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Abstract—Aiming at objectively measuring the realism of virtual traffic flows and evaluating the effectiveness of different traffic
simulation techniques, this paper introduces a general, dictionary-based learning method to evaluate the fidelity of any traffic trajectory
data. First, a traffic pattern dictionary that characterizes common patterns of real-world traffic behavior is built offline from pre-collected
ground truth traffic data. The corresponding learning error is set as the benchmark of the dictionary-based traffic representation. With
the aid of the constructed dictionary, the realism of input simulated traffic flow data can be evaluated by comparing its dictionary-based
reconstruction error with the dictionary error benchmark. This evaluation metric can be robustly applied to any simulated traffic flow
data; in other words, it is independent of how the traffic data are generated. We demonstrated the effectiveness and robustness of this
metric through many experiments on real-world traffic data and various simulated traffic data, comparisons with the state-of-the-art
entropy-based similarity metric for aggregate crowd motions, and perceptual evaluation studies.

Index Terms—traffic simulation, crowd animation, data-driven simulation, dictionary learning, user study.
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1 INTRODUCTION

Incorporating realistic traffic flows into virtual environ-
ments has become increasingly important with the popu-
larity of virtual reality (VR), smart cities, urban planning,
and safety engineering. Traffic simulation could also be an
effective tool to generate various kinds of traffic conditions
for the use of autonomous vehicles [2]. For instance, simu-
lating highly realistic virtual traffic environments for the test
of autonomous vehicle systems is highly desired and cost-
effective before real-world road tests. This drives researchers
to develop effective methods to simulate traffic on virtual
road networks as realistically as possible, including micro-
scopic models [1][3], continuum-based models [4][5], and
data-driven traffic visualization [6][7][8]. Despite various
progresses as mentioned above, a fundamental question
regarding the realism of traffic simulation has largely been
under-explored to date, namely, how can we measure the
realism of any synthesized traffic flow? Current evaluation
methods of virtual traffic are often limited to the conduct-
ing of subjective user studies, which is unavoidably time-
consuming, error-prone, and costly. Indeed, if a quantitative
and objective measure can be developed for this purpose, it
can be used not only for measuring the realism of various
synthesized traffic, but also for objectively comparing the
performances of different traffic simulation models in a fair
manner.

Previously, several motion parameters, including veloc-
ity, acceleration, and vehicle gap, have been used in traffic
simulation to validate the effectiveness of the proposed
model [9]. Moreover, the polarization factor [10], the number
of collisions [11], and the total path length [12] have also
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been exploited to evaluate the realism of generated crowd
dynamics. However, these parameter metrics are domain-
specific and are not designed for traffic, making it difficult
to capture the essential dynamics of traffic. Recently, Guy
et al. [13] proposed an entropy-based similarity metric to
measure the prediction error of a given crowd simulator,
requiring the ground-truth (real world) crowd data in the
same environment as the reference. Because of this, it is only
defined for a given set of real-world crowd data and thus
cannot directly compare different simulators or measure the
plausibility of a simulator in the absence of ground truth
data. As a result, it would be difficult, without considerable
effort, to straightforwardly apply or extend this metric for
the fidelity evaluation of virtual traffic flow, since the acqui-
sition of the ground-truth traffic data (as the reference) for
specific virtual road networks is practically infeasible in most
cases.

In the real world, traffic rules and physical laws of
driving lead different people to make similar decisions
when facing the same driving circumstances. For experi-
enced drivers, such driving decisions or driving patterns
are somehow built into their mindsets of driving [14]. In
transportation research, the driving pattern concept has
been successfully used to characterize driving behaviors,
where the driving pattern formulations are typically rep-
resented by featuring vehicle states [15]. Inspired by this
insight, in this paper we propose a novel pattern dictionary-
based method to measure the fidelity of virtual traffic. Its
central idea is to learn a Traffic Pattern Dictionary (TPD) from
a set of real-world traffic data using dictionary learning
algorithms. All of the vehicle movement characteristics are
treated together as an atom in the TPD.

Specifically, given a collection of real-world traffic tra-
jectory data as input samples, we first employ an adaptive
dictionary learning algorithm to build up the TPD for char-
acterizing common traffic behaviors. This iterative learning
process is done offline, while the corresponding learning
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Fig. 1. Fidelity measure comparisons among three virtual traffic flows generated by a microscopic IDM model [1] with three different parameter sets
((b)-(d)). The initial traffic states of the simulator were set as the same as the real-world traffic flow in the same scenario (a). Differences between
the simulated traffic and real-world ground truth are highlighted with white circles. For the dictionary-based fidelity evaluation, a smaller value of the
metric indicates a higher fidelity of virtual traffic.

error is set as the benchmark of the dictionary-based traffic
representation. To evaluate the fidelity of any simulated
traffic flow, we then approximate the flow trajectory data
through the TPD-based reconstruction. Finally, the plausi-
bility of virtual traffic can be objectively evaluated through
the comparison of the resulting reconstruction error and the
dictionary-based traffic benchmark. Through direct compar-
isons with the state-of-the-art entropy-based similarity met-
ric [13] and perceptual evaluation studies, we demonstrate
that our approach can effectively measure the fidelity of any
virtual traffic trajectories that can be generated by any traffic
simulation methods. Fig. 1 shows the evaluation results of
several different traffic data.

The main contributions of this work can be summarized
as follows:

• A novel dictionary-based scheme to quantitatively
and objectively measure the fidelity of any virtual
traffic flow through dictionary-based learning and
reconstruction. To the best of our knowledge, our
dictionary-based evaluation method is the first gen-
eral framework to objectively measure the plausibil-
ity of any traffic flow data.

