9]
158compute collision-free trajectories of virtual pedestrians by
159learning pedestrian dynamics from 2D trajectories. Besides,
160Ond�rej et al. [4] present a vision-based approach of collision
161avoidance between walkers that fit the requirements of

Fig. 1. Our heterogeneous multi-agent simulation algorithm can be used for scenarios with tens or hundreds of different types of agents sharing a
physical space. Pedestrians walking on a street (the first). Cars moving on a twisting road (the second). Traffic including cars and pedestrians (the
third). Traffic shown through VR (the fourth). Our approach can generate plausible behaviors at interactive rates on a desktop PC and through VR.
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162 interactive crowd simulation. Our data-driven optimization
163 algorithm is complimentary to these algorithms and can be
164 combinedwith them.
165 Reconstruction of certain aspects of real-world scenes has
166 also been used for multi-agent simulation, especially for
167 traffic simulation. Li et al. [21] reconstruct traffic with GPS
168 mobile vehicle data. Wilkie et al. [22] drive an agent-based
169 traffic simulator by using the state of traffic flow estimated
170 from sparse sensor measurements. Yoon et al. [23] propose
171 a refinement method to reconstruct a holistic view of
172 crowd’s movements with noisy tracked data. Qiao et al. [24]
173 present a trajectory interpolation method by combining tra-
174 jectory estimation and global optimization. Our approach is
175 more general than these prior methods.

176 2.2 Data-Driven Multi-Agent Simulation

177 Patch-based methods transfer the original trajectories from
178 empirical data into patches and connect these patches with
179 some rules. Yersin et al. [25] extend the concept of motion
180 patches to dense populations in large environments. Li et al.
181 [26] animate large crowds with examples of multi-agent
182 motions by using a copy-and-paste technique. Hyun et al. [27]
183 tile deformable motion patches, which describe episodes of
184 the movements of multiple characters. Jordao et al. [10] pro-
185 pose a crowd sculpting method to guide crowd motion by
186 using intuitive deformation gestures.
187 As with patch-based methods, researchers replicate trajec-
188 tory tubes extracted from empirical data to synthesize new
189 agent animations. Lai et al. [28] introduce group motion
190 graphs to animate groups of discrete agents with empirical
191 data. Lerner et al. [29] generate seemingly natural behaviors
192 by copying trajectories from real people and applying them
193 to simulated agents. Ju et al. [11] generate new animations,
194 which can include arbitrary numbers of agents, by blending
195 existing data. Zhao et al. [30] cluster the examples extracted
196 from human motion data and combine similar examples to
197 produce an output. Li et al. [31] propose a general, biologi-
198 cally-inspired framework with a three-level method using
199 statistical information from real datasets. Kielar et al. [32]
200 predict movement behaviors of crowds with a cognitive
201 agent framework. Liu et al. [33] generate crowd movements
202 with neural networks by considering environment layouts. A
203 new data-driven method has been proposed by Chao
204 et al. [7]. They compute the velocity for each agent in each
205 frame from empirical data. However, this method is time-
206 consuming because it tries to minimize the overall traffic tex-
207 ture energy and is therefore not useful for interactive applica-
208 tions. Our approach is complimentary to prior data-driven
209 methods and presents a new method that combines data-
210 driven with physics-based multi-agent methods.

211 3 DATA-DRIVEN OPTIMIZATION

212 In this section, we introduce our data-driven optimization
213 approach to simulate heterogeneous multi-agent systems.

214 3.1 Terminology and Notation

215 We use agent to represent the virtual character in our
216 method. We also use the term state to represent the motion
217 characteristics of each agent. Our method is general and
218 applicable for both 2D and 3D motions. State can therefore

219refer to an agent’s movements in either 2D or 3D space. In
220this paper, we limit our discussions to 2D agents.
221We use set G to specify the set of agents in the scenario.
222We use the vector s ¼ ½p; v; vd�T, s 2 R6 to specify an agent’s
223state, where p 2 R2 is the agent’s position, v 2 R2 is the
224velocity, and vd 2 R2 is the control direction that guides the
225motion direction of agents. Then the state of the group
226becomes S ¼ [isi, where si is the state of agent i. Distinct
227from the velocity v, the control direction vd controls the
228agent’s global direction. We use v̂ ¼ v

kvk to represent the unit
229vector of v. We also use vi;n to represent the velocity of
230agent i at time tn. For any state s ¼ ½p; v; vd� 2 S, p 2 Sp,
231v 2 Sv, v

d 2 Svd . We represent our method by ½SðÞ; DðÞ; IðÞ;
232F ðÞ�T, where S is the environment evolution function, D is
233the data processing function, I is the initialization function,
234and F is the decision making function. S determines the
235external environment, which consists of the static environ-
236ment (static obstacles, ground, etc.) and the dynamic envi-
237ronment (moving stimulus). D processes the data set by
238transferring the trajectories to the estimated states D ¼
239[nS�

n ¼ [n [i s
�
i;n, where s�i;n ¼ ½p�

i;n; v
�
i;n; v

d�
i;n� denotes the

240state of agent i at time tn of the dataset. The minimal magni-
241tude and the maximal magnitude of v�i;n for all i and n are
242v�min and v�max, respectively. For any s� ¼ ½p�; v�; vd�� 2 D,
243p� 2 Dp, v

� 2 Dv, v
d� 2 Dvd . I initializes each agent’s state:

244position, velocity, and control direction. F is the main rou-
245tine corresponding to our algorithm and computes a new
246state for each agent at each timestep.

2473.2 Overall Approach

248Our model for simulating heterogeneous multi-agent sys-
249tems references the datasets to control the trajectories and
250behaviors of the agents (see Fig. 2). The datasets might be
251videos or other data representations, including trajectories
252or higher order features. We deal with different types of
253datasets and transform them into a unified representation,
254classifying the data by the magnitude of the velocity. The
255environment may also consist of static and dynamic
256obstacles. We initialize the position of each agent in the
257scene randomly and choose an initial velocity for each agent
258from our datasets. At each step of our simulator, we use an
259interactive optimization algorithm to make decisions for
260each agent. In particular, we solve this optimization prob-
261lem by choosing a velocity from the datasets that tends to
262minimize our energy function. The energy function is
263defined based on the locomotion or dynamics rules of het-
264erogeneous agents, including continuity of velocity, colli-
265sion avoidance, attraction, direction control, and other
266constraints defined by users. In addition, our approach is
267general and can deal with different kinds of agents in the
268same way. We can capture corresponding motion character-
269istics with different datasets. As a result, we can simulate
270heterogeneous agents in the same physical space.

2713.3 Dynamics Computation

272An agent moves according to its surroundings, which
273include the other agents and the external environment
274(attractions, obstacles, roads, etc.). In these complex sur-
275roundings, the agent makes decisions in relation to all these
276elements. At each timestep, we calculate the state of each

REN ET AL.: HETER-SIM: HETEROGENEOUS MULTI-AGENT SYSTEMS SIMULATION BY INTERACTIVE DATA-DRIVEN OPTIMIZATION 3
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277 agent according to the prior states of all agents, the environ-
278 ment, and the dataset. Because the external environments
279 may be time-varying, we set the environment evolution
280 function as a function of time. The system of equations for
281 the state of each agent at time tn is

pi;n ¼ pi;n�1 þ vi;nDt;

vi;n ¼ argmin
v2Dv

Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ;

vdi;n ¼ Rðpi;n�1; Sðtn�1;pi;n�1ÞÞ;
(1)

283283

284 where Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ is the energy
285 function that chooses the optimal velocity for agent i at time
286 tn. Rðpi;n�1; Sðtn�1;pi;n�1ÞÞ is a function that computes the
287 control direction vd for each agent at each time. We compute
288 a velocity that minimizes the energy function. If we search
289 the velocity from a continuous-space, our method becomes
290 an energy-based model. To capture the characteristics of dif-
291 ferent kinds of agents easily, we search for the velocity from
292 the states in the dataset D, which belongs to a discrete space.
293 If the states generated from the dataset are unlimited, the
294 simulation results will approximate those generated from
295 the method with the continuous velocity space.
296 To simulate heterogeneous agents in the same physical
297 space, we consider the common locomotion rules of multi-
298 agent systems for the energy function Eðtn�1; i; v;Sn�1;
299 Sðtn�1;pi;n�1Þ; vdi;nÞ including collision avoidance, attraction,
300 velocity continuity, direction control, and any other constraints.

Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ
¼

X

k2u
wkEkðtn�1; i; v;Sn�1; Sðt;pi;n�1Þ; vdi;nÞ; (2)

302302

303 where u ¼ fm; c; a; d; sg, Em is the energy for velocity
304 continuity, Ec is the energy for collision avoidance, Ea is

305the energy for attraction, Ed is the energy for direction
306control, and Es is the energy function for constraints
307of certain kinds of agents. wm, wa, wt, wd, and ws are
308the weights of these terms respectively, and each weight
309represents the importance of the corresponding energy term.
310Velocity continuity is used to ensure that the agents move
311smoothly. Collision avoidance is a crucial part of multi-agent
312simulation. Attraction helps agents remain cohesive with
313other agents in the same group and has been widely used in
314multi-agent simulation literature [1]. The direction control
315represents the direction preference for agents according to
316the environment. These four elements can describe the basic
317factors considered by agents when moving. It is possible to
318add more constraints to control the movements of agents in
319Es. The definition of Es for each kind of agent is described in
320Section 5. To achieve the heterogeneity, our method uses dif-
321ferent parameters and constraints to implement different
322dynamics, and use different road constraints and interaction
323domains to implement different traffic rules and response
324mechanisms.

3253.4 Continuity

326Because of the physical limitations, agents cannot change
327their motion states frequently or abruptly within a Dt time.
328Thus, the agent i has a tendency to choose a velocity close to
329vi;t at a time tþ 1. The continuity energy is used to indicate
330that the agent tends to keep its velocity unchanged to save
331its overall energy:

Em ¼ wm1E
dir
m þ wm2E

L
m; (3)

333333

334where Edir
m ¼ v̂i;n�1 � v̂

�� ��
2
is for direction continuity and

335EL
m ¼ kvi;n�1k � kvk�� ��

2
is for continuity of magnitude of

velocity. vi;n is the velocity of agent i at time tn�1.

Fig. 2. Overview of our data-driven model for simulating heterogeneous multi-agent systems. We highlight different components of our algorithm. The
input empirical data can be videos from a top-down view or trajectories of agents. In the initialization, we first transfer real-world data into a consistent
format. With the data and environment information set by the users, we initialize the positions and velocities for agents. We treat the motion decision-
making or local navigation process of each agent at every timestep as an optimization problem, and the energy function takes into consideration sev-
eral factors: velocity continuity, collision avoidance, attraction, direction control, and any other constraints defined by users. Our model can simulate
heterogeneous agents in the same scenario, including crowds, traffic, any combination of these agents, etc.
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336 3.5 Collision Avoidance

337 Collision avoidance (Fig. 3) is a major issue in multi-agent
338 simulation [3], [34]. To avoid collisions with other agents
339 or the environmental obstacles in the scene, the agent
340 should choose a velocity that will not cause a collision after
341 one of more timesteps by assuming that all objects keep
342 moving with their current velocities. Here, we consider
343 two kinds of collisions to avoid: instantaneous collisions
344 and anticipatory collisions.

Ec ¼ wc1E
Ins
c þ wc2E

Anti
c ; (4)

346346

347 where instantaneous collision avoidance energy EIns
c only

348 considers the possible collisions after a timestep, and antici-
349 patory collision energy EAnti

c considers the possible colli-
350 sions after anticipation time T .
351 The normalized instantaneous collision avoidance energy
352 EIns

c is given as

EIns
c ¼ 1

jVcðDt; i; tn�1Þj
X

Q2VcðDt;i;tn�1Þ
edc�dðDt;si;sQ;vÞ; (5)

354354

355 where VcðDt; i; tn�1Þ is the predicted neighborhood of agent

356 i after time Dt based on the surrounding information at
357 time tn�1. The neighborhood consists of agents that proba-
358 bly collide with agent i, and jVcðDt; i; tn�1Þj represents the

359 number of neighbors. dðDt; si; sQ; vÞ is the predicted dis-
360 tance between agent i and agent Q. For each agent, we
361 only consider collision avoidance within a distance dc. Sim-
362 ilarly, the anticipatory collision avoidance energy EAnti

c can
363 be given as

EAnti
c ¼ 1

jVcðTDt; i; tn�1Þj �X

Q2VcðTDt;i;tn�1Þ
edc�dðTDt;si;sQ;vÞ;

(6)

365365

366 where VcðTDt; i; tn�1Þ is the predicted collision neighbor-
367 hood of agent i after time TDt based on the surrounding
368 information at time tn�1. dðTDt; si; sQ; vÞ is the predicted dis-
369 tance between agent i and agent Q after time T . Note that

370we perform instantaneous collision avoidance in each time-
371step while the anticipatory collision energy is only used to
372avoid potential future collisions.
373Within the distance dc, Ec increases when the distance
374between agent i and agentQ decreases (see Fig. 3). As a result,
375when we compute the velocity for each agent in each frame, a
376valuemaking their distance largerwill reduce the energy.

3773.6 Attraction

378If the agents want to move together as a group, we need to
379account for some attraction forces between them. The agent
380therefore prefers to choose a velocity that brings it closer to
381the group, allowing it to become a part of the group over
382the next few frames. In addition, agents may also be
383attracted by external stimuli. The attractions in our model
384include the attraction between the agents and the environ-
385ment (Fig. 4). The attraction energy is given as

Ea ¼ 1
jVaðDt;i;tn�1Þj

P
Q2VaðDt;i;tn�1Þ d

2ðDt; si; sQ; vÞ; (7)
387387

388where VaðDt; i; tn�1Þ is the predicted attraction neighbor-
389hood of agent i after time Dt based on the surrounding
390information at time tn�1.
391When the distance between agent i and agent Q increases,
392the energy Ea increases (see Fig. 4). Thus, a computed veloc-
393ity making their distance smaller will reduce the energy.

3943.7 Direction Control

395We use direction control to imitate agents moving toward
396their goals. In this case, the agents try to choose velocities
397that point to their goals or that parallel the path to their
398goals. We assume that every agent has a goal position to
399guide its local movement. The goal might change over time.
400This goal can also be treated as a direction control defined
401by the users. The energy for direction control is presented as

Ed ¼ vdi;n � v̂
���

���
2
; (8)

403403

404where vdi;n is the control direction for agent i at time tn.

4054 MULTI-AGENT SYSTEM SIMULATION WITH

406DATA-DRIVEN OPTIMIZATION

407In this section, we present more details about our method,
408as it is used to simulate heterogeneous agents.