• An adaptive dictionary learning algorithm to build
the TPD dictionary for common traffic behaviors,
where atoms are added dynamically according to
the current learning error. This effectively removes
the time-consuming, trial-and-error parameter tun-
ing process.

2 RELATED WORK

In this section, we first give a focused review on previous re-
lated traffic synthesis efforts including traffic control models
and data-driven traffic simulation. Then, we also describe
prior works on data-driven crowd evaluation.

2.1 Traffic Control Models
In traffic simulation, there are two kinds of widely-used
traffic control models, based on the expression level of sim-
ulation details: continuum-based macroscopic and agent-
based microscopic models.

In macroscopic models, a traffic stream is represented
by a continuum in terms of characteristics including flow
speed and density [16][17]. Sewall et al. [4] extend the single-
lane macroscopic model [5][18] to handle multi-lanes traffic
simulation by introducing a lane-changing model and using

a discrete visual representation for each vehicle. [19] focus
on the lane-changing behavior in flow-based continuum
traffic simulations. In general, macroscopic methods are
computationally efficient but lack the details of individual
vehicle behavior.

By contrast, a microscopic model treats each vehicle as an
autonomous agent, whose behavior is controlled based on
the instantaneous states of surrounding vehicles and road
information. According to the car-following principles [20],
researchers have derived a variety of microscopic control
models, including the optimal velocity model [21] and the
intelligent driver model (IDM) [3]. Shen et al. [1] combine
IDM with a flexible lane-changing model for urban traffic
simulation. Chao et al. [22] model vehicles’ interaction be-
haviors with pedestrians for mixed traffic simulation. The
work of Garcia-Dorado et al. [23] provides users with the
flexibility to specify a desired vehicular traffic behavior to a
road network. Microscopic methods can simulate complex
vehicle behavior details, but only afford a limited scale of
traffic due to their computational requirements. To address
this issue, Sewall et al. [24] present a hybrid traffic simula-
tion model by integrating continuum and agent-based meth-
ods to balance the trade-off between quality and efficiency
at runtime.

2.2 Data-driven Traffic Visualization and Simulation
With the development of advanced sensing hardware and
computer vision techniques, empirical traffic flow datasets
in the forms of video, LiDAR, and GPS sensors are becom-
ing increasingly available. Traffic visualization techniques
based on existing data collections have received notable
attention in recent years. The works of Sewall et al. [6] and
Wilkie et al. [7] reconstruct traffic flow from temporal-spatial
data acquired by in-road sensors. Researchers simulate the
process of lane-changing in traffic simulation from a pre-
collected vehicle trajectory dataset [25], or learn individual-
specific driving characteristics from the vehicle trajectory
data extracted from driving video samples [9]. Recently, Li
et al. [26] propose a city-scale traffic simulation framework
from mobile vehicle data (i.e., GPS traces) using statistical
learning and metamodel-based optimization. Chao et al. [8]
synthesize new vehicle trajectories through the combina-
tion of texture synthesis with microscopic traffic behavior
rules, given a limited set of vehicle trajectories as the input
samples. It is noteworthy that the real-world traffic datasets
from the Federal Highway Administration’s Next Genera-
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tion Simulation (NGSIM) [27] are typically used in the above
works.

2.3 Data-driven Crowd Analysis
Researchers have proposed a few methods to evaluate
crowd simulators in reference to real-world crowd data.
Pettre et al. [28] calibrate a crowd simulator using exper-
imental trajectory samples based on the maximum like-
lihood estimation technique, and the likelihood estimator
is directly used as a metric for quantitative evaluation.
Similarly, the works of Wolinski et al. [29] and Ren et al. [30]
formulate the evaluation of a simulation algorithm as an
optimization problem, by finding a set of parameters that
enables the best match between each simulation algorithm
and the reference data. An entropy-based metric [13] is
introduced to measure the prediction error of a simulator
based on a statistical estimation of true crowd states from
noisy real-world data. Researchers also compare density-
based measures for the output of a simulator with the
observed densities in recorded real-world data [31][32].

However, all of the above evaluation approaches require
the ground truth data at the same scenario/environment
as the reference, which seriously limits their applicability,
generality, and usefulness. By contrast, our dictionary-based
evaluation method does not need such a ground truth
reference at the same scenario. Instead, it pre-computes
a generalized dictionary from real-world traffic trajectory
data. Once the dictionary is constructed, it can be used to
evaluate any simulated traffic data.

In addition, there are some efforts on identifying the
common intrinsic features of a crowd. Charalambous and
Chrysanthou present a data-driven crowd simulation ap-
proach based on the Perception-Action Graph [33], where
similar temporal perception patterns are identified and
grouped together into a graph which in turn is used by
simulated agents at run-time. Charalambous et al. [34]
derive behavioral metrics from input training trajectories
automatically using outlier detection. Recently, Wang et
al. [35] proposed an evaluation solution in the absence of
ground truth by learning path patterns from groups of
individuals. However, the patterns are more concerned with
path planning and are totally different from the dictionary
in our dictionary-based metric. Furthermore, the proposed
path patterns are dependent on the environment, which
makes it less suitable for traffic evaluation. In this way, our
dictionary-based metric measures the intrinsic properties of
traffic and is less affected by the environment.

3 APPROACH OVERVIEW

Conceptually, our approach works as follows: First, it starts
to construct the TPD in an offline manner, from vehicle
trajectory samples acquired from real-world traffic scenarios
that enclose common traffic patterns. The learning error
resulted from the TPD construction is set as the benchmark
of the dictionary-based traffic representation. Then, given
novel simulated traffic flow data, at runtime we can utilize
the TPD to reconstruct and approximate the input traffic
flow as closely as possible. By comparing the reconstruc-
tion error with the above benchmark, we can quantify the
realism of the input traffic flow data.

Fig. 2. The pipeline of our approach. The blue boxes show the input of
the system, which contains real-world traffic dataset and simulation data
to be evaluated.

Technically, our method consists of four stages: (i) the
extraction of spatio-temporal traffic flow features, (ii) dictio-
nary learning (i.e., construction of the TPD) from real-world
traffic data, (iii) dictionary-based reconstruction of any input
traffic flow data, and (iv) the computation of a quantitative
measure based on the reconstruction error. Fig. 2 illustrates
the pipeline of our approach.

Features extraction. The first stage is to develop a spatio-
temporal representation to characterize each vehicle’s be-
havior at any time step. In order to describe the vehicle’s
ac/deceleration behaviors in the current lane and lane-
changing behaviors to the adjacent lanes, we partition each
vehicle’s movement in two directions: the forward moving
direction (i.e., x direction) and the one perpendicular to the
forward direction (i.e., y direction).

Inspired by the detailed rules in microscopic traffic con-
trol models [1][3][36][37], we extract a vehicle’s accelerations
ax, ay ; its driving speeds vx, vy ; the relative speeds dvLx , dvLy ,
dvFx , dvFy ; and its gap distances dLx , dLy , dFx , dFy to its leader
L (the vehicle immediately in front of it on the same lane)
and its follower F (the vehicle immediately following it on
the same lane) to describe the vehicle’s instantaneous states.

In this way, we have 12 features for each vehicle at
each frame as the input to our follow-up dictionary learning
process. Furthermore, to encode traffic dynamics, we extract
the movement information of vehicles with the duration
of te seconds (i.e., f frames given a frame rate). Finally,
we normalize these input features into the 0-1 range using
min-max normalization to remove the variations between
different traffic flow samples.

System input. We denote the input real-world traffic
flow dataset as S = {S1,S2, ...,Si, ...,SM}, where M is
the total number of traffic flow samples. The i-th sample Si

contains a few vehicles’ trajectories in f frames, denoted as
{s1i , s2i , ..., s

j
i , ..., s

Ni
i }. Here, Ni is the number of vehicles in

sample Si. s
j
i is the features of the j-th vehicle. Therefore,

the input traffic flow dataset for dictionary learning can
be represented in a matrix form: S = [s1, ..., sn] ∈ Rk×n

(k = 12× f , n =
∑

i=1,2,...,M Ni).
Similarly, with the definition of an input traffic sample

Si, let Y ∈ Rk×NY be the input traffic simulation data to be
evaluated, where NY is the number of vehicles.

Dictionary learning. Given the input real-world traf-
fic flow dataset S, we aim to build a dictionary (called
Traffic Pattern Dictionary, TPD), D, that can well represent
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common real-world traffic patterns. Each column in the
dictionary is called one atom, representing a specific pattern
of vehicle behaviors in real-world traffic. Then, each vehicle
trajectory in S can be represented as a linear combination
of the dictionary atoms. Due to the computational efficiency
and tractability, we consider its sparse approximation solu-
tion (i.e., with the fewest number of nonzero coefficients) in
the dictionary learning process.

Let XS denote the corresponding coefficient matrix for
the dictionary D to represent traffic trajectory dataset S,
this dictionary learning problem can be formulated as the
following optimization problem with respect to D and XS :

min
D,XS

1

kn
‖S −DXS‖22 + ‖XS‖1 , (1)

where the first term is the learning error, which captures
the sparse approximation quality of the dictionary D, and
the second term is the sparsity constraint. ‖·‖1 denotes the
`1-norm. 1

kn is the normalization operator that balances
the trade-off between the learning error and sparsity. It
also ensures the dictionary-based metric independent of the
number of vehicles in the input traffic flow data.

As it is difficult, if not impossible, to determine the
number of traffic behavior patterns and accordingly specify
a universally optimal dictionary size beforehand, inspired
by the work [38] we employ an adaptive dictionary learning
method in which the number of dictionary atoms increases
dynamically according to the current learning error and the
current dictionary size. Because both the dictionary D and
the coefficients XS are unknown, the optimization problem
in Eq. (1) can be solved as a convex problem based on the
block coordinate descent idea of alternately updating D
and XS within an iterative loop. Specifically, the iterative
process can be split into two parts: (i) dictionary update
(finding an optimal D with a fixed XS) and (ii) coefficients
update (finding an optimal XS with a fixed D).

Dictionary-based reconstruction. The traffic pattern dic-
tionary as computed above covers a wide variety of real-
world traffic behavior patterns. Based on the reconstruction
quality of an input traffic flow data, the difference between
the input traffic and real-world traffic can be judged, thereby
quantifying the plausibility of the input traffic.

Specifically, based on the constructed dictionary D, the
problem of reconstructing new traffic flow data Y can be
viewed as a sparse coding problem in which the input data
matrix Y needs to be factorized into D and the optimal
coefficient matrix XY , that is:

min
XY

1

kNY
‖Y −DXY ‖22 + ‖XY ‖1 . (2)

The process of solving XY is similar with the coefficient
update part in dictionary learning, which will be described
in details in Section 4.2. To the end, the reconstruction error
can be calculated as RY = 1

kNY
‖Y −DXY ‖22.