Fig. 3. Collision avoidance. In our method, the energy for collision
avoidanceEc consists of two parts: the energy for instantaneous collision
avoidance EIns

c and the energy for anticipation collision avoidance EAnti
c .

The blue curve represents EIns
c changes with the distance d between two

agents increases in time jþ 1, and the yellow curve represents EAnti
c

changes with d in time jþ T .

Fig. 4. Attraction. The energy for attraction include the energy for attraction
(green arrows) between agents and the energy for attraction (red arrows)
from environmental objects.

REN ET AL.: HETER-SIM: HETEROGENEOUS MULTI-AGENT SYSTEMS SIMULATION BY INTERACTIVE DATA-DRIVEN OPTIMIZATION 5
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409 4.1 State Estimation for the Dataset

410 The dataset of ourmethod consists of trajectories that are time
411 series of positions, L : Y1;Y2; :::;Yn:::. We estimate the state
412 s�n ¼ ½p�

n; v
�
n; v

d�
n � in the dataset based on these trajectories,

413 and obtain the estimated position p�
n ¼ Yn and velocity

414 v�n ¼ Yn�Yn�1
Dt . Estimating the control direction vd�n is equiva-

415 lent to estimating the direction to the corresponding agent’s
416 goal, according to Section 3.7. Therefore, if the agent only
417 moves one way in the scenario, it is in the same control direc-
418 tion; if the agent changes its direction or goal in the dataset,
419 we estimate its control direction at time t by computing the

420 direction of its displacement, vd� ¼ Yn�Yn�d
kYn�Yn�dk, which is com-

421 puted every dDt time. We estimate the control direction by
422 averaging every dDt time to reduce the estimation error from
423 local avoidance. The results in Section 5 show that our state
424 estimation for real-world datasetsworkswell.

425 4.2 Direction Adaptation to Different Scenarios

426 According to Eq. (1), if we directly search the optimal veloc-
427 ity for each agent from the dataset, the synthesized scenario
428 will be limited in its ability to achieve plausible movements
429 by the scenario of the dataset. To eliminate these constraints,
430 we map the local coordinate of the dataset to that of the sce-
431 nario in the simulation by align their forward directions. As
432 a result, we can simulate scenarios that may be different
433 from the dataset. We suppose that the simulated scenario
434 and the dataset have the same relative position relationship
435 between the direction of velocity and the control direction;
436 that is, the angle between the velocity direction and the con-
437 trol direction in the simulation is the same with that of the
438 dataset, and

v̂ � vd ¼ v̂� � vd�;
v̂� vd ¼ v̂� � vd�:

(9)

440440

441 Therefore, we obtain v̂, and v ¼ kv�kv̂.

442 4.3 Distance and Neighborhood

443 We hypothesize that the velocity of an agent remains
444 unchanged over a short time t and the shapes of agents or
445 obstacles cannot be ignored. If the agent i moves with the
446 velocity v chosen from the dataset, the predicted distance
447 between agent i and agent Q after time t becomes

dðt; si; sQ; vÞ ¼ kpi þ vt� ðpQ þ vQtÞ � ðRdir
i þRdir

Q Þk2;
(10)

449449

450 where Rdir
i is the radius of agent i in the direction toward

451 agent Q (Q 6¼ i). Rdir
Q is also a directional radius of agent Q.

452 The shapes of different agents can be different. For example,
453 we use a rectangular object to represent a car and a disc to
454 represent a pedestrian. If Q is an entity in the environment,
455 Eq. (10) becomes a distance function between an agent and
456 the entity in the environment. For a twisting road, we com-
457 pute the distance between two cars as the distance along the
458 curve of the road.
459 In contrast to the existing methods [35], the agents in our
460 method try to avoid collisions with not only the homoge-
461 neous agents but also the heterogeneous agents. To avoid
462 collisions, each agent tries to keep away from other agents

463or obstacles when they get too close. In the real world,
464humans can perceive the environment through both vision
465and sound [36], and thus we can assume that an agent can
466avoid collisions in a full field of vision with a limited range.
467We define the neighborhood for collision avoidance as

Vcðt; i; tnÞ ¼ Q
��dðt; si; sQ; vÞ < dc; Q 2 G n fig [ Gc

� �
;

(11) 469469

470where dc is the threshold distance for collision avoidance
471and Gc is the set of obstacles in the scenario. Each agent con-
472siders collision avoidance with the agents or obstacles
473within a distance dc. Meanwhile, each agent tries to keep
474close to the agents in its group or to the external attraction
475stimulus if the distance between the agents is large. We
476define the neighborhood for attraction as

Vaðt; i; tnÞ ¼ Q
��dðt; si; sQ; vÞ > da; Q 2 G [ Ga

� �
; (12)

478478

479where da is the threshold distance for attraction and Ga is the
480set of attraction in the scenario. An entity that is treated as
481an attraction can also be an obstacle if the shape of it cannot
482be ignored, that is, Gc \ Ga 6¼ ? .

4834.4 Faster Computation

484If we use a brute force method to solve Eq. (1), the computa-
485tion cost will be large. The underlying time complexity will
486be Oðn2mÞ with n agents in the simulation and m estimate
487states in the dataset. The most time-consuming parts are
488searching for the optimal velocity from the dataset and find-
489ing the neighborhood for each agent. To achieve interactive
490performance, we propose two acceleration methods.

4914.4.1 Reduced Solution Space

492To find the optimal velocity for each agent efficiently, we
493reduce the solution space of Eq. (1). We classify the esti-
494mated states of the dataset into groups based on the magni-
495tude of the velocity. Considering the continuity of motion,
496we search for the velocity for each agent in the current
497group of velocities and in the adjacent groups,

vi;nþ1 2
[lþz

m¼l�z

fvn�g; (13)

499499

500where fvlg is the set of velocities of the group l to which vi;n
501belongs, z is the scope of the number of groups that are con-
502sidered for computing optimal velocity, and the group fvmg
503withm 2 ½l� z; lþ z� is the neighborhood of fvlg.

5044.4.2 Grid in Space

505To reduce the time consumption for computing the neigh-
506borhood for each agent, we introduce the idea of grid in
507space from fluid simulation [37]. For our simulation, the 2D
508plane is divided into 2D grids. We suppose that Ox;y

509denotes the set of all agents in the grid Ox;y. Then the candi-
510date neighborhood of i in grid Ox;y is reduced from G to G0,

G0 ¼
[xþ1

k1¼x�1

[yþ1

k2¼y�1

Ok1;k2 : (14)

512512

513When we search the neighborhood for collision avoidance,
514we compare the distances of the agents in the grid Ox;y with
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516 to all the agents in the scenario.

517 5 RESULTS

518 In this section, we highlight the performance of our approach
519 in generating simulations of crowds, traffic, and combinations
520 of different types of agents. We have implemented our
521 approach in C++ on a desktop machine with a 3.30 GHz Inter
522 Xeon CPU E3-1230 v3 4-core processor and 32 GB memory.
523 The performances for different scenarios are given in Table 1.
524 To achieve the heterogeneity of our simulation system,
525 we use different parameters and Es for different kinds of
526 agents. In addition, we employ real-world datasets consist-
527 ing of pedestrians, bicycles, tricycles and cars captured
528 from real scenarios. We initialize the weights with 1.0, and
529 they can be tuned according to the behaviors of the agents.
530 Table 2 shows the weights of all the benchmarks. We define
531 the user control for each pedestrian with speed control
532 Es ¼ Esc ¼ jkvk � vij, where vi is the ideal speed for agent i.
533 We define the user control for each car with speed control
534 and position control Es ¼ Esc þEp, where Es is the same
535 with that of each pedestrian, Ep ¼ jv � ðvdÞ?j, and vd is a tan-
536 gential vector of the given lane. Cars try to drive in the mid-
537 dle of the lane.

538 5.1 Data Acquisition

539 Our method accepts different kinds of input datasets if
540 those datasets contain the velocity information for the
541 agents. Any form of discontinuity or a small amount of
542 abnormal data in the datasets is acceptable.

543In our current framework, we have used some widely
544available datasets from different scenarios and environments.
545The datasets for crowd simulation include two scenarios: one
546is from [38] and features two-dimensional bidirectionalmove-
547ments with 304 pedestrians and 1,273 frames; the second is
548from [29] and features street scenarios with 8-148 pedestrians
549and 9,014 frames. We set the control directions for the first
550dataset as the directions that point to the agents’ destinations.
551For the second dataset, the control direction of one agent at a
552certain time is the direction that points from its current posi-
553tion to the position of its next record.
554The traffic dataset is extracted from the Next Generation
555Simulation (NGSIM) datasets [39], which include detailed,
556high-quality highway traffic datasets. We extract 300 frames
557and 161 cars in total. We set the direction of the road as the
558estimation of the control directions of the cars. The datasets
559corresponding to the mixed traffic scenarios (including
560pedestrians, bicycles, tricycles, and cars) are generated from
561videos. The video was recorded in Shandong, China. We
562use the optical flow tracking method [40] to trace the agents.
563The extracted data consists of 435 frames and contains 3
564pedestrians, 10 bicycles, 10 tricycles, and 2 cars. The control
565direction for each agent in every frame is computed by aver-
566aging the directions of the agent from 30 frames.

5675.2 Human Crowd

568We simulate three benchmark scenarios with crowds repre-
569senting each pedestrian as a disc with a fixed radius.
570Crowd-1. We simulate behaviors of pedestrians on a
571street with the dataset from [29] to show that our method

TABLE 1
Performance for Different Scenarios

Scenario Types Behavior N Dataset Time(s/f)

Crowd-1 human walking on street 8-148 [Lerner et al. 2007] 0-0.0040
Crowd-2 human mixture of two crowds 100 [Zhang et al. 2012] 0.0209
Crowd-3 human avoiding static obstacles 79 [Zhang et al. 2012] 0.0192
Traffic-1 car movements on a twist road 80 [NGS 2013] 0.0137
Traffic-2 human/car movements on a crossing road 30/35 [NGS 2013]/[Zhang et al. 2012] 0.0378
Traffic-3 human/bicycle/tricycle/car mixture of multiple systems 25/15/10/40 video from Shandong, China 0.0342

We summarize the characteristics of the simulation scenarios in this paper. The agents include humans, cars, bicycles, and tricycles. The datasets used for input
data vary. We use seconds per frame to measure the time performance of the simulations. Our method can achieve realtime performance using 4 cores on a CPU.

TABLE 2
The Weights for Simulation

Scenario Edir
t EL

t EIns
c EAnti

c Ea Ed Ep Esc

Crowd-1 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.5
Crowd-2 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.5

Crowd-3 obstacle zone 1.5 1.0 0.67 0.67 0.0 1.0 0.0 1.0
before obstacle zone 1.0 1.0 0.67 0.67 0.0 1.0 0.0 1.0
after obstacle zone 1.0 1.0 0.67 0.67 0.0 1.5 0.0 1.0

Traffic-1 0.5 0.5 1.0 1.0 2.0 3.0 10.0 10.0

Traffic-2 Pedestrian 1.0 1.0 1.0 1.0 0.0 1.5 1.0 10.0
Car 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

Traffic-3 Type-1 10.0 1.0 1.0 1.0 0.0 5.0 10.0 5.0
Type-2 0.5 0.5 1.0 1.0 2.0 3.0 1.0 10.0

This table gives the weights for the direction continuity Edir
t , the speed continuity EL

t , instantaneous collision avoidance EIns
c , anticipated collision avoidance

EAnti
c , attraction Ea, direction control Ed, position control Ep, and speed control Esc in each scenario.
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573 we set the number of agents in the initialization and con-
574 trol directions to be the same as those in the dataset. Pedes-
575 trian agents, represented as discs, mainly avoid collisions
576 with other pedestrians that are close to them in the scene
577 (see Fig. 5a).
578 Crowd-2. In this scenario, we simulate two groups
579 (50 pedestrians in each group) with control directions
580 inverse to those from the dataset [38]. We randomly locate
581 the agents in each group at one side of the road and ran-
582 domly choose a velocity for each agent from the dataset in
583 the initialization. The control direction points from the
584 agent’s position to the agent’s goal on the other side of the
585 road. The reference speed is the magnitude of the initial
586 velocity. Agents are attracted to those in the same group
587 and avoid collisions with other agents, including pedes-
588 trians in other groups (see Fig. 5b).
589 Crowd-3. Based on the benchmark Crowd-1, we add a
590 cylindrical obstacle in the center of the road (see Fig. 5c).
591 We also use the dataset [38] in this benchmark. The initiali-
592 zation method for this benchmark is the same as for the
593 benchmark Crowd-2. In our simulations, we set different
594 control directions for different groups and agents in the
595 same group share the same control direction. Agents avoid
596 the obstacle like they avoid other agents.
597 Crowd behaviors can be slightly adjusted by setting dif-
598 ferent parameters. In Crowd-1, the control directions of
599 agents are changing, and thus we decrease the weight of Esc

600 to 0.5 to weaken the speed control so that agents can
601 promptly adjust their directions. In Crowd-2, some agents
602 in high-density areas may stop to avoid potential collisions
603 when two crowds are joining, and we increase the weight of
604 Esc to 1.5 to enhance speed control so that these agents can
605 return back to their desired speeds quickly. For a scenario
606 with obstacle such as the one in Crowd-3, the agent-agent
607 and agent-obstacle collision avoidances will make the colli-
608 sion energies EIns

c and EAnti
c much larger than other energy

609 terms. To weaken the influence of collision avoidance, we
610 empirically decrease the weights of EIns

c and EAnti
c to 0.67.

611 To adjust the weights of Edir
t and Ed, we divide the whole

612 road into three zones for each crowd: (1) obstacle zone: the
613 area whose distance to the obstacle is about 2m (an empiri-
614 cal value); (2) before obstacle zone: the area before a crowd
615 arrives at the obstacle zone; (3) after obstacle zone: the area after
616 a crowd passes by the obstacle zone. In the obstacle zone, we
617 increase the weight of Edir

t to 1.5 to enhance the direction
618 continuity in order to weaken drastic direction changes for
619 agents in high-density areas. In the after obstacle zone, we
620 increase the weight of Ed to 1.5 to enhance the direction

621control so that the agents can quickly return back to their
622goals after they pass by the obstacle.

6235.3 Traffic

624In traffic simulations, vehicle-agents mainly interact with
625the cars that are adjacent to them in the same lane, avoiding
626collisions when they are too close and being attracted by the
627leader cars when the distance to that car becomes too large.
628However, cars that are changing lanes also interact with the
629adjacent cars in the target lanes. The control directions for
630the cars in traffic are the directions of the lanes to which
631they currently belong.
632Traffic-1. With our method, we can simulate traffic on
633twisting roads with the straight high way traffic dataset [39]
634(see Fig. 6a). During the initialization step, 80 cars are dis-
635tributed on the road. The distance between two adjacent
636cars is chosen randomly from the dataset. We also randomly
637select the magnitude of the velocity for each agent from the
638dataset, and the direction of the velocity is the same as the
639direction of the road on which the agent is driving. The con-
640trol direction of each agent is always the direction of the
641road. In this benchmark, the directions of agents in different
642positions on the twisting road vary.
643Our method is general, so we can mix different kinds of
644agents in the same scenario. In this section, we show two
645benchmarks: a zebra striped crosswalk and a crossroad
646with traffic lights.
647Traffic-2. In this benchmark, we simulate a case in which
648people want to cross the road (see Fig. 6b). We use data-
649set [38] for the crowd and dataset [39] for the traffic. Each
650pedestrian has a certain possibility of crossing the road.
651Once the pedestrian starts to cross road, the control direc-
652tion becomes perpendicular to the road direction and the
653pedestrian needs to avoid not only other pedestrians, but
654also the cars around it. At the same time, the surrounding
655cars need to stop if the pedestrian is in front of them, and
656the attractive force from the leading cars disappears for
657these cars. We implement these interactions by adding cor-
658responding objects to the interaction domain of agents.
659Traffic-3. Our model can handle congested scenarios with
660different or heterogeneous agents. Here we simulate agents
661(15 pedestrians, 15 bicycles, 10 tricycles, and 40 cars) crossing
662a congested road with a traffic light (see Fig. 6c). We classify
663the dataset into groups according to the corresponding type
664of agent in the original data and choose the velocities of the
665agents from the corresponding class. Furthermore, we clas-
666sify the four kinds of agents into two types with different
667motion constraints. The first type includes pedestrians and
668bicycles, which can overtake the agents in front of them in
669the same lane. The second type includes tricycles and cars,
670which cannot overtake the agent in front in the same lane.

Fig. 5. The mixed crowds with different control directions. (a) Pedes-
trians with changing control directions walk on a street. (b) Two crowds
with inverse control directions. The pedestrians with the same clothes
represent individuals in the same crowd. The crowds walk to their own
destinations while avoiding collisions with each other. (c) We add an
obstacle to the scenario. In addition to avoiding collisions with each
other, crowds should also avoid collisions with this obstacle.

Fig. 6. Traffic simulation. (a) Traffic on a twisting 4-lane highway. (b) A
combination of cars and crowds. Some pedestrians are walking on the
sidewalk. Cars can be treated as obstacles for crowds and vice versa.
(c) Congested traffic in an urban crossroad with a traffic lights.
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672 the interpolation of the original road direction and the target
673 road direction. The rule for traffic light is not strictly the
674 same as that in the real world. We treat the red traffic light as
675 an obstacle, and agents will gradually stop when they are
676 close to the red traffic light.

677 5.4 VR Scenarios

678 Our method can be applied to VR scenarios. We model the
679 user as an avatar in the VR scenario with a first-person per-
680 spective (see Fig. 7) (a). The user can sit in a car and observe
681 the movements of other cars around it (see Fig. 7b and 7c).
682 As a walker, the user can also see the traffic flow and other
683 pedestrians at the roadside (see Fig. 7d and 7e).

684 6 ANALYSIS

685 6.1 Time Performance

686 To test the time performance of our method, we simulate a
687 crowd in a scenario with the size of 1,000*1,000. There is no
688 obstacle in the scenario. During the initialization, we ran-
689 domly locate N agents at random positions. The initial
690 velocities of the agents are randomly copied from the data-
691 set [38]. We set the grid size of the simulation as 10, and the
692 z for Eq. (13) as 2.
693 In our method, we utilize spatial continuity and velocity
694 continuity to reduce possible collisions among the agents. We
695 use the size of the solution space of the optimization function
696 in Eq. (1) to improve the runtime performance of our simula-
697 tion. We divide the space into grids and each grid records the
698 agents that belong to it. When we search for the neighbors of
699 each agent, we only need to search the grid to which the agent
700 belongs and the grids that are adjacent to this grid. As a result,

701our method can reduce the time consumption for multi-agent
702simulations dramatically (see Fig. 8a).
703Because we can solve the optimization problem for each
704agent at the same time, we can also easily parallelize our
705method. Taking the crowd as an example, we compare the
706time complexity of our simulation using a serial implemen-
707tation against a parallel implementation (see Fig. 8b). Our
708parallel implementation can simulate more than 5,000
709agents in realtime on a multi-core processor with four cores.
710To evaluate the performance of our method further, we
711compute the running time (seconds per frame) of all the
712simulation results mentioned in this paper (see Table 1).
713Our method can achieve real-time performance in various
714scenarios with multiple kinds of input dataset. The time
715complexity is not only related to the number of agents in
716the simulation, but also to the number of classes and the
717number of data points in each dataset. As a result, similar
718scenarios with the same number of agents may have differ-
719ent time performances.

7206.2 Comparisons

7216.2.1 Statistical Comparisons

722To demonstrate the plausibility of our method, we compare
723our simulation results (crowds and highway traffic) with
724given datasets in terms of the distributions of velocities and
725distances (the distance to the nearest agent). Velocity is a
726basic factor used to describe the motion, and minimal dis-
727tance is the factor used to describe density. We use data-
728set [38] for two-dimensional bidirectional movements to
729compare our results with [12], which is the state-of-art opti-
730mization method for crowd simulation. Meanwhile, we use
731the dataset [39] on a four-lane highway to compare our
732results with [7], which is the state-of-art data-driven traffic
733simulation method.
734Comparison for Crowds. We simulate bidirectional move-
735ments of pedestrians in a narrow corridor with the method
736described in [12] and our method. During the initialization,
737we set the same number, positions, and velocities of agents
738as in the dataset. For method [12], the minimal and maxi-
739mal velocities and the minimal distance from neighbors
740are estimated from the dataset. Other parameters inherit
741the configuration of the open source code released by the
742authors. We also tune parameters so that the method can
743work well for the scenario. For our method, the control
744direction of each agent is the direction that points from the
745current position to the agent’s destination. The weight
746w ¼ f0:8; 1:15; 1:2; 0:8; 0; 0:85; 0; 1:2g, which corresponds to
747the items in Table 2. For both methods, the preferred speed
748of each agent is the average speed of the corresponding
749agent in the dataset.

Fig. 7. The avatar in a VR scenario. (a) We provide the user with an immersive VR experience from a first-person perspective with HTC Vive. (b) The
avatar drives a car on an high-way road. (c) The avatar drives a car on an urban traffic road. (d) The avatar is walking on the sideroad. (e) The avatar
is walking on the crosswalk.

Fig. 8. Time performance. We take a crowd as an example to analyze
the time performance of the simulation. (a) We compare the time perfor-
mance of the brute-force method and our method. With our two search
methods, we can improve the performance with 32,298x speedup for
4000 agents. (b) We compare the performance of an 8-threaded parallel
implementation with a single-threaded implementation. With parallel
computing, as the number of agents increases, the simulation time
increases much more slowly. Our method can even simulate 5,000
agents in realtime on a PC machine with a 4.00 GHz Intel i7-6700k CPU
processor and 16 GB memory.

REN ET AL.: HETER-SIM: HETEROGENEOUS MULTI-AGENT SYSTEMS SIMULATION BY INTERACTIVE DATA-DRIVEN OPTIMIZATION 9
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750 Comparison for Traffic.We simulate traffic in a straight four-
751 lane highway like the dataset [39] using both method [7] and
752 our method. In this comparison, we initialize the number,
753 positions, and velocities of agents in our method to be the
754 same as the dataset. The control direction is the direction of
755 the road. The weight w ¼ f1:0; 5:0; 1:0; 1:0; 20:0; 3:0; 1:0; 0:0g,
756 which corresponds to the items in Table 2. For method [7], we
757 set the parameters to be the same as the original parameters.
758 The traffic in method [7] consists of 15 traffic flows. The ini-
759 tialization of each flow is same as in the dataset.
760 The distributions of velocity and minimal distance for
761 each method are shown in Fig. 9. We compute the difference
762 between simulation results and the dataset as the scores for
763 each method. We divide all the values of each metric into 30
764 intervals and compute the probability for each interval. The
765 difference between simulation results and the dataset is
766 the sum of the magnitudes of the probability difference in
767 the intervals. The scores of eachmethod are given in Table 3.
768 The distributions of velocity and minimal distance in our
769 simulations are closer to those in the input data. Although
770 our method selects velocities for agents directly form the
771 dataset, the selected velocities are controlled by Eq. (1).
772 Because our method has velocity distributions that are
773 closer to the input data for crowd simulation, our approach
774 is better at capturing the motion characteristics of a multi-
775 agent system as compared to prior methods ([12], [7]).
776 In the compared methods ([12] and [7]), the spikes in the
777 distance distribution are not only due to the hard con-
778 straints on the separation distance, but also the optimization
779 functions of these methods trying to find similar optimal
780 velocities for different agents. Therefore, the distances of
781 different agents are similar when agents reach the balance
782 of different optimization terms.

783 6.2.2 Trajectory Comparisons

784 Several quantitative metrics can be used to compare real
785 data against simulation data [13], [41], [42]. To evaluate the
786 time series in sequence of agents’ movements for crowds,
787 we employ the absolute difference metric (ADM) and the

788path length metric (PLM) proposed by Wolinski et al. [13] as
789they are straightforward comparing to other quantitative
790metrics. We simulate the movements of pedestrians on a
791street using the implicit method [12], the data-drivenmethod
792(PAG) [19], and our method. We set the same number, posi-
793tions, and velocities of agents as in the reference dataset [29]
794when performing the initialization. In addition, we set the
795control directions to be the same as those in the dataset.
796The ADM and PLM for each method are shown in
797Table 4. Experiments show that our method achieves a low-
798est score compared to [12] and [19] for crowds. This means
799that the trajectories generated by our method are more real-
800istic than those generated by methods of [12] and [19]. Com-
801pared to the implicit method [12] which is not data-driven,
802our approach uses real datasets so that it can generate more
803realistic detailed behaviors. The PAG method [19] searches
804trajectories only depending on the predicted temporal per-
805ception patterns and the distance to the goal, which may
806produce potential discontinuous velocities. On the contrary,
807our method can enforce continuous velocity by introducing
808a velocity continuity energy function.

8096.3 Our Simulation Results with or without Using
810Dataset

811To explore the performance of our data-driven scheme, we
812compare our simulation results with and without using
813dataset in terms of the distributions of velocities and mini-
814mal distances. We use the dataset [39] on a four-lane high-
815way for our experiments. We use the same initialization
816method and parameter values as those in Section 6.2. For
817the method without using dataset, we suppose that the cars
818move in one direction and compute vi;n (kvi;nk 2 ½v�min; v

�
max�)

819by minimizing Eq. (2). The underlying assumption is that
820the minimum and maximum magnitudes of velocities from
821real-world datasets are reasonable values to restrict the
822range of the magnitude of velocity.
823The distributions of velocity and minimal distance for the
824comparison are shown in Fig. 10. The velocity difference to

Fig. 9. The distributions of velocity andminimal distance.We compare the
probability distributions between our simulation results, existing methods,
and input datasets. (a)-(b). The comparison for the crowd simulated.
(c)-(d) The comparison for traffic simulated on a straight 4-lane road.

TABLE 3
Benchmark Scores 1: Used to Measure the Statistical Close-

ness to the Real-World Datasets

Velocity Distance

Real Ours Others Real Ours Others

Crowd 0.0 0.4132 0.4793 0 0.2691 0.5913
Traffic 0.0 0.2507 0.3766 0 0.2383 0.3475

The scores are the difference between simulation results and the dataset. A
lower score for our method versus [12] for crowds and [7] for traffic. This dem-
onstrates that the trajectories and behaviors generated by our method are closer
to those generated by prior methods.

TABLE 4
Benchmark Scores 2: Used to Measure the Trajectory

Closeness to the Real-World Datasets

Real IMPLICIT PAG Ours

ADM 0.0 37.373 65.4278 3.10986
PLM 0.0 20.3423 117.486 3.9529

The scores show the differences between the simulation results and the real-
world dataset.
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826 than that of the method without using dataset (0.6132). The
827 minimal distance difference score of our method using data-
828 set (0.2383) is also smaller than that of the method without
829 using dataset (0.2649). The comparison results indicate that
830 the data-driven scheme can improve the plausibility of sim-
831 ulation results.

832 7 USER STUDIES AND EVALUATION

833 We conduct two user studies to evaluate the plausibility of
834 our method and one user study to show a better user expe-
835 rience through VR. The weights for the user study are
836 shown in Table 5. The eight cases in the first user study
837 are conducted from an overhead view to show the agents’
838 movements. In the second user study, we adopt the agent’s
839 view in each case, meaning that the view is closer to that of
840 a participant in his/her daily life. In the third user study,
841 we compare the results as shown in immersive VR and
842 those shown on a desktop in four different scenarios or
843 agents’ views.
844 Experiment Goals & Expectations. For the first user study,
845 we hypothesize that the results simulated by our method
846 will exhibit more plausible movements than prior multi-
847 agent methods. For the second user study, we hypothesize
848 that our method results in a better user experience than the
849 prior methods. Therefore, participants will significantly pre-
850 fer our method over the prior methods in these evaluations.
851 In the third user study, we hypothesize that the results
852 shown in VR can produce a better user experience that those
853 shown on a desktop.
854 Comparison Methods. For crowd simulation, we compare
855 our method with the method in [12] which is a state-of-art
856 physical-based method for crowd simulation. We also use
857 the dataset [29] in crowd simulation. For traffic simulation,
858 we compare our method with the method in [7], which is a
859 state-of-art data-driven method on traffic simulation. Here
860 we use the dataset [39]. All 2D trajectories generated from
861 simulation methods or extracted from datasets are assigned
862 to 3D characters. We also compare mixed traffic results
863 shown in VR and those shown on a desktop.
864 Environments. In the first and second user study, we
865 used three scenarios for crowd simulation. The scenario
866 with the dataset [29] is in a street with 18 agents. The other
867 two scenarios are the one in which two crowds (100 agents
868 in total) encounter each other and the scenario in which 36
869 agents are located on a circle moving towards the opposite
870 positions. We also use three scenarios for traffic simulation.
871 The scenario with the dataset [39] is on a straight 4-lane

872road with 156 agents. The other two scenarios are on a
873twisting 2-lane road with 80 agents and on a twisting 4-
874lane road with 200 agents. In the third user study, we use
875one instance for the scenario with 50 cars and a car’s view.
876We also use three instances for the scenario with 35 cars
877and 30 pedestrians. In each instance, we use different agent
878views: one from a car’s view, one from the view of a
879pedestrian walking on a zebra crossing, and one from the
880view of a pedestrian walking on a sidewalk. In the VR sce-
881narios, head turning is controlled by a HTC Vive headset,
882and the user is allowed to turn his/her head freely with a
883fixed position in a moving agent.
884Experimental Design. We conduct the user studies based
885on a paired-comparison design. For the scenarios with a
886dataset, we design two comparison pairs: the dataset versus
887our method, and the dataset versus the prior method. We
888design one comparison pair for each scenario without a
889dataset: our method versus the prior method. For each pair,
890we show two pre-recorded videos in a side-by-side compar-
891ison. The order of the scenarios was random. The position
892(left or right) of each method was also random. For the sce-
893narios for VR versus desktop comparison, we ask the partic-
894ipants to answer the questionnaire after see the scenarios
895via VR and the scenarios via desktop.
896Metrics. In each user study, participants were asked to
897choose a score using a 7-point Likert scale, in which 1
898means that the result presented on the left is strongly plau-
899sible, 7 means that the result presented on the right is
900strongly plausible, and 4 means no preference for either
901method. To combine the user study results in the same
902scale, we transfer the score for each method to a certain
903side when we deal with the scores.