Fidelity evaluation. The fidelity of the virtual traffic Y
can be quantitatively measured by comparing the above
reconstruction error RY to the benchmark of the dictionary-
based traffic representation RS (described below). After the
whole dictionary is built, RS is computed as follows:

RS =
1

kn
‖S −DXS‖22 . (3)

Fig. 3. Illustration of the joint dictionary-coefficients optimization process
after adaptively adding atoms to the dictionary. The dictionary D is
updated for the input real-world traffic flow dataset S via the online
dictionary update algorithm. The least angle regression algorithm is
employed to compute the coefficients XS given the updated dictionary
D. This process is repeated until convergence.

Finally, the dictionary-based fidelity metric FY for the
virtual traffic Y can be computed using the following Eq.
(4):

FY = log2(
RY

RS
). (4)

The above dictionary-based fidelity metric follows a log-
scale, and the base of the log function can be specified by
users to obtain different ranges of fidelity scores. In our
experiments, the range of fidelity scores is set to [0, 10] with
base 2. If simulated traffic Y is more similar to the real-
world (training) traffic dataset S, the fidelity score FY will
have a smaller value; and vice versa.

As the construction of the traffic pattern dictionary is
the core part of the dictionary-based fidelity metric, we will
describe in detail the dictionary learning algorithm in the
following Section 4.

4 DICTIONARY LEARNING

Dictionary learning is a representation learning method
which aims at finding some meaningful patterns in the input
data. Different from Principal Components Analysis (PCA),
the extracted dictionary patterns are not required to be
orthogonal. Moreover, the sparsity inducing term allows the
dictionary to include more items than the dimensionality of
the data to be reconstructed, which improves the flexibility
of the dictionary representation. Dictionary learning has
been widely used in the field of image denoising [39],
animation compression [38], reconstruction and classifica-
tion [40][41][42], facial expression synthesis [43], and video
and audio processing [44][45]. These works show that a
sparse linear combination of elements from an appropri-
ately chosen dictionary can effectively represent the intrinsic
structures of features [43]. The problem in the field of
reconstruction and denoising is similar to our traffic flow
reconstruction and evaluation problem, whose goal is to
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Algorithm 1: Online Dictionary Learning
Input: a matrix of traffic flow sample sets

S = [s1, ..., sn]εRkxn and an error threshold ε.
Output: The dictionary D = [d1, ..., dm]εRkxm,

coefficient matrix XS = [x1, ..., xn]εRmxn and
the representation error RS .

1 Initialize a dictionary with m = 2 atoms: D = [d1, d2];
2 Initialize coefficient matrix XS according to D;
3 repeat
4 for t = 1→ k(RS ,m) do
5 Find vehicle z with the largest approximation

error;
6 Add feature data sz to the dictionary D;
7 Update coefficient XS from vehicle z ;
8 end
9 repeat

10 Update dictionary D;
11 for i = 1→ n do
12 Update coefficients XS from vehicle i;
13 end
14 until Convergence;
15 until RS < ε;
16 return D and XS

reconstruct arbitrary traffic flow as a linear combination of
dictionary atoms for the purpose of evaluating the fidelity
of virtual traffic. Inspired by the driving pattern concept in
transportation research [15], we can reasonably assume that
a virtual traffic flow and its corresponding landmarks share
similar (but unknown) intrinsic patterns. These patterns can
be characterized by the learned dictionary. Thus, we obtain
the traffic pattern landmarks through dictionary learning.

In traditional dictionary learning algorithms, the number
of dictionary atoms is pre-defined as an input parameter.
However, in our traffic evaluation problem, it is difficult to
pre-specify the number of traffic behavior patterns. There-
fore, we use an adaptive dictionary learning algorithm to
dynamically build and update the dictionary. As illustrated
in Fig. 3, our adaptive dictionary learning algorithm con-
sists of the following steps. We first initialize a minimum
dictionary D with only 2 atoms and compute an initial
coefficient matrix XS with D. Then, we sequentially add
atoms to the dictionary along with jointly optimizing the
dictionary D (online dictionary update) and coefficients
XS (coefficients update) until the dictionary-based repre-
sentation error RS < ε (ε is the error threshold specified
by users). Its detailed pseudo-code description is given in
Algorithm 1.

To start the algorithm, an initial dictionary with 2 atoms
(line 1 in Algorithm 1) is built, in which the first atom d1
of the dictionary is selected from the trajectory features
of a random vehicle (i.e., d1 = srandom(n)). The second
atom d2 is initialized using the trajectory features of another
vehicle that has the smallest dot product with d1 (i.e.,
d2 = argminsi {si ∗ d1}). Then, according to the above two
atoms d1 and d2, the coefficient matrix XS is initialized
(line 2 in Algorithm 1) to minimize the difference between
the real-world data and dictionary representation in a least-
squares sense: xi = argminxi ‖Dxi − S‖

2
2.

Line 4-8 in Algorithm 1 give the process of adaptively
adding atoms to the dictionary. In this work, we automat-
ically determine the optimal size of the traffic pattern dic-
tionary, which is inferred from the given real-world traffic
data. For the sake of efficiency, we adaptively add several
atoms into the dictionary in each iteration step. The number
of added atoms k(RS ,m) is computed based on the current
learning error RS (refer to Eq. 3) and the current dictionary
size m:

k(RS ,m) = λ

√
(
RS

ε
− 1)m+ 1, (5)

where λ is a speed control parameter for adding new atoms,
which is specified as 1.0 in our experiments. The second
constant term 1 ensures that at least one atom is added
into the current dictionary when the learning error RS is
approaching the error threshold ε.

Once the number of added atoms is determined, we
sequentially add the trajectory feature data sz of a vehicle z
that has the largest representation error to the current dic-
tionary D (see Eq. 6) and update coefficients XS according
to the added atom, using the coefficient update algorithm
(Algorithm 3 in Sec. 4.2):

D ← [D, sz] s.t. z = argmax
i
‖Dxi − sz‖22. (6)

With the constructed dictionary after adding several
atoms, we seek a solution to the joint dictionary-coefficients
optimization problem described in Equation 1 by using the
algorithm of online dictionary learning proposed by [46].
That is, we use the method of block-coordinate descent
with warm restarts to update the dictionary D and LARS-
Lasso algorithm to optimize the coefficientsXS alternatively
until convergence (line 9 to line 14 in Algorithm 1). In
the following sections, we describe the details of these two
major steps: i.e., dictionary update in line 10 (Sec. 4.1) and
coefficients update in line 12 (Sec. 4.2).

4.1 Dictionary Update
We employ an online dictionary update algorithm by using
block-coordinate descent with warm restarts [47]. Com-
pared to other dictionary update methods (e.g., K-SVD [48]
and MOD method [49][50]), it leads to a faster performance,
better dictionaries, and more suitable for our traffic eval-
uation problem. Specifically, the online dictionary update
algorithm is parameter-free and does not require any tuning
of the learning rate, which eliminates the difficulty of pre-
defining the dictionary size. Moreover, the procedure does
not require to store the features {si} of all the vehicles in
traffic flow samples S and the corresponding coefficients
{xi}, but only precomputes two related matrices A and B
as the input for the dictionary update in the following way:

A =
n∑

i=1

xix
T
i = [a1, · · · , am] ∈ Rmxm, (7a)

B =
n∑

i=1

six
T
i = [b1, · · · , bm] ∈ Rkxm. (7b)

The pseudo-code description of the dictionary update
algorithm is given in Algorithm 2. In each iteration, each
atom (column) dj of the dictionary D is sequentially up-
dated (line 3 to line 5 in Algorithm 2), while freezing the
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Algorithm 2: Dictionary Update

Input: Input dictionary D = [d1, ..., dm]εRkxm,
matrix A = [a1, · · · , am] ∈ Rmxm,
and B = [b1, · · · , bm] ∈ Rkxm.

Output: The updated dictionary D.
1 repeat
2 for j = 1→ m do
3 Update the j-th column of D:
4 uj ← 1

Aj,j
(bj −Daj) + dj ;

5 dj ← 1
max(‖uj‖2,1)

uj ;
6 end
7 until Convergence;
8 return D

other ones under the constraint dTj dj < 1. Specifically, dj is
updated as follows:

uj ←
1

Aj,j
(bj −Daj) + dj , (8a)

dj ←
1

max(‖uj‖2 , 1)
uj , (8b)

where bj and aj are the j-th column of B and A, re-
spectively. Aj,j is the j-th element in the diagonal of A.
Eq. 8b normalizes dj to satisfy the affinity constraint after
its update using Eq. 8a.

With using the value of D at the previous iteration as a
warm restart for computing the new dictionary, Algorithm 2
has been empirically found to converge within a small num-
ber of iterations. [51] demonstrated that the convergence to
a global optimum is guaranteed.

4.2 Coefficients Update
While keeping the updated dictionary D fixed, the co-
efficients update can be considered as solving the opti-
mization problem in Eq. 1 with `1-norm penalty over the
sparse matrix XS . This sparse coding problem can be for-
mulated as a `1-regularized linear least-squares problem,
which is called least absolute shrinkage and selection op-
erator (LASSO) [52]. The Least Angle Regression (LARS)
algorithm [53][54] is a model selection technique that has
been widely used to solve the LASSO problem. It begins
with all coefficients initialized with zero and incrementally
adds one atom at a time based on the correlations with
the current residual. Here, we utilize the LARS to update
the coefficients of a given traffic behavior dictionary. The
scheme is presented in Algorithm 3.

The process starts with the initial coefficient solution
X0

S = 0 and initial residual r0 = S − DX0
S = S. Let I

be the active set of dictionary atoms most correlated with
the current residual. Initially, I = φ.

The first step of the algorithm (line 2 in Algorithm 3)
is applying the dictionary D to the current residual r0 to
find the atom dj1 in D with largest residual correlations
(that is, j1 = argmaxj=1,...,m dTj r

0). Then, j1 will be the
first element in the active set I (line 3 in Algorithm 3).

The main part of LARS is an iterative process (line 4 to
line 11 in Algorithm 3). During each iteration, the coefficient
XS is continuously moved towards the least-squares direc-
tion until another dictionary atom is equally correlated with

Algorithm 3: Coefficient Update

Input: dictionary D = [d1, ..., dm]εRkxm,
traffic flow sample sets S = [s1, ..., sn]εRkxn.

Output: coefficient matrix XS = [x1, ..., xn]εRmxn.
1 Initialize X0

S = 0, I = supp(XS) = φ, residual r0 = S;
2 Find the dictionary atom dj1 most correlated with r0;
3 I ← I ∪ {j1};
4 for t = 1→ m do
5 Compute the least-squares moving direction δt of

Xt
S ;

6 repeat
7 Update Xt

S from Xt−1
S in the direction δt;

8 Compute the current residual rt;
9 until another atom djt(jt * I) makes |〈djt , rt〉| = rt;

10 I ← I ∪ {jt};
11 end
12 return XS

the current residual. Then, this atom is added into the active
set and a new moving direction is computed.