9047.1 User Study with an Overhead View

905The user studies for crowd simulation and traffic simulation
906with an overhead view were completed by 26 participants
907(15 females and 11 males). We performed two-sample t-tests
908for the scenarios with datasets (one for crowd simulation
909and another for traffic simulation). We hypothesize that the
910mean value of our method is bigger than that of the prior
911method. Meanwhile, we performed one-sample t-tests for
912the scenarios without datasets (two scenarios for crowd
913simulation and two for traffic simulation), hypothesizing
914that the mean value of our method is bigger than 4, which

Fig. 10. The distributions of velocity and minimal distance for compari-
son of the results with and without using dataset. (a) Probability distribu-
tions of velocity. (b) Probability distributions of minimal distance.

TABLE 5
The Weights for the User Study

Edir
t EL

t EIns
c EAnti

c Ea Ed Ep Esc

Street 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.5
Hallway 1.0 1.0 1.0 1.0 0.0 1.2 0.0 1.2
Circle 1.0 1.0 0.5 0.5 0.0 1.0 0.0 1.0
Straight 0.5 0.5 1.0 1.0 1.2 3.0 1.0 0.2
Twist-2Lane 0.5 0.5 1.0 1.0 1.0 3.0 1.0 2.0
Twist-4Lane 0.2 0.6 1.0 1.0 2.0 3.0 10.0 1.0
VR-2Lane 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

VR Pedestrian 1.0 1.0 1.0 1.0 0.0 1.5 1.0 10.0
Car 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

This table gives the weights for the direction continuity Edir
t , the speed conti-

nuity EL
t , instantaneous collision avoidance EIns

c , anticipated collision avoid-
ance EAnti

c , attraction Ea, direction control Ed, position control Ep, and speed
control Esc in each scenario.
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915 indicates no difference. Overall, participants believed that
916 our method was more plausible than the compared meth-
917 ods for both crowd simulation and traffic simulation. Fig. 11
918 (a)-(b) shows details about the scores for each comparison.
919 User Study for Crowd Simulation. For the scenario with the
920 dataset, our method’s mean score is significantly larger than
921 the prior method’s mean plausibility score (tð25Þ ¼ 2:9111,
922 p ¼ 0:0027 < 0:01). For the scenarios without datasets, our
923 method’s mean score shows a significant difference from
924 the hypothetical mean (tð51Þ ¼ �8:7555, p < 0:001).
925 User Study for Traffic Simulation. For the scenarios with
926 datasets, our method’s mean of the score is significantly
927 larger than the prior method’s mean plausibility score
928 (tð25Þ ¼ 2:4422, p ¼ 0:0091 < 0:01). For the scenarios with-
929 out datasets, our method’s mean score shows a significant
930 difference from the hypothetical mean (tð51Þ ¼ �3:0169,
931 p ¼ 0:002 < 0:01).

932 7.2 User Study with an Agent View

933 The user studies for crowd simulation and traffic simulation
934 from an agent’s view were completed by 28 participants (17
935 females and 11 males). For the user study from an agent
936 view, we also performed two-sample t-tests for the scenar-
937 ios with datasets hypothesizing that our method has a
938 larger mean score than the prior method. For the scenarios
939 without datasets, we performed one-sample t-tests hypothe-
940 sizing that the mean value of our method is larger than 4 (no
941 difference). Overall, participants also judged that our
942 method is more plausible than the prior methods. The statis-
943 tics of the participants’ plausibility evaluations can be found
944 in Fig. 11 (c)-(d).
945 User Study for Crowd Simulation. For the scenario with a
946 dataset, the mean plausibility score of our Heter-Sim is sig-
947 nificantly larger (tð27Þ ¼ 2:6692, p ¼ 0:005 < 0:01) than the
948 method [12]. The mean score of our method has a signifi-
949 cantly superior to the hypothetical mean (tð55Þ ¼ �5:0281,
950 p < 0:001) for the scenarios without datasets.
951 User Study for Traffic Simulation. For the scenario with a
952 dataset, the mean score of our method is significantly larger
953 than the mean score of the prior method (tð27Þ ¼ 6:4890,
954 p < 0:001). For the scenarios without datasets, the mean
955 score of our method shows a significant difference from the
956 hypothetical mean with tð55Þ ¼ �8:0381 and p < 0:001.

9577.3 User Study via VR or Desktop

958The user studies for the comparison between VR and desktop
959were taken by 28 participants (14 females and 14 males). We
960performed one-sample t-tests for the four instances by hypoth-
961esizing that the mean score of VR is bigger than 4 (no differ-
962ence). Overall, participants believed that the results shown
963with VR are more plausible than those shown with a desktop.
964Fig. 11e shows the details about the scores for each compari-
965son. In each scenarios, the score of VR is significantly better
966than that of desktop. tð27Þ ¼ �5:0138, p < 0:001 for the first
967scenario, tð27Þ ¼ �4:16478, p < 0:001 for the second scenario,
968tð27Þ ¼ �3:9890, p < 0:001 for the third scenario, and
969tð27Þ ¼ �5:7564, p < 0:001 for the last scenario. In total, the
970mean score for VR shows a significant difference from the
971hypotheticalmean (tð111Þ ¼ �9:3485, p < 0:001).

9728 CONCLUSION, LIMITATION AND FUTURE WORK

973We present a novel and general data-driven optimization
974method that can generate plausible behaviors for heteroge-
975neous agents in different scenarios. We demonstrate ourmod-
976el’s generalizability by simulating human crowds, traffic, and
977mixed traffic in multiple scenarios. To the best of our knowl-
978edge, this is the first data-driven multi-agent method that is
979applicable to such different simulation scenarios and that
980mixes different kinds of agents (e.g., vehicles and pedestrians).
981The simulation results of our method are plausible. We
982compare our results with prior methods in the same scenar-
983ios and by conducting three user studies with various sce-
984narios from different views and analyzing the statistical
985results of the user studies. Our method can generate results
986that are closer to the original datasets, than those achieve
987with the prior methods. In addition, our model is fast and
988can be used for interactive simulations (Table 1). We also
989demonstrate that the plausibility of our method can be
990increased via VR by performing a user study comparing the
991results via VR or desktop.
992Our method can simulate behaviors that are different
993from those of the input datasets. First, our method can gen-
994erate larger and denser groups than those in the input data-
995sets (Fig. 5). Second, our method can simulate scenarios that
996may differ from those of the input datasets (Figs. 5b, 6a).
997Third, our method can mix different kinds of agents in the
998same scenario (Fig. 6b and 6c).

Fig. 11. Plausibility scores of the user study. We use a 7-point Likert scale to measure the plausibility of the methods. The lower the score, the
more the participants prefer the method on the left; the higher the score, the more the participants prefer the method on the right. (a)The statistics
for crowd simulation with an overhead view. Participants cannot tell the difference between the dataset and our method. Compared to method [12],
the participants think the results of our method are more plausible. (b) The statistics for traffic simulation with an overhead view. Our method gets
a higher score than method [12] when compared with the dataset. We also get better results in the user study with the dataset. (c) The statistics
for crowd simulation from an agent view. Our method is closer to the dataset. The participants believe that the results of our method are more
plausible than those of the prior method. (d) The statistics for traffic simulation from an agent’s view. Our method has a significantly larger score
than method [7] in the user study with the dataset. Our method also shows better performance in the user study without the dataset. (e) The statis-
tics of the user study for the comparison of VR and desktop. The scores are transferred so that VR is supposed on the left. The scenarios shown
through VR have better scores.
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999 Limitations. Although our approach can generate various
1000 behaviors even with a simple, sparse input dataset, the actual
1001 performance of our approach can vary based on the datasets.
1002 For example, if the dataset only has two magnitudes of veloc-
1003 ity in it, the velocity of a car attempting to stop and move
1004 again after several seconds will not be continuous. Because
1005 our method uses a forward Euler integration scheme, the sta-
1006 bility of our simulation depends on the size of the timestep.
1007 An implicit integration scheme [12] can be introduced to
1008 improve the stability. We represent agents as rectangular
1009 objects or discs. More precise geometrical shapes should be
1010 used to implement better collision avoidance.
1011 As part of future work, our work can be extended in
1012 many ways. The input data is not limited to the real datasets
1013 and users can also use simulation results to direct certain
1014 behaviors. Therefore, the variety or diversity of simulation
1015 results can be dramatically increased. We could add tradi-
1016 tional context-aware methods to our work to create a variety
1017 of behaviors in multiple agents, which would improve the
1018 realism of the simulation results. The idea of reducing the
1019 solution space according to the continuity of movement can
1020 be applied to optimization problems in animation. We can
1021 also introduce other additional sensory information such as
1022 hearing to increase the realism of interactions among
1023 agents [36]. To make our simulation results more realistic,
1024 we also plan to use portions of real velocity profiles.
1025 Our model can be extended to other areas. The key idea of
1026 our method can be extended to data-driven methods to simu-
1027 late other particle systems. If we treat the vertex as the agent
1028 in our system and the connection between vertices as the rela-
1029 tionship, our framework can also be applied to data-driven
1030 body animation [43]. Because we model the decision-making
1031 process as an energy-based optimization problem, this idea
1032 may be applicable to path planning for robotics and
1033 unmanned aerial vehicles. Finally, we want to further evalu-
1034 ate the benefits of our simulator in VR and training scenarios.
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1 Heter-Sim: Heterogeneous Multi-Agent
2 Systems Simulation by Interactive
3 Data-Driven Optimization
4 Jiaping Ren, Wei Xiang, Yangxi Xiao, Ruigang Yang , Senior Member, IEEE,

5 Dinesh Manocha, Fellow, IEEE, and Xiaogang Jin ,Member, IEEE

6 Abstract—Interactive multi-agent simulation algorithms are used to compute the trajectories and behaviors of different entities in

7 virtual reality scenarios. However, current methods involve considerable parameter tweaking to generate plausible behaviors. We

8 introduce a novel approach (Heter-Sim) that combines physics-based simulation methods with data-driven techniques using an

9 optimization-based formulation. Our approach is general and can simulate heterogeneous agents corresponding to human crowds,

10 traffic, vehicles, or combinations of different agents with varying dynamics. We estimate motion states from real-world datasets that

11 include information about position, velocity, and control direction. Our optimization algorithm considers several constraints, including

12 velocity continuity, collision avoidance, attraction, direction control. Other constraints are implemented by introducing a novel energy

13 function to control the motions of heterogeneous agents. To accelerate the computations, we reduce the search space for both collision

14 avoidance and optimal solution computation. Heter-Sim can simulate tens or hundreds of agents at interactive rates and we compare

15 its accuracy with real-world datasets and prior algorithms. We also perform user studies that evaluate the plausible behaviors

16 generated by our algorithm and a user study that evaluates the plausibility of our algorithm via VR.

17 Index Terms—Multi-agent model, heterogeneous group, data-driven method, physically driven simulation

Ç

18 1 INTRODUCTION

19 MANY virtual reality and training systems need to be
20 able to simulate different types of agents, includ-
21 ing human crowds and traffic. Applications include VR
22 therapy for crowd phobias, traffic agents for autono-
23 mous driving, urban design and planning, driving sim-
24 ulators for education and entertainment, etc. It is
25 important to simulate the behaviors and trajectories of
26 different types of agents, including pedestrians and
27 vehicles, and the interactions between such heteroge-
28 neous agents. Furthermore, it is important to develop
29 general plausible algorithms that are applicable to a
30 wide variety of scenarios.
31 There are extensive works on interactive multi-agent sim-
32 ulation, including crowd simulation and traffic simulation.
33 These works include techniques based on rule-based meth-
34 ods [1], physics-based simulations [2], [3], vision-based meth-
35 ods [4], energy-based models [5], data-driven methods [6],

36[7], and combinations of these approaches [8], [9]. These
37methods are flexible and have been successfully applied to
38different scenarios. However, they often use many parame-
39ters and require a significant amount of effort to achieve
40good results that are plausible and match the behaviors
41observed in real-world scenarios. Furthermore, the results of
42these methods often seem too regular because all the agents
43have similar locomotion or movement patterns.
44With the improvement of data acquisition techniques,
45more data-driven methods are emerging. Most of these
46methods are patch-based or use real-world agent trajecto-
47ries [2], [9], [10], [11]. These methods extract patches or tra-
48jectory segments from input datasets and either connect
49them with some rules or use them to learn some characteris-
50tics of an agent’s motion. With these methods, users can
51generate more plausible or more accurate results than with
52traditional rule-based or physics-based simulation methods.
53However, the variety of the simulation results depends on
54that of input data. If the amount of input data is small, the
55simulation results will be periodic and monotonous.
56Most of the existing methods only apply to one kind of
57agent, e.g., only human pedestrians or only vehicles. In con-
58trast, we want to use a general method to model the behav-
59iors of different kinds of agents in a heterogeneous setting
60while retaining the motion features of each kind of agent.
61This is important in many situations like simulating the
62motion trajectories and interactions between cars and
63humans at a traffic crossing. Data-driven methods can help
64us with simulating interactions between heterogeneous
65agents by preserving the motion features of each kind of
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of66 agent. However, data-driven methods depend on the input