Specifically, suppose I = {j1, j2, ..., jt} is the active set
of dictionary atoms that are most correlated with the current
residual at the beginning of the t-th step. Then, there will be
t − 1 nonzero vectors in the coefficient matrix Xt

S , and the
one xjt just entered will be zero. If rt−1 = S − DXt−1

S is
the current residual, the least-squares moving direction δt

of coefficient Xt
S for the t-th step is computed (line 5 in

Algorithm 3) using Equation 9:

δt(I) = (DT
I DI)

−1DT
I r

t−1, (9)

where DI represents a subspace spanned by the columns of
D belonging to I .

The coefficient profile Xt
S then evolves continuously in

the direction δt (line 7 in Algorithm 3) that can be computed
using Eq. 10:

Xt
S(µ) = Xt−1

S + µδt, (10)

where µ is a heuristic step-size parameter. According to Xt
S ,

the residual rt is updated continuously (line 8 in Algorithm
3).

At the same time, keep tracking of any dictionary atom
that has not yet been entered into the active set I . As soon
as another competitor djt in D has as much correlation with
the current residual, that is, |〈djt , rt〉| = rt, the moving
process in the direction δt is paused (line 9 in Algorithm 3).
The atom djt is added into the active set I (line 10). Then,
we set t = t+ 1 and compute the new least-square moving
direction, that is, going back to line 5 in Algorithm 3. This
iterative process continues until all the dictionary atoms are
added in the active set I . In other words, the Algorithm 3
arrives at the full least-squares solution for coefficient XS .

We update the dictionary and corresponding coefficients
in an iterative way until the representation error RS of the
dictionary is smaller than a pre-defined error threshold ε.
In this way, the optimal dictionary can be constructed to
represent the common behavior patterns in a given real-
world traffic dataset. The representation error RS is com-
puted using Eq. 3 with the optimal coefficients XS , and it
will be treated as the benchmark of the dictionary-based
representation in the fidelity evaluation procedure.
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Online reconstruction and fidelity evaluation: Given
an input virtual traffic to be evaluated, its spatio-temporal
traffic features are sampled at the same frequency as the
real-world training data, which leads to the input data Y for
dictionary-based reconstruction. The reconstruction process
is similar to the coefficients update process described in
Sec. 4.2. With the computed optimal coefficients for Y , the
reconstruction error RY can be calculated and the fidelity of
the virtual traffic Y can be quantitatively measured by com-
paring the reconstruction error RY to the error benchmark
RS of the dictionary representation using Eq. 4.

It is noteworthy that with the precomputed, fixed dic-
tionary, the computational time for reconstruction is linear
to the number of vehicles in the input traffic flow. In our
experiments, the computational time was 0.13s for input
traffic data with 154 vehicles, and 7.25s for 6567 vehicles
using the dictionary containing 252 atoms.

5 EXPERIMENTAL RESULTS AND EVALUATIONS

The real-world traffic datasets we used for dictionary
learning are provided by the Next Generation Simulation
(NGSIM) program [27], which contains a variety of detailed
vehicle trajectories in terms of flow speed and density. The
data was collected in both highway networks and traffic-
light controlled urban roads at different times using multi-
ple video cameras installed along the road.

In our implementation, we extracted 80 traffic flow seg-
ments from the NGSIM dataset as the input, which contains
the trajectory information of a total of 71,529 vehicles with
the frequency of 10 frames per second. The duration te for
the feature extraction of each vehicle was set to 10 seconds
(100 frames in total). The error threshold ε for the stopping
criterion of Algorithm 1 was specified as 1.0. Based on
the above training dataset, the constructed TPD dictionary
contains 252 atoms.

First, we tested the performance of our dictionary-based
metric on real-world traffic data. We randomly extracted 10
traffic flow segments from the NGSIM dataset, which were
not used for the dictionary learning process. These retained
test datasets were marked as Real-1 to Real-10. Table 1
shows the fidelity evaluation results using our dictionary-
based metric. It can be seen that the scores are distributed
in a narrow range between 0.32 and 0.45, in particular
compared to the evaluation scores in Table 2, which means
the traffic is very realistic.

TABLE 1
Fidelity evaluation scores for real-world traffic data.

Dataset Real-1 Real-2 Real-3 Real-4 Real-5
Fidelity score 0.35 0.34 0.37 0.45 0.42

Dataset Real-6 Real-7 Real-8 Real-9 Real-10
Fidelity score 0.34 0.40 0.38 0.41 0.32

In order to evaluate the effectiveness of our dictionary-
based metric, we applied it to three representative traffic
synthesis methods: (1) one of the latest developments of
the microscopic IDM model [1], (2) a continuum traffic
control model [4], and (3) a data-driven texture-based traffic
synthesis method [8]. For each of the three methods, three
different sets of parameters were chosen that vary accel-
eration, speed, minimum vehicle gap, and other internal

Fig. 4. The rendering of simulated traffics in different scenarios used for
fidelity evaluation.

simulation parameters. The resulting simulations that use
these parameters are referred to as IDM-1, IDM-2, and
IDM-3 for the microscopic IDM model, CON-1, CON-2,
and CON-3 for the continuum traffic approach, and TEX-1,
TEX-2, and TEX-3 for the texture-based synthesis method,
respectively.

With the above settings, we evaluated our dictionary-
based fidelity metric in four different traffic flow scenarios
(see Fig. 4): (1) high-density traffic flow (35 vehicles per
mile per lane), (2) low-density traffic flow (18 vehicles per
mile per lane), (3) traffic-light controlled traffic flow, and (4)
traffic flow in the junctions of road networks.