67 data, and it is difficult to simulate behavior in a scenario
68 that is different from the one that generated the input data.
69 Main Results. We present a novel, heterogeneous multi-
70 agent simulation algorithm (Heter-Sim) that combines the
71 benefits of prior data-driven and physics-based simulation
72 methods to generate general and plausible simulations.
73 Our interactive approach can simulate not only heteroge-
74 neous agents while generating plausible behaviors, but
75 also scenarios different from those included in the input
76 datasets. We convert various datasets captured using dif-
77 ferent types of sensors into a uniform format and extract
78 the agents’ states, including velocity information. We
79 model the decision-making or local navigation process of
80 each agent as an optimization problem and define an
81 energy function that considers collision avoidance, attrac-
82 tion, velocity continuity, and direction control. Our energy
83 function tries to match the results with the characteristics
84 of real-world data. At a given moment, each agent chooses
85 a velocity from a dataset. We align the control directions
86 between simulation agents and real-world agents to diver-
87 sify agents’ possible behaviors and movements where there
88 is relatively less input data available. To accelerate the
89 computation, we utilize spatial continuity to reduce possi-
90 ble collisions and use the velocity continuity to reduce the
91 solution space for energy functions.
92 Overall, the novel contributions of our work include:

93 � A general, optimization-based method to simulate
94 heterogeneous multi-agent systems. We use our
95 approach to simulate crowds, traffic, and any combi-
96 nation of those agents.
97 � A data-driven scheme to improve the plausibility of
98 our simulation. We use two fast search methods
99 based on spatial continuity and velocity continuity

100 to search for possible collision-free solutions.
101 � A constraint energy function to achieve the heteroge-
102 neity of the simulation system. We use different con-
103 straint energy functions to model various constraints
104 on dynamics, traffic rules, and interactions for het-
105 erogeneous agents.
106 � A direction adaptation method to simulate more
107 kinds of scenarios. We use direction control, which
108 computes ideal directions, to guide agents in various
109 environments. Our method can simulate agents’
110 behaviors that may differ from those captured by the
111 input data.
112 We highlight the performance of our approach on differ-
113 ent scenarios in Fig. 1. In practice, our approach can gener-
114 ate plausible trajectories and behaviors for tens or hundreds

115of heterogeneous agents at interactive rates. To demons-
116trate the benefits of our method, we have conducted two
117user studies to evaluate the benefits of our method over
118prior methods while using a top-down view and an agent’s
119view. In both studies, participants exhibit significant prefer-
120ence for our method over a prior crowd simulation
121method [12] and a traffic simulation method [7]. We also
122conduct a user study to compare the user experience via VR
123and via desktop, and VR shows a better user experience
124(see Section 7).

1252 RELATED WORK

126There is considerable research in multi-agent simulation,
127including many algorithms for simulating crowds and traf-
128fic. In this section, we give a brief overview of prior methods
129for parameter estimation and data-driven simulation.

1302.1 Parameter Estimation and Real-World
131Characteristics

132Parameter estimation with real-world datasets improves the
133accuracy of simulation methods. Researchers utilize empiri-
134cal data to compute the parameters used for rule-based or
135physically-based multi-agent simulation methods automati-
136cally. Wolinski et al. [13] present a method to compute opti-
137mal parameters for rule-based or physically-based multi-
138agent simulation algorithms. Berseth et al. [14] present an
139approach that computes parameters for steering methods
140by minimizing any combination of performance metrics.
141Karamouzas et al. [15] use distortion and longitudinal dis-
142persion of the group to evaluate the results from simula-
143tions. Different from these parameter estimation methods,
144our approach finds the best velocity from real-world data-
145sets to generate realistic motions.
146Many techniques have been proposed to learn agent char-
147acteristics from empirical data and to then use them for
148multi-agent simulation. Lee et al. [16] present a crowd simu-
149lation method which use an agent model generated from
150real-world observations. Chao et al. [17] apply characteristics
151of drivers from an empirical video to an agent-based model.
152Boatright et al. [18] classify the contexts and learn the charac-
153teristics from a dataset. Charalambous et al. [19] present a
154real-time synthesis method for crowd steering behaviors
155with the temporal perception pattern. Bi et al. [20] simulate
156the process of lane-changing in traffic by learning character-
157istics from features of real vehicle trajectories. Kim et al. [9]
158compute collision-free trajectories of virtual pedestrians by
159learning pedestrian dynamics from 2D trajectories. Besides,
160Ond�rej et al. [4] present a vision-based approach of collision
161avoidance between walkers that fit the requirements of

Fig. 1. Our heterogeneous multi-agent simulation algorithm can be used for scenarios with tens or hundreds of different types of agents sharing a
physical space. Pedestrians walking on a street (the first). Cars moving on a twisting road (the second). Traffic including cars and pedestrians (the
third). Traffic shown through VR (the fourth). Our approach can generate plausible behaviors at interactive rates on a desktop PC and through VR.
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162 interactive crowd simulation. Our data-driven optimization
163 algorithm is complimentary to these algorithms and can be
164 combinedwith them.
165 Reconstruction of certain aspects of real-world scenes has
166 also been used for multi-agent simulation, especially for
167 traffic simulation. Li et al. [21] reconstruct traffic with GPS
168 mobile vehicle data. Wilkie et al. [22] drive an agent-based
169 traffic simulator by using the state of traffic flow estimated
170 from sparse sensor measurements. Yoon et al. [23] propose
171 a refinement method to reconstruct a holistic view of
172 crowd’s movements with noisy tracked data. Qiao et al. [24]
173 present a trajectory interpolation method by combining tra-
174 jectory estimation and global optimization. Our approach is
175 more general than these prior methods.

176 2.2 Data-Driven Multi-Agent Simulation

177 Patch-based methods transfer the original trajectories from
178 empirical data into patches and connect these patches with
179 some rules. Yersin et al. [25] extend the concept of motion
180 patches to dense populations in large environments. Li et al.
181 [26] animate large crowds with examples of multi-agent
182 motions by using a copy-and-paste technique. Hyun et al. [27]
183 tile deformable motion patches, which describe episodes of
184 the movements of multiple characters. Jordao et al. [10] pro-
185 pose a crowd sculpting method to guide crowd motion by
186 using intuitive deformation gestures.
187 As with patch-based methods, researchers replicate trajec-
188 tory tubes extracted from empirical data to synthesize new
189 agent animations. Lai et al. [28] introduce group motion
190 graphs to animate groups of discrete agents with empirical
191 data. Lerner et al. [29] generate seemingly natural behaviors
192 by copying trajectories from real people and applying them
193 to simulated agents. Ju et al. [11] generate new animations,
194 which can include arbitrary numbers of agents, by blending
195 existing data. Zhao et al. [30] cluster the examples extracted
196 from human motion data and combine similar examples to
197 produce an output. Li et al. [31] propose a general, biologi-
198 cally-inspired framework with a three-level method using
199 statistical information from real datasets. Kielar et al. [32]
200 predict movement behaviors of crowds with a cognitive
201 agent framework. Liu et al. [33] generate crowd movements
202 with neural networks by considering environment layouts. A
203 new data-driven method has been proposed by Chao
204 et al. [7]. They compute the velocity for each agent in each
205 frame from empirical data. However, this method is time-
206 consuming because it tries to minimize the overall traffic tex-
207 ture energy and is therefore not useful for interactive applica-
208 tions. Our approach is complimentary to prior data-driven
209 methods and presents a new method that combines data-
210 driven with physics-based multi-agent methods.

211 3 DATA-DRIVEN OPTIMIZATION

212 In this section, we introduce our data-driven optimization
213 approach to simulate heterogeneous multi-agent systems.

214 3.1 Terminology and Notation

215 We use agent to represent the virtual character in our
216 method. We also use the term state to represent the motion
217 characteristics of each agent. Our method is general and
218 applicable for both 2D and 3D motions. State can therefore

219refer to an agent’s movements in either 2D or 3D space. In
220this paper, we limit our discussions to 2D agents.
221We use set G to specify the set of agents in the scenario.
222We use the vector s ¼ ½p; v; vd�T, s 2 R6 to specify an agent’s
223state, where p 2 R2 is the agent’s position, v 2 R2 is the
224velocity, and vd 2 R2 is the control direction that guides the
225motion direction of agents. Then the state of the group
226becomes S ¼ [isi, where si is the state of agent i. Distinct
227from the velocity v, the control direction vd controls the
228agent’s global direction. We use v̂ ¼ v

kvk to represent the unit
229vector of v. We also use vi;n to represent the velocity of
230agent i at time tn. For any state s ¼ ½p; v; vd� 2 S, p 2 Sp,
231v 2 Sv, v

d 2 Svd . We represent our method by ½SðÞ; DðÞ; IðÞ;
232F ðÞ�T, where S is the environment evolution function, D is
233the data processing function, I is the initialization function,
234and F is the decision making function. S determines the
235external environment, which consists of the static environ-
236ment (static obstacles, ground, etc.) and the dynamic envi-
237ronment (moving stimulus). D processes the data set by
238transferring the trajectories to the estimated states D ¼
239[nS�

n ¼ [n [i s
�
i;n, where s�i;n ¼ ½p�

i;n; v
�
i;n; v

d�
i;n� denotes the

240state of agent i at time tn of the dataset. The minimal magni-
241tude and the maximal magnitude of v�i;n for all i and n are
242v�min and v�max, respectively. For any s� ¼ ½p�; v�; vd�� 2 D,
243p� 2 Dp, v

� 2 Dv, v
d� 2 Dvd . I initializes each agent’s state:

244position, velocity, and control direction. F is the main rou-
245tine corresponding to our algorithm and computes a new
246state for each agent at each timestep.

2473.2 Overall Approach

248Our model for simulating heterogeneous multi-agent sys-
249tems references the datasets to control the trajectories and
250behaviors of the agents (see Fig. 2). The datasets might be
251videos or other data representations, including trajectories
252or higher order features. We deal with different types of
253datasets and transform them into a unified representation,
254classifying the data by the magnitude of the velocity. The
255environment may also consist of static and dynamic
256obstacles. We initialize the position of each agent in the
257scene randomly and choose an initial velocity for each agent
258from our datasets. At each step of our simulator, we use an
259interactive optimization algorithm to make decisions for
260each agent. In particular, we solve this optimization prob-
261lem by choosing a velocity from the datasets that tends to
262minimize our energy function. The energy function is
263defined based on the locomotion or dynamics rules of het-
264erogeneous agents, including continuity of velocity, colli-
265sion avoidance, attraction, direction control, and other
266constraints defined by users. In addition, our approach is
267general and can deal with different kinds of agents in the
268same way. We can capture corresponding motion character-
269istics with different datasets. As a result, we can simulate
270heterogeneous agents in the same physical space.

2713.3 Dynamics Computation

272An agent moves according to its surroundings, which
273include the other agents and the external environment
274(attractions, obstacles, roads, etc.). In these complex sur-
275roundings, the agent makes decisions in relation to all these
276elements. At each timestep, we calculate the state of each

REN ET AL.: HETER-SIM: HETEROGENEOUS MULTI-AGENT SYSTEMS SIMULATION BY INTERACTIVE DATA-DRIVEN OPTIMIZATION 3
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277 agent according to the prior states of all agents, the environ-
278 ment, and the dataset. Because the external environments
279 may be time-varying, we set the environment evolution
280 function as a function of time. The system of equations for
281 the state of each agent at time tn is

pi;n ¼ pi;n�1 þ vi;nDt;

vi;n ¼ argmin
v2Dv

Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ;

vdi;n ¼ Rðpi;n�1; Sðtn�1;pi;n�1ÞÞ;
(1)

283283

284 where Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ is the energy
285 function that chooses the optimal velocity for agent i at time
286 tn. Rðpi;n�1; Sðtn�1;pi;n�1ÞÞ is a function that computes the
287 control direction vd for each agent at each time. We compute
288 a velocity that minimizes the energy function. If we search
289 the velocity from a continuous-space, our method becomes
290 an energy-based model. To capture the characteristics of dif-
291 ferent kinds of agents easily, we search for the velocity from
292 the states in the dataset D, which belongs to a discrete space.
293 If the states generated from the dataset are unlimited, the
294 simulation results will approximate those generated from
295 the method with the continuous velocity space.
296 To simulate heterogeneous agents in the same physical
297 space, we consider the common locomotion rules of multi-
298 agent systems for the energy function Eðtn�1; i; v;Sn�1;
299 Sðtn�1;pi;n�1Þ; vdi;nÞ including collision avoidance, attraction,
300 velocity continuity, direction control, and any other constraints.

Eðtn�1; i; v;Sn�1; Sðtn�1;pi;n�1Þ; vdi;nÞ
¼

X

k2u
wkEkðtn�1; i; v;Sn�1; Sðt;pi;n�1Þ; vdi;nÞ; (2)

302302

303 where u ¼ fm; c; a; d; sg, Em is the energy for velocity
304 continuity, Ec is the energy for collision avoidance, Ea is

305the energy for attraction, Ed is the energy for direction
306control, and Es is the energy function for constraints
307of certain kinds of agents. wm, wa, wt, wd, and ws are
308the weights of these terms respectively, and each weight
309represents the importance of the corresponding energy term.
310Velocity continuity is used to ensure that the agents move
311smoothly. Collision avoidance is a crucial part of multi-agent
312simulation. Attraction helps agents remain cohesive with
313other agents in the same group and has been widely used in
314multi-agent simulation literature [1]. The direction control
315represents the direction preference for agents according to
316the environment. These four elements can describe the basic
317factors considered by agents when moving. It is possible to
318add more constraints to control the movements of agents in
319Es. The definition of Es for each kind of agent is described in
320Section 5. To achieve the heterogeneity, our method uses dif-
321ferent parameters and constraints to implement different
322dynamics, and use different road constraints and interaction
323domains to implement different traffic rules and response
324mechanisms.

3253.4 Continuity

326Because of the physical limitations, agents cannot change
327their motion states frequently or abruptly within a Dt time.
328Thus, the agent i has a tendency to choose a velocity close to
329vi;t at a time tþ 1. The continuity energy is used to indicate
330that the agent tends to keep its velocity unchanged to save
331its overall energy:

Em ¼ wm1E
dir
m þ wm2E

L
m; (3)

333333

334where Edir
m ¼ v̂i;n�1 � v̂

�� ��
2
is for direction continuity and

335EL
m ¼ kvi;n�1k � kvk�� ��

2
is for continuity of magnitude of

velocity. vi;n is the velocity of agent i at time tn�1.