5.1 Evaluation Results of Virtual Traffic
We applied our dictionary-based metric to evaluate the
above simulated traffic flows, and obtained their results in
Table 2. From this table, we can see that different simulators
varied in their capabilities to model the motion character-
istics of different traffic scenarios. Furthermore, for a given
synthesis method, different parameter sets also scored quite
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TABLE 2
Fidelity evaluation results for the virtual traffic flow in different scenarios generated by different traffic synthesis methods. The range of the

evaluation results is [0, 10], and lower is better. / denotes the unavailability of the corresponding stimulus.

Scenarios IDM-1 IDM-2 IDM-3 CON-1 CON-2 CON-3 TEX-1 TEX-2 TEX-3
High-density 5.39 4.62 3.49 7.97 7.04 6.03 2.31 3.68 3.76
Low-density 3.96 2.93 4.91 6.13 5.96 3.57 0.57 0.85 1.11
Traffic-light 3.16 6.76 2.42 / / / 4.12 5.54 2.03

Road junction 5.07 3.03 3.37 3.63 4.43 0.93 2.15 1.22 2.69

Fig. 5. Comparison between the dictionary-based scores (lower is better) and the perceived similarity scores (higher is better) of 33 virtual
traffic flows generated by three different traffic synthesis methods with three different parameter settings specifically for four traffic scenarios.
The histograms show the mean values and standard deviations of the perceptual scores.

differently, in particular, the optimal parameters for one
simulation scenario may not produce a similar performance
for another simulation scenario. For example, the TEX-1 on
the low-density traffic simulation had a low evaluation score
of 0.57, but its evaluation score was 4.12 when the same
method with the same parameter setting was applied to
simulate a traffic-light scenario.

It is noteworthy that the continuum traffic control model
is limited to simulate traffic on highway road networks
and cannot simulate street-level traffic with detailed inter-
sections. So, in this table, CON-1, CON-2, and CON-3 did
not have the dictionary-based metric scores for traffic-light
controlled traffic flow due to the unavailability of the corre-
sponding stimuli. Moreover, the continuum traffic approach
tends to get relatively high dictionary-based scores (> 6.0)
for high-density traffic flows due to its failure in simulat-
ing the stop-and-go waves in congestion. By contrast, the
microscopic IDM method models the specific behavior of
each vehicle, which results in lower scores of the simulated
traffic flows than those by the continuum traffic approach.
Among the three traffic synthesis methods in this compari-
son, on average the data-driven traffic synthesis method [8]
achieved the best performance in all tested scenarios, thanks
to its direct utilization of real-world traffic trajectories.

5.2 Evaluation through Perceptual Study

We conducted a user study to understand and analyze
how well the numerical evaluation scores produced by our
dictionary-based metric match the ground-truth perceptual
similarities obtained through user study. Corresponding to
Table 2, we rendered all the 33 simulated traffic animations
as the stimuli in our study (4 scenes × 3 methods × 3
parameter settings, minus 3 unavailable cases). Then we
recruited 30 participants to participate in this user study.
All the participants are graduate students in a university,
whose ages are in the range of 20 to 30, with normal visions.

At each time they were asked to watch one virtual traffic
animation stimulus and then rate it in terms of its perceived
fidelity. The score range is from 0 (not at all realistic) to 10
(very realistic). To counterbalance the order of the visual
stimuli, the stimuli were displayed in a random order for
each participant. The participants were allowed to view
an animation stimulus many times before scoring it. The
outcomes of this user study are illustrated in Fig. 5.

As can be seen in Fig. 5, when the average dictionary-
based fidelity score of a stimulus is larger than 6.0, par-
ticipants often gave the stimulus a low fidelity score, such
as from 0.0 to 4.0. On the other hand, when the average
dictionary-based fidelity score of a stimulus was smaller
than 3.0, participants tended to give it a higher fidelity score
such as from 7.0 to 10.0. To further quantify the relation-
ship between the dictionary-based fidelity metrics and the
perceptual scores from participants, we also calculated the
Pearson’s correlation coefficient between the two datasets.
The obtained correlation coefficient is -0.96, which indi-
cates that our dictionary-based fidelity metrics are strongly
correlated with the perceptual evaluation outcomes. It is
noteworthy that for some cases, the evaluation scores by our
dictionary-based fidelity metric have more fine granularity
than those rated by participants. For instance, as shown in
Fig. 5, two virtual traffics received the same perceptual score
of 6.86, but they can be distinguished by our dictionary-
based fidelity metric, producing the scores 2.93 and 3.03,
respectively.

In few cases, however, our dictionary-based fidelity
metrics may not be always consistent with the perceptual
evaluation scores by participants. For example, as shown in
Fig. 5, the two virtual traffics received the dictionary-based
scores of 3.16 and 4.12, respectively. This means, measured
by our approach, the first one (3.16) is more realistic than
the second one (4.12). However, their perceptual scores by
participants are 6.36 and 6.61, respectively. This shows that
on average the participants in our study believed that the
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Fig. 6. The comparative user study results among the entropy-based
scores (lower is better), our dictionary-based scores (lower is better),
and the perceived similarity scores by participants (higher is better).

second one (6.61) is slightly more realistic than the first one
(6.36). Such sporadic inconsistencies could be attributed to
the subjective nature of user studies such as unavoidable
human bias.

5.3 Comparison with Entropy-based Similarity Metric

We also conducted a direct comparison among the entropy-
based similarity metric for aggregated crowd dynamics [13],
our dictionary-based fidelity metric, and the perceptual
evaluation outcome obtained through user study. The main
reason why we chose to compare our metric with the
entropy-based metric, instead of other related previous
works in crowd animation, is: Our dictionary-based metric
and the entropy-based metric are both designed to quan-
titatively measure the plausibility of simulated crowds, al-
though they model different information. Both of them have
a similar range of metric scores and make comparisons with
perceptual evaluation.