Fig. 2. Overview of our data-driven model for simulating heterogeneous multi-agent systems. We highlight different components of our algorithm. The
input empirical data can be videos from a top-down view or trajectories of agents. In the initialization, we first transfer real-world data into a consistent
format. With the data and environment information set by the users, we initialize the positions and velocities for agents. We treat the motion decision-
making or local navigation process of each agent at every timestep as an optimization problem, and the energy function takes into consideration sev-
eral factors: velocity continuity, collision avoidance, attraction, direction control, and any other constraints defined by users. Our model can simulate
heterogeneous agents in the same scenario, including crowds, traffic, any combination of these agents, etc.
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336 3.5 Collision Avoidance

337 Collision avoidance (Fig. 3) is a major issue in multi-agent
338 simulation [3], [34]. To avoid collisions with other agents
339 or the environmental obstacles in the scene, the agent
340 should choose a velocity that will not cause a collision after
341 one of more timesteps by assuming that all objects keep
342 moving with their current velocities. Here, we consider
343 two kinds of collisions to avoid: instantaneous collisions
344 and anticipatory collisions.

Ec ¼ wc1E
Ins
c þ wc2E

Anti
c ; (4)

346346

347 where instantaneous collision avoidance energy EIns
c only

348 considers the possible collisions after a timestep, and antici-
349 patory collision energy EAnti

c considers the possible colli-
350 sions after anticipation time T .
351 The normalized instantaneous collision avoidance energy
352 EIns

c is given as

EIns
c ¼ 1

jVcðDt; i; tn�1Þj
X

Q2VcðDt;i;tn�1Þ
edc�dðDt;si;sQ;vÞ; (5)

354354

355 where VcðDt; i; tn�1Þ is the predicted neighborhood of agent

356 i after time Dt based on the surrounding information at
357 time tn�1. The neighborhood consists of agents that proba-
358 bly collide with agent i, and jVcðDt; i; tn�1Þj represents the

359 number of neighbors. dðDt; si; sQ; vÞ is the predicted dis-
360 tance between agent i and agent Q. For each agent, we
361 only consider collision avoidance within a distance dc. Sim-
362 ilarly, the anticipatory collision avoidance energy EAnti

c can
363 be given as

EAnti
c ¼ 1

jVcðTDt; i; tn�1Þj �X

Q2VcðTDt;i;tn�1Þ
edc�dðTDt;si;sQ;vÞ;

(6)

365365

366 where VcðTDt; i; tn�1Þ is the predicted collision neighbor-
367 hood of agent i after time TDt based on the surrounding
368 information at time tn�1. dðTDt; si; sQ; vÞ is the predicted dis-
369 tance between agent i and agent Q after time T . Note that

370we perform instantaneous collision avoidance in each time-
371step while the anticipatory collision energy is only used to
372avoid potential future collisions.
373Within the distance dc, Ec increases when the distance
374between agent i and agentQ decreases (see Fig. 3). As a result,
375when we compute the velocity for each agent in each frame, a
376valuemaking their distance largerwill reduce the energy.

3773.6 Attraction

378If the agents want to move together as a group, we need to
379account for some attraction forces between them. The agent
380therefore prefers to choose a velocity that brings it closer to
381the group, allowing it to become a part of the group over
382the next few frames. In addition, agents may also be
383attracted by external stimuli. The attractions in our model
384include the attraction between the agents and the environ-
385ment (Fig. 4). The attraction energy is given as

Ea ¼ 1
jVaðDt;i;tn�1Þj

P
Q2VaðDt;i;tn�1Þ d

2ðDt; si; sQ; vÞ; (7)
387387

388where VaðDt; i; tn�1Þ is the predicted attraction neighbor-
389hood of agent i after time Dt based on the surrounding
390information at time tn�1.
391When the distance between agent i and agent Q increases,
392the energy Ea increases (see Fig. 4). Thus, a computed veloc-
393ity making their distance smaller will reduce the energy.

3943.7 Direction Control

395We use direction control to imitate agents moving toward
396their goals. In this case, the agents try to choose velocities
397that point to their goals or that parallel the path to their
398goals. We assume that every agent has a goal position to
399guide its local movement. The goal might change over time.
400This goal can also be treated as a direction control defined
401by the users. The energy for direction control is presented as

Ed ¼ vdi;n � v̂
���

���
2
; (8)

403403

404where vdi;n is the control direction for agent i at time tn.

4054 MULTI-AGENT SYSTEM SIMULATION WITH

406DATA-DRIVEN OPTIMIZATION

407In this section, we present more details about our method,
408as it is used to simulate heterogeneous agents.

Fig. 3. Collision avoidance. In our method, the energy for collision
avoidanceEc consists of two parts: the energy for instantaneous collision
avoidance EIns

c and the energy for anticipation collision avoidance EAnti
c .

The blue curve represents EIns
c changes with the distance d between two

agents increases in time jþ 1, and the yellow curve represents EAnti
c

changes with d in time jþ T .

Fig. 4. Attraction. The energy for attraction include the energy for attraction
(green arrows) between agents and the energy for attraction (red arrows)
from environmental objects.
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409 4.1 State Estimation for the Dataset

410 The dataset of ourmethod consists of trajectories that are time
411 series of positions, L : Y1;Y2; :::;Yn:::. We estimate the state
412 s�n ¼ ½p�

n; v
�
n; v

d�
n � in the dataset based on these trajectories,

413 and obtain the estimated position p�
n ¼ Yn and velocity

414 v�n ¼ Yn�Yn�1
Dt . Estimating the control direction vd�n is equiva-

415 lent to estimating the direction to the corresponding agent’s
416 goal, according to Section 3.7. Therefore, if the agent only
417 moves one way in the scenario, it is in the same control direc-
418 tion; if the agent changes its direction or goal in the dataset,
419 we estimate its control direction at time t by computing the

420 direction of its displacement, vd� ¼ Yn�Yn�d
kYn�Yn�dk, which is com-

421 puted every dDt time. We estimate the control direction by
422 averaging every dDt time to reduce the estimation error from
423 local avoidance. The results in Section 5 show that our state
424 estimation for real-world datasetsworkswell.

425 4.2 Direction Adaptation to Different Scenarios

426 According to Eq. (1), if we directly search the optimal veloc-
427 ity for each agent from the dataset, the synthesized scenario
428 will be limited in its ability to achieve plausible movements
429 by the scenario of the dataset. To eliminate these constraints,
430 we map the local coordinate of the dataset to that of the sce-
431 nario in the simulation by align their forward directions. As
432 a result, we can simulate scenarios that may be different
433 from the dataset. We suppose that the simulated scenario
434 and the dataset have the same relative position relationship
435 between the direction of velocity and the control direction;
436 that is, the angle between the velocity direction and the con-
437 trol direction in the simulation is the same with that of the
438 dataset, and

v̂ � vd ¼ v̂� � vd�;
v̂� vd ¼ v̂� � vd�:

(9)

440440

441 Therefore, we obtain v̂, and v ¼ kv�kv̂.

442 4.3 Distance and Neighborhood

443 We hypothesize that the velocity of an agent remains
444 unchanged over a short time t and the shapes of agents or
445 obstacles cannot be ignored. If the agent i moves with the
446 velocity v chosen from the dataset, the predicted distance
447 between agent i and agent Q after time t becomes

dðt; si; sQ; vÞ ¼ kpi þ vt� ðpQ þ vQtÞ � ðRdir
i þRdir

Q Þk2;
(10)

449449

450 where Rdir
i is the radius of agent i in the direction toward

451 agent Q (Q 6¼ i). Rdir
Q is also a directional radius of agent Q.

452 The shapes of different agents can be different. For example,
453 we use a rectangular object to represent a car and a disc to
454 represent a pedestrian. If Q is an entity in the environment,
455 Eq. (10) becomes a distance function between an agent and
456 the entity in the environment. For a twisting road, we com-
457 pute the distance between two cars as the distance along the
458 curve of the road.
459 In contrast to the existing methods [35], the agents in our
460 method try to avoid collisions with not only the homoge-
461 neous agents but also the heterogeneous agents. To avoid
462 collisions, each agent tries to keep away from other agents

463or obstacles when they get too close. In the real world,
464humans can perceive the environment through both vision
465and sound [36], and thus we can assume that an agent can
466avoid collisions in a full field of vision with a limited range.
467We define the neighborhood for collision avoidance as

Vcðt; i; tnÞ ¼ Q
��dðt; si; sQ; vÞ < dc; Q 2 G n fig [ Gc

� �
;

(11) 469469

470where dc is the threshold distance for collision avoidance
471and Gc is the set of obstacles in the scenario. Each agent con-
472siders collision avoidance with the agents or obstacles
473within a distance dc. Meanwhile, each agent tries to keep
474close to the agents in its group or to the external attraction
475stimulus if the distance between the agents is large. We
476define the neighborhood for attraction as

Vaðt; i; tnÞ ¼ Q
��dðt; si; sQ; vÞ > da; Q 2 G [ Ga

� �
; (12)

478478

479where da is the threshold distance for attraction and Ga is the
480set of attraction in the scenario. An entity that is treated as
481an attraction can also be an obstacle if the shape of it cannot
482be ignored, that is, Gc \ Ga 6¼ ? .

4834.4 Faster Computation

484If we use a brute force method to solve Eq. (1), the computa-
485tion cost will be large. The underlying time complexity will
486be Oðn2mÞ with n agents in the simulation and m estimate
487states in the dataset. The most time-consuming parts are
488searching for the optimal velocity from the dataset and find-
489ing the neighborhood for each agent. To achieve interactive
490performance, we propose two acceleration methods.

4914.4.1 Reduced Solution Space

492To find the optimal velocity for each agent efficiently, we
493reduce the solution space of Eq. (1). We classify the esti-
494mated states of the dataset into groups based on the magni-
495tude of the velocity. Considering the continuity of motion,
496we search for the velocity for each agent in the current
497group of velocities and in the adjacent groups,

vi;nþ1 2
[lþz

m¼l�z

fvn�g; (13)

499499

500where fvlg is the set of velocities of the group l to which vi;n
501belongs, z is the scope of the number of groups that are con-
502sidered for computing optimal velocity, and the group fvmg
503withm 2 ½l� z; lþ z� is the neighborhood of fvlg.

5044.4.2 Grid in Space

505To reduce the time consumption for computing the neigh-
506borhood for each agent, we introduce the idea of grid in
507space from fluid simulation [37]. For our simulation, the 2D
508plane is divided into 2D grids. We suppose that Ox;y

509denotes the set of all agents in the grid Ox;y. Then the candi-
510date neighborhood of i in grid Ox;y is reduced from G to G0,

G0 ¼
[xþ1

k1¼x�1

[yþ1

k2¼y�1

Ok1;k2 : (14)

512512

513When we search the neighborhood for collision avoidance,
514we compare the distances of the agents in the grid Ox;y with
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516 to all the agents in the scenario.

517 5 RESULTS

518 In this section, we highlight the performance of our approach
519 in generating simulations of crowds, traffic, and combinations
520 of different types of agents. We have implemented our
521 approach in C++ on a desktop machine with a 3.30 GHz Inter
522 Xeon CPU E3-1230 v3 4-core processor and 32 GB memory.
523 The performances for different scenarios are given in Table 1.
524 To achieve the heterogeneity of our simulation system,
525 we use different parameters and Es for different kinds of
526 agents. In addition, we employ real-world datasets consist-
527 ing of pedestrians, bicycles, tricycles and cars captured
528 from real scenarios. We initialize the weights with 1.0, and
529 they can be tuned according to the behaviors of the agents.
530 Table 2 shows the weights of all the benchmarks. We define
531 the user control for each pedestrian with speed control
532 Es ¼ Esc ¼ jkvk � vij, where vi is the ideal speed for agent i.
533 We define the user control for each car with speed control
534 and position control Es ¼ Esc þEp, where Es is the same
535 with that of each pedestrian, Ep ¼ jv � ðvdÞ?j, and vd is a tan-
536 gential vector of the given lane. Cars try to drive in the mid-
537 dle of the lane.

538 5.1 Data Acquisition

539 Our method accepts different kinds of input datasets if
540 those datasets contain the velocity information for the
541 agents. Any form of discontinuity or a small amount of
542 abnormal data in the datasets is acceptable.

543In our current framework, we have used some widely
544available datasets from different scenarios and environments.
545The datasets for crowd simulation include two scenarios: one
546is from [38] and features two-dimensional bidirectionalmove-
547ments with 304 pedestrians and 1,273 frames; the second is
548from [29] and features street scenarios with 8-148 pedestrians
549and 9,014 frames. We set the control directions for the first
550dataset as the directions that point to the agents’ destinations.
551For the second dataset, the control direction of one agent at a
552certain time is the direction that points from its current posi-
553tion to the position of its next record.
554The traffic dataset is extracted from the Next Generation
555Simulation (NGSIM) datasets [39], which include detailed,
556high-quality highway traffic datasets. We extract 300 frames
557and 161 cars in total. We set the direction of the road as the
558estimation of the control directions of the cars. The datasets
559corresponding to the mixed traffic scenarios (including
560pedestrians, bicycles, tricycles, and cars) are generated from
561videos. The video was recorded in Shandong, China. We
562use the optical flow tracking method [40] to trace the agents.
563The extracted data consists of 435 frames and contains 3
564pedestrians, 10 bicycles, 10 tricycles, and 2 cars. The control
565direction for each agent in every frame is computed by aver-
566aging the directions of the agent from 30 frames.

5675.2 Human Crowd

568We simulate three benchmark scenarios with crowds repre-
569senting each pedestrian as a disc with a fixed radius.
570Crowd-1. We simulate behaviors of pedestrians on a
571street with the dataset from [29] to show that our method

TABLE 1
Performance for Different Scenarios

Scenario Types Behavior N Dataset Time(s/f)

Crowd-1 human walking on street 8-148 [Lerner et al. 2007] 0-0.0040
Crowd-2 human mixture of two crowds 100 [Zhang et al. 2012] 0.0209
Crowd-3 human avoiding static obstacles 79 [Zhang et al. 2012] 0.0192
Traffic-1 car movements on a twist road 80 [NGS 2013] 0.0137
Traffic-2 human/car movements on a crossing road 30/35 [NGS 2013]/[Zhang et al. 2012] 0.0378
Traffic-3 human/bicycle/tricycle/car mixture of multiple systems 25/15/10/40 video from Shandong, China 0.0342

We summarize the characteristics of the simulation scenarios in this paper. The agents include humans, cars, bicycles, and tricycles. The datasets used for input
data vary. We use seconds per frame to measure the time performance of the simulations. Our method can achieve realtime performance using 4 cores on a CPU.

TABLE 2
The Weights for Simulation

Scenario Edir
t EL

t EIns
c EAnti

c Ea Ed Ep Esc

Crowd-1 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.5
Crowd-2 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.5

Crowd-3 obstacle zone 1.5 1.0 0.67 0.67 0.0 1.0 0.0 1.0
before obstacle zone 1.0 1.0 0.67 0.67 0.0 1.0 0.0 1.0
after obstacle zone 1.0 1.0 0.67 0.67 0.0 1.5 0.0 1.0

Traffic-1 0.5 0.5 1.0 1.0 2.0 3.0 10.0 10.0

Traffic-2 Pedestrian 1.0 1.0 1.0 1.0 0.0 1.5 1.0 10.0
Car 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

Traffic-3 Type-1 10.0 1.0 1.0 1.0 0.0 5.0 10.0 5.0
Type-2 0.5 0.5 1.0 1.0 2.0 3.0 1.0 10.0

This table gives the weights for the direction continuity Edir
t , the speed continuity EL

t , instantaneous collision avoidance EIns
c , anticipated collision avoidance

EAnti
c , attraction Ea, direction control Ed, position control Ep, and speed control Esc in each scenario.
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573 we set the number of agents in the initialization and con-
574 trol directions to be the same as those in the dataset. Pedes-
575 trian agents, represented as discs, mainly avoid collisions
576 with other pedestrians that are close to them in the scene
577 (see Fig. 5a).
578 Crowd-2. In this scenario, we simulate two groups
579 (50 pedestrians in each group) with control directions
580 inverse to those from the dataset [38]. We randomly locate
581 the agents in each group at one side of the road and ran-
582 domly choose a velocity for each agent from the dataset in
583 the initialization. The control direction points from the
584 agent’s position to the agent’s goal on the other side of the
585 road. The reference speed is the magnitude of the initial
586 velocity. Agents are attracted to those in the same group
587 and avoid collisions with other agents, including pedes-
588 trians in other groups (see Fig. 5b).
589 Crowd-3. Based on the benchmark Crowd-1, we add a
590 cylindrical obstacle in the center of the road (see Fig. 5c).
591 We also use the dataset [38] in this benchmark. The initiali-
592 zation method for this benchmark is the same as for the
593 benchmark Crowd-2. In our simulations, we set different
594 control directions for different groups and agents in the
595 same group share the same control direction. Agents avoid
596 the obstacle like they avoid other agents.
597 Crowd behaviors can be slightly adjusted by setting dif-
598 ferent parameters. In Crowd-1, the control directions of
599 agents are changing, and thus we decrease the weight of Esc

600 to 0.5 to weaken the speed control so that agents can
601 promptly adjust their directions. In Crowd-2, some agents
602 in high-density areas may stop to avoid potential collisions
603 when two crowds are joining, and we increase the weight of
604 Esc to 1.5 to enhance speed control so that these agents can
605 return back to their desired speeds quickly. For a scenario
606 with obstacle such as the one in Crowd-3, the agent-agent
607 and agent-obstacle collision avoidances will make the colli-
608 sion energies EIns

c and EAnti
c much larger than other energy

609 terms. To weaken the influence of collision avoidance, we
610 empirically decrease the weights of EIns

c and EAnti
c to 0.67.

611 To adjust the weights of Edir
t and Ed, we divide the whole

612 road into three zones for each crowd: (1) obstacle zone: the
613 area whose distance to the obstacle is about 2m (an empiri-
614 cal value); (2) before obstacle zone: the area before a crowd
615 arrives at the obstacle zone; (3) after obstacle zone: the area after
616 a crowd passes by the obstacle zone. In the obstacle zone, we
617 increase the weight of Edir

t to 1.5 to enhance the direction
618 continuity in order to weaken drastic direction changes for
619 agents in high-density areas. In the after obstacle zone, we
620 increase the weight of Ed to 1.5 to enhance the direction

621control so that the agents can quickly return back to their
622goals after they pass by the obstacle.

6235.3 Traffic

624In traffic simulations, vehicle-agents mainly interact with
625the cars that are adjacent to them in the same lane, avoiding
626collisions when they are too close and being attracted by the
627leader cars when the distance to that car becomes too large.
628However, cars that are changing lanes also interact with the
629adjacent cars in the target lanes. The control directions for
630the cars in traffic are the directions of the lanes to which
631they currently belong.
632Traffic-1. With our method, we can simulate traffic on
633twisting roads with the straight high way traffic dataset [39]
634(see Fig. 6a). During the initialization step, 80 cars are dis-
635tributed on the road. The distance between two adjacent
636cars is chosen randomly from the dataset. We also randomly
637select the magnitude of the velocity for each agent from the
638dataset, and the direction of the velocity is the same as the
639direction of the road on which the agent is driving. The con-
640trol direction of each agent is always the direction of the
641road. In this benchmark, the directions of agents in different
642positions on the twisting road vary.
643Our method is general, so we can mix different kinds of
644agents in the same scenario. In this section, we show two
645benchmarks: a zebra striped crosswalk and a crossroad
646with traffic lights.
647Traffic-2. In this benchmark, we simulate a case in which
648people want to cross the road (see Fig. 6b). We use data-
649set [38] for the crowd and dataset [39] for the traffic. Each
650pedestrian has a certain possibility of crossing the road.
651Once the pedestrian starts to cross road, the control direc-
652tion becomes perpendicular to the road direction and the
653pedestrian needs to avoid not only other pedestrians, but
654also the cars around it. At the same time, the surrounding
655cars need to stop if the pedestrian is in front of them, and
656the attractive force from the leading cars disappears for
657these cars. We implement these interactions by adding cor-
658responding objects to the interaction domain of agents.
659Traffic-3. Our model can handle congested scenarios with
660different or heterogeneous agents. Here we simulate agents
661(15 pedestrians, 15 bicycles, 10 tricycles, and 40 cars) crossing
662a congested road with a traffic light (see Fig. 6c). We classify
663the dataset into groups according to the corresponding type
664of agent in the original data and choose the velocities of the
665agents from the corresponding class. Furthermore, we clas-
666sify the four kinds of agents into two types with different
667motion constraints. The first type includes pedestrians and
668bicycles, which can overtake the agents in front of them in
669the same lane. The second type includes tricycles and cars,
670which cannot overtake the agent in front in the same lane.

Fig. 5. The mixed crowds with different control directions. (a) Pedes-
trians with changing control directions walk on a street. (b) Two crowds
with inverse control directions. The pedestrians with the same clothes
represent individuals in the same crowd. The crowds walk to their own
destinations while avoiding collisions with each other. (c) We add an
obstacle to the scenario. In addition to avoiding collisions with each
other, crowds should also avoid collisions with this obstacle.

Fig. 6. Traffic simulation. (a) Traffic on a twisting 4-lane highway. (b) A
combination of cars and crowds. Some pedestrians are walking on the
sidewalk. Cars can be treated as obstacles for crowds and vice versa.
(c) Congested traffic in an urban crossroad with a traffic lights.
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672 the interpolation of the original road direction and the target
673 road direction. The rule for traffic light is not strictly the
674 same as that in the real world. We treat the red traffic light as
675 an obstacle, and agents will gradually stop when they are
676 close to the red traffic light.

677 5.4 VR Scenarios

678 Our method can be applied to VR scenarios. We model the
679 user as an avatar in the VR scenario with a first-person per-
680 spective (see Fig. 7) (a). The user can sit in a car and observe
681 the movements of other cars around it (see Fig. 7b and 7c).
682 As a walker, the user can also see the traffic flow and other
683 pedestrians at the roadside (see Fig. 7d and 7e).

684 6 ANALYSIS

685 6.1 Time Performance

686 To test the time performance of our method, we simulate a
687 crowd in a scenario with the size of 1,000*1,000. There is no
688 obstacle in the scenario. During the initialization, we ran-
689 domly locate N agents at random positions. The initial
690 velocities of the agents are randomly copied from the data-
691 set [38]. We set the grid size of the simulation as 10, and the
692 z for Eq. (13) as 2.
693 In our method, we utilize spatial continuity and velocity
694 continuity to reduce possible collisions among the agents. We
695 use the size of the solution space of the optimization function
696 in Eq. (1) to improve the runtime performance of our simula-
697 tion. We divide the space into grids and each grid records the
698 agents that belong to it. When we search for the neighbors of
699 each agent, we only need to search the grid to which the agent
700 belongs and the grids that are adjacent to this grid. As a result,

701our method can reduce the time consumption for multi-agent
702simulations dramatically (see Fig. 8a).
703Because we can solve the optimization problem for each
704agent at the same time, we can also easily parallelize our
705method. Taking the crowd as an example, we compare the
706time complexity of our simulation using a serial implemen-
707tation against a parallel implementation (see Fig. 8b). Our
708parallel implementation can simulate more than 5,000
709agents in realtime on a multi-core processor with four cores.
710To evaluate the performance of our method further, we
711compute the running time (seconds per frame) of all the
712simulation results mentioned in this paper (see Table 1).
713Our method can achieve real-time performance in various
714scenarios with multiple kinds of input dataset. The time
715complexity is not only related to the number of agents in
716the simulation, but also to the number of classes and the
717number of data points in each dataset. As a result, similar
718scenarios with the same number of agents may have differ-
719ent time performances.

7206.2 Comparisons

7216.2.1 Statistical Comparisons

722To demonstrate the plausibility of our method, we compare
723our simulation results (crowds and highway traffic) with
724given datasets in terms of the distributions of velocities and
725distances (the distance to the nearest agent). Velocity is a
726basic factor used to describe the motion, and minimal dis-
727tance is the factor used to describe density. We use data-
728set [38] for two-dimensional bidirectional movements to
729compare our results with [12], which is the state-of-art opti-
730mization method for crowd simulation. Meanwhile, we use
731the dataset [39] on a four-lane highway to compare our
732results with [7], which is the state-of-art data-driven traffic
733simulation method.
734Comparison for Crowds. We simulate bidirectional move-
735ments of pedestrians in a narrow corridor with the method
736described in [12] and our method. During the initialization,
737we set the same number, positions, and velocities of agents
738as in the dataset. For method [12], the minimal and maxi-
739mal velocities and the minimal distance from neighbors
740are estimated from the dataset. Other parameters inherit
741the configuration of the open source code released by the
742authors. We also tune parameters so that the method can
743work well for the scenario. For our method, the control
744direction of each agent is the direction that points from the
745current position to the agent’s destination. The weight
746w ¼ f0:8; 1:15; 1:2; 0:8; 0; 0:85; 0; 1:2g, which corresponds to
747the items in Table 2. For both methods, the preferred speed
748of each agent is the average speed of the corresponding
749agent in the dataset.

Fig. 7. The avatar in a VR scenario. (a) We provide the user with an immersive VR experience from a first-person perspective with HTC Vive. (b) The
avatar drives a car on an high-way road. (c) The avatar drives a car on an urban traffic road. (d) The avatar is walking on the sideroad. (e) The avatar
is walking on the crosswalk.

Fig. 8. Time performance. We take a crowd as an example to analyze
the time performance of the simulation. (a) We compare the time perfor-
mance of the brute-force method and our method. With our two search
methods, we can improve the performance with 32,298x speedup for
4000 agents. (b) We compare the performance of an 8-threaded parallel
implementation with a single-threaded implementation. With parallel
computing, as the number of agents increases, the simulation time
increases much more slowly. Our method can even simulate 5,000
agents in realtime on a PC machine with a 4.00 GHz Intel i7-6700k CPU
processor and 16 GB memory.

REN ET AL.: HETER-SIM: HETEROGENEOUS MULTI-AGENT SYSTEMS SIMULATION BY INTERACTIVE DATA-DRIVEN OPTIMIZATION 9
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750 Comparison for Traffic.We simulate traffic in a straight four-
751 lane highway like the dataset [39] using both method [7] and
752 our method. In this comparison, we initialize the number,
753 positions, and velocities of agents in our method to be the
754 same as the dataset. The control direction is the direction of
755 the road. The weight w ¼ f1:0; 5:0; 1:0; 1:0; 20:0; 3:0; 1:0; 0:0g,
756 which corresponds to the items in Table 2. For method [7], we
757 set the parameters to be the same as the original parameters.
758 The traffic in method [7] consists of 15 traffic flows. The ini-
759 tialization of each flow is same as in the dataset.
760 The distributions of velocity and minimal distance for
761 each method are shown in Fig. 9. We compute the difference
762 between simulation results and the dataset as the scores for
763 each method. We divide all the values of each metric into 30
764 intervals and compute the probability for each interval. The
765 difference between simulation results and the dataset is
766 the sum of the magnitudes of the probability difference in
767 the intervals. The scores of eachmethod are given in Table 3.
768 The distributions of velocity and minimal distance in our
769 simulations are closer to those in the input data. Although
770 our method selects velocities for agents directly form the
771 dataset, the selected velocities are controlled by Eq. (1).
772 Because our method has velocity distributions that are
773 closer to the input data for crowd simulation, our approach
774 is better at capturing the motion characteristics of a multi-
775 agent system as compared to prior methods ([12], [7]).
776 In the compared methods ([12] and [7]), the spikes in the
777 distance distribution are not only due to the hard con-
778 straints on the separation distance, but also the optimization
779 functions of these methods trying to find similar optimal
780 velocities for different agents. Therefore, the distances of
781 different agents are similar when agents reach the balance
782 of different optimization terms.

783 6.2.2 Trajectory Comparisons

784 Several quantitative metrics can be used to compare real
785 data against simulation data [13], [41], [42]. To evaluate the
786 time series in sequence of agents’ movements for crowds,
787 we employ the absolute difference metric (ADM) and the

788path length metric (PLM) proposed by Wolinski et al. [13] as
789they are straightforward comparing to other quantitative
790metrics. We simulate the movements of pedestrians on a
791street using the implicit method [12], the data-drivenmethod
792(PAG) [19], and our method. We set the same number, posi-
793tions, and velocities of agents as in the reference dataset [29]
794when performing the initialization. In addition, we set the
795control directions to be the same as those in the dataset.
796The ADM and PLM for each method are shown in
797Table 4. Experiments show that our method achieves a low-
798est score compared to [12] and [19] for crowds. This means
799that the trajectories generated by our method are more real-
800istic than those generated by methods of [12] and [19]. Com-
801pared to the implicit method [12] which is not data-driven,
802our approach uses real datasets so that it can generate more
803realistic detailed behaviors. The PAG method [19] searches
804trajectories only depending on the predicted temporal per-
805ception patterns and the distance to the goal, which may
806produce potential discontinuous velocities. On the contrary,
807our method can enforce continuous velocity by introducing
808a velocity continuity energy function.

8096.3 Our Simulation Results with or without Using
810Dataset

811To explore the performance of our data-driven scheme, we
812compare our simulation results with and without using
813dataset in terms of the distributions of velocities and mini-
814mal distances. We use the dataset [39] on a four-lane high-
815way for our experiments. We use the same initialization
816method and parameter values as those in Section 6.2. For
817the method without using dataset, we suppose that the cars
818move in one direction and compute vi;n (kvi;nk 2 ½v�min; v

�
max�)

819by minimizing Eq. (2). The underlying assumption is that
820the minimum and maximum magnitudes of velocities from
821real-world datasets are reasonable values to restrict the
822range of the magnitude of velocity.
823The distributions of velocity and minimal distance for the
824comparison are shown in Fig. 10. The velocity difference to

Fig. 9. The distributions of velocity andminimal distance.We compare the
probability distributions between our simulation results, existing methods,
and input datasets. (a)-(b). The comparison for the crowd simulated.
(c)-(d) The comparison for traffic simulated on a straight 4-lane road.

TABLE 3
Benchmark Scores 1: Used to Measure the Statistical Close-

ness to the Real-World Datasets

Velocity Distance

Real Ours Others Real Ours Others

Crowd 0.0 0.4132 0.4793 0 0.2691 0.5913
Traffic 0.0 0.2507 0.3766 0 0.2383 0.3475

The scores are the difference between simulation results and the dataset. A
lower score for our method versus [12] for crowds and [7] for traffic. This dem-
onstrates that the trajectories and behaviors generated by our method are closer
to those generated by prior methods.

TABLE 4
Benchmark Scores 2: Used to Measure the Trajectory

Closeness to the Real-World Datasets

Real IMPLICIT PAG Ours

ADM 0.0 37.373 65.4278 3.10986
PLM 0.0 20.3423 117.486 3.9529

The scores show the differences between the simulation results and the real-
world dataset.
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826 than that of the method without using dataset (0.6132). The
827 minimal distance difference score of our method using data-
828 set (0.2383) is also smaller than that of the method without
829 using dataset (0.2649). The comparison results indicate that
830 the data-driven scheme can improve the plausibility of sim-
831 ulation results.

832 7 USER STUDIES AND EVALUATION

833 We conduct two user studies to evaluate the plausibility of
834 our method and one user study to show a better user expe-
835 rience through VR. The weights for the user study are
836 shown in Table 5. The eight cases in the first user study
837 are conducted from an overhead view to show the agents’
838 movements. In the second user study, we adopt the agent’s
839 view in each case, meaning that the view is closer to that of
840 a participant in his/her daily life. In the third user study,
841 we compare the results as shown in immersive VR and
842 those shown on a desktop in four different scenarios or
843 agents’ views.
844 Experiment Goals & Expectations. For the first user study,
845 we hypothesize that the results simulated by our method
846 will exhibit more plausible movements than prior multi-
847 agent methods. For the second user study, we hypothesize
848 that our method results in a better user experience than the
849 prior methods. Therefore, participants will significantly pre-
850 fer our method over the prior methods in these evaluations.
851 In the third user study, we hypothesize that the results
852 shown in VR can produce a better user experience that those
853 shown on a desktop.
854 Comparison Methods. For crowd simulation, we compare
855 our method with the method in [12] which is a state-of-art
856 physical-based method for crowd simulation. We also use
857 the dataset [29] in crowd simulation. For traffic simulation,
858 we compare our method with the method in [7], which is a
859 state-of-art data-driven method on traffic simulation. Here
860 we use the dataset [39]. All 2D trajectories generated from
861 simulation methods or extracted from datasets are assigned
862 to 3D characters. We also compare mixed traffic results
863 shown in VR and those shown on a desktop.
864 Environments. In the first and second user study, we
865 used three scenarios for crowd simulation. The scenario
866 with the dataset [29] is in a street with 18 agents. The other
867 two scenarios are the one in which two crowds (100 agents
868 in total) encounter each other and the scenario in which 36
869 agents are located on a circle moving towards the opposite
870 positions. We also use three scenarios for traffic simulation.
871 The scenario with the dataset [39] is on a straight 4-lane

872road with 156 agents. The other two scenarios are on a
873twisting 2-lane road with 80 agents and on a twisting 4-
874lane road with 200 agents. In the third user study, we use
875one instance for the scenario with 50 cars and a car’s view.
876We also use three instances for the scenario with 35 cars
877and 30 pedestrians. In each instance, we use different agent
878views: one from a car’s view, one from the view of a
879pedestrian walking on a zebra crossing, and one from the
880view of a pedestrian walking on a sidewalk. In the VR sce-
881narios, head turning is controlled by a HTC Vive headset,
882and the user is allowed to turn his/her head freely with a
883fixed position in a moving agent.
884Experimental Design. We conduct the user studies based
885on a paired-comparison design. For the scenarios with a
886dataset, we design two comparison pairs: the dataset versus
887our method, and the dataset versus the prior method. We
888design one comparison pair for each scenario without a
889dataset: our method versus the prior method. For each pair,
890we show two pre-recorded videos in a side-by-side compar-
891ison. The order of the scenarios was random. The position
892(left or right) of each method was also random. For the sce-
893narios for VR versus desktop comparison, we ask the partic-
894ipants to answer the questionnaire after see the scenarios
895via VR and the scenarios via desktop.
896Metrics. In each user study, participants were asked to
897choose a score using a 7-point Likert scale, in which 1
898means that the result presented on the left is strongly plau-
899sible, 7 means that the result presented on the right is
900strongly plausible, and 4 means no preference for either
901method. To combine the user study results in the same
902scale, we transfer the score for each method to a certain
903side when we deal with the scores.

9047.1 User Study with an Overhead View

905The user studies for crowd simulation and traffic simulation
906with an overhead view were completed by 26 participants
907(15 females and 11 males). We performed two-sample t-tests
908for the scenarios with datasets (one for crowd simulation
909and another for traffic simulation). We hypothesize that the
910mean value of our method is bigger than that of the prior
911method. Meanwhile, we performed one-sample t-tests for
912the scenarios without datasets (two scenarios for crowd
913simulation and two for traffic simulation), hypothesizing
914that the mean value of our method is bigger than 4, which

Fig. 10. The distributions of velocity and minimal distance for compari-
son of the results with and without using dataset. (a) Probability distribu-
tions of velocity. (b) Probability distributions of minimal distance.

TABLE 5
The Weights for the User Study

Edir
t EL

t EIns
c EAnti

c Ea Ed Ep Esc

Street 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.5
Hallway 1.0 1.0 1.0 1.0 0.0 1.2 0.0 1.2
Circle 1.0 1.0 0.5 0.5 0.0 1.0 0.0 1.0
Straight 0.5 0.5 1.0 1.0 1.2 3.0 1.0 0.2
Twist-2Lane 0.5 0.5 1.0 1.0 1.0 3.0 1.0 2.0
Twist-4Lane 0.2 0.6 1.0 1.0 2.0 3.0 10.0 1.0
VR-2Lane 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

VR Pedestrian 1.0 1.0 1.0 1.0 0.0 1.5 1.0 10.0
Car 5.0 1.0 1.0 1.0 2.0 5.0 1.0 10.0

This table gives the weights for the direction continuity Edir
t , the speed conti-

nuity EL
t , instantaneous collision avoidance EIns

c , anticipated collision avoid-
ance EAnti

c , attraction Ea, direction control Ed, position control Ep, and speed
control Esc in each scenario.
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915 indicates no difference. Overall, participants believed that
916 our method was more plausible than the compared meth-
917 ods for both crowd simulation and traffic simulation. Fig. 11
918 (a)-(b) shows details about the scores for each comparison.
919 User Study for Crowd Simulation. For the scenario with the
920 dataset, our method’s mean score is significantly larger than
921 the prior method’s mean plausibility score (tð25Þ ¼ 2:9111,
922 p ¼ 0:0027 < 0:01). For the scenarios without datasets, our
923 method’s mean score shows a significant difference from
924 the hypothetical mean (tð51Þ ¼ �8:7555, p < 0:001).
925 User Study for Traffic Simulation. For the scenarios with
926 datasets, our method’s mean of the score is significantly
927 larger than the prior method’s mean plausibility score
928 (tð25Þ ¼ 2:4422, p ¼ 0:0091 < 0:01). For the scenarios with-
929 out datasets, our method’s mean score shows a significant
930 difference from the hypothetical mean (tð51Þ ¼ �3:0169,
931 p ¼ 0:002 < 0:01).

932 7.2 User Study with an Agent View

933 The user studies for crowd simulation and traffic simulation
934 from an agent’s view were completed by 28 participants (17
935 females and 11 males). For the user study from an agent
936 view, we also performed two-sample t-tests for the scenar-
937 ios with datasets hypothesizing that our method has a
938 larger mean score than the prior method. For the scenarios
939 without datasets, we performed one-sample t-tests hypothe-
940 sizing that the mean value of our method is larger than 4 (no
941 difference). Overall, participants also judged that our
942 method is more plausible than the prior methods. The statis-
943 tics of the participants’ plausibility evaluations can be found
944 in Fig. 11 (c)-(d).
945 User Study for Crowd Simulation. For the scenario with a
946 dataset, the mean plausibility score of our Heter-Sim is sig-
947 nificantly larger (tð27Þ ¼ 2:6692, p ¼ 0:005 < 0:01) than the
948 method [12]. The mean score of our method has a signifi-
949 cantly superior to the hypothetical mean (tð55Þ ¼ �5:0281,
950 p < 0:001) for the scenarios without datasets.
951 User Study for Traffic Simulation. For the scenario with a
952 dataset, the mean score of our method is significantly larger
953 than the mean score of the prior method (tð27Þ ¼ 6:4890,
954 p < 0:001). For the scenarios without datasets, the mean
955 score of our method shows a significant difference from the
956 hypothetical mean with tð55Þ ¼ �8:0381 and p < 0:001.

9577.3 User Study via VR or Desktop

958The user studies for the comparison between VR and desktop
959were taken by 28 participants (14 females and 14 males). We
960performed one-sample t-tests for the four instances by hypoth-
961esizing that the mean score of VR is bigger than 4 (no differ-
962ence). Overall, participants believed that the results shown
963with VR are more plausible than those shown with a desktop.
964Fig. 11e shows the details about the scores for each compari-
965son. In each scenarios, the score of VR is significantly better
966than that of desktop. tð27Þ ¼ �5:0138, p < 0:001 for the first
967scenario, tð27Þ ¼ �4:16478, p < 0:001 for the second scenario,
968tð27Þ ¼ �3:9890, p < 0:001 for the third scenario, and
969tð27Þ ¼ �5:7564, p < 0:001 for the last scenario. In total, the
970mean score for VR shows a significant difference from the
971hypotheticalmean (tð111Þ ¼ �9:3485, p < 0:001).

9728 CONCLUSION, LIMITATION AND FUTURE WORK

973We present a novel and general data-driven optimization
974method that can generate plausible behaviors for heteroge-
975neous agents in different scenarios. We demonstrate ourmod-
976el’s generalizability by simulating human crowds, traffic, and
977mixed traffic in multiple scenarios. To the best of our knowl-
978edge, this is the first data-driven multi-agent method that is
979applicable to such different simulation scenarios and that
980mixes different kinds of agents (e.g., vehicles and pedestrians).
981The simulation results of our method are plausible. We
982compare our results with prior methods in the same scenar-
983ios and by conducting three user studies with various sce-
984narios from different views and analyzing the statistical
985results of the user studies. Our method can generate results
986that are closer to the original datasets, than those achieve
987with the prior methods. In addition, our model is fast and
988can be used for interactive simulations (Table 1). We also
989demonstrate that the plausibility of our method can be
990increased via VR by performing a user study comparing the
991results via VR or desktop.
992Our method can simulate behaviors that are different
993from those of the input datasets. First, our method can gen-
994erate larger and denser groups than those in the input data-
995sets (Fig. 5). Second, our method can simulate scenarios that
996may differ from those of the input datasets (Figs. 5b, 6a).
997Third, our method can mix different kinds of agents in the
998same scenario (Fig. 6b and 6c).

Fig. 11. Plausibility scores of the user study. We use a 7-point Likert scale to measure the plausibility of the methods. The lower the score, the
more the participants prefer the method on the left; the higher the score, the more the participants prefer the method on the right. (a)The statistics
for crowd simulation with an overhead view. Participants cannot tell the difference between the dataset and our method. Compared to method [12],
the participants think the results of our method are more plausible. (b) The statistics for traffic simulation with an overhead view. Our method gets
a higher score than method [12] when compared with the dataset. We also get better results in the user study with the dataset. (c) The statistics
for crowd simulation from an agent view. Our method is closer to the dataset. The participants believe that the results of our method are more
plausible than those of the prior method. (d) The statistics for traffic simulation from an agent’s view. Our method has a significantly larger score
than method [7] in the user study with the dataset. Our method also shows better performance in the user study without the dataset. (e) The statis-
tics of the user study for the comparison of VR and desktop. The scores are transferred so that VR is supposed on the left. The scenarios shown
through VR have better scores.
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999 Limitations. Although our approach can generate various
1000 behaviors even with a simple, sparse input dataset, the actual
1001 performance of our approach can vary based on the datasets.
1002 For example, if the dataset only has two magnitudes of veloc-
1003 ity in it, the velocity of a car attempting to stop and move
1004 again after several seconds will not be continuous. Because
1005 our method uses a forward Euler integration scheme, the sta-
1006 bility of our simulation depends on the size of the timestep.
1007 An implicit integration scheme [12] can be introduced to
1008 improve the stability. We represent agents as rectangular
1009 objects or discs. More precise geometrical shapes should be
1010 used to implement better collision avoidance.
1011 As part of future work, our work can be extended in
1012 many ways. The input data is not limited to the real datasets
1013 and users can also use simulation results to direct certain
1014 behaviors. Therefore, the variety or diversity of simulation
1015 results can be dramatically increased. We could add tradi-
1016 tional context-aware methods to our work to create a variety
1017 of behaviors in multiple agents, which would improve the
1018 realism of the simulation results. The idea of reducing the
1019 solution space according to the continuity of movement can
1020 be applied to optimization problems in animation. We can
1021 also introduce other additional sensory information such as
1022 hearing to increase the realism of interactions among
1023 agents [36]. To make our simulation results more realistic,
1024 we also plan to use portions of real velocity profiles.
1025 Our model can be extended to other areas. The key idea of
1026 our method can be extended to data-driven methods to simu-
1027 late other particle systems. If we treat the vertex as the agent
1028 in our system and the connection between vertices as the rela-
1029 tionship, our framework can also be applied to data-driven
1030 body animation [43]. Because we model the decision-making
1031 process as an energy-based optimization problem, this idea
1032 may be applicable to path planning for robotics and
1033 unmanned aerial vehicles. Finally, we want to further evalu-
1034 ate the benefits of our simulator in VR and training scenarios.
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