Because the entropy-based metric works at the level of
individual motion decision, in this comparison we chose the
microscopic IDM model [1] to generate virtual traffic data.
With a given set of real-world traffic data, we generated
four virtual traffic flows using the above microscopic IDM
model with four different sets of parameters. The virtual
traffic flow data are labeled as SIM-1, SIM-2, SIM-3, and
SIM-4, respectively.

Similar to [13], we also conducted a user study to per-
ceptually evaluate the above animation stimuli. 30 partic-
ipants were shown two animation stimuli side-by-side at
each time. The left is the rendered virtual traffic animation
(refer to Fig. 1(b)-(d)) and the right is the rendered anima-
tion based on real-world traffic data in the same scenario
(Fig. 1(a)). The participants were asked to rate the similarity
between the simulated traffic animation (the left) and the
reference animation of the real-world traffic (the right) on a
Likert Scale 0 (not at all realistic) to 10 (very realistic). The
other settings of this user study were similar with those in
the previous user study (Sec. 5.2) . The user study results
are illustrated in Fig. 6.

As can be clearly seen in Fig. 6, both our dictionary-
based fidelity scores and the entropy-based scores are ap-
proximately consistent with each other. This indicates that
our dictionary-based fidelity metric has a similar capability
with the entropy-based metric to measure the plausibility of
microscopic traffic simulators.

Furthermore, we wish to point out the differences be-
tween our dictionary-based fidelity metric and the entropy-
based similarity metric. On one hand, the entropy-based
metric is more general than our dictionary-based metric,
since the former can be used for general crowds (includ-
ing virtual traffic), while the latter is specifically narrowed
on the fidelity measure of virtual traffic. On the other
hand, in terms of measuring the fidelity of virtual traffic,
our dictionary-based fidelity metric is more general and
versatile than the entropy-based similarity metric, because
the entropy-based metric is only defined in reference to a
given set of real-world crowd data and cannot measure the
plausibility of a simulator/simulation in the absence of the
corresponding real-world ground truth data. However, in
many scenarios and applications, such ground truth refer-
ence data is simply unavailable or infeasible to acquire. This
limitation was also clearly mentioned in the original paper
of the entropy-based similarity metric [13]. By contrast, with
the aid of the precomputed TPD dictionary, our method
does not require the corresponding real-world ground truth
data as one of the inputs; simulated traffic trajectory data is
the only required input for our metric.

5.4 Algorithm Performance Analysis
Convergence analysis: To build the optimal TPD dictionary
from the training data with 71,529 vehicle trajectory infor-
mation, Fig. 7 shows how atoms are added sequentially into
the dictionary and how the dictionary-based representation
error is decreased over iterations in this process. The curve
segment in one color represents one iteration (i.e., one joint
dictionary-coefficients optimization process, corresponding
to line 4-14 in Algorithm 1), in which one point denotes the
representation error after one dictionary-coefficient update
step (line 10-13 in Algorithm 1). We can see that the alterna-
tive update process converged within 10 iterations owing
to the employed warm restart strategy. Furthermore, the
number of atoms added into the dictionary also decreased
adaptively according to the current representation error
and the current dictionary size. The representation error
dropped below the error threshold (1.0) after atoms were
added 6 times. This can effectively avoid time-consuming,
trial-and-error parameter tuning, compared to the case of
specifying a fixed number of atoms at the beginning.

Effect of sampling frequency: Regarding the use of
traffic patterns to describe vehicle behavior over a fixed
period of time, different sampling frequencies of real-world
data will result in different granularities of vehicle behavior
as expressed by the learned dictionary. In the case of a fixed
time period for vehicle feature extraction (10 seconds in our
experiments), we tested the effect of sampling frequency of
traffic trajectory data on the evaluation outcome by gener-
ating three dictionaries with different frame rates (10 fps, 5
fps and 2 fps). The corresponding sample frame numbers in
the features of each vehicle are 100, 50, and 20. Note that the
sampling frequencies of the evaluated traffic flow and the
real-world training data must be consistent. The simulation
data SIM-1, SIM-2, SIM-3, and SIM-4 used in Sec. 5.3 were
used here to verify the evaluation outcomes. Table 3 shows
the dictionary-based evaluation results.

The evaluation scores at the sampling frequency of 10
fps are consistent with those shown in Fig. 5.3, and can
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Fig. 7. The convergence of our adaptive dictionary learning algorithm.
The curve segment in one color represents one iteration (i.e., one
joint dictionary-coefficients optimization process after adaptively adding
atoms to the dictionary). One point means the representation error after
one dictionary-coefficient update step.

be considered as reliable evaluation results, compared with
the entropy-based method and user study outcomes. It can
be seen from Table 3 that as the sampling frequency is
gradually reduced, the discriminative performance of our
method gradually becomes inconspicuous. For example, the
evaluation scores of SIM-3 and SIM-4 are difficult to distin-
guish at 5fps (i.e., 3.36 and 3.35, respectively). Therefore, we
can infer that in general the larger the sampling frequency,
the more accurate the traffic pattern dictionary describing
the features of the vehicle behavior, and the more reliable
the corresponding evaluation outcome.

TABLE 3
Evaluation results using three dictionaries with sampling frequency.

frame rate (fps) SIM-1 SIM-2 SIM-3 SIM-4
10 8.99 5.41 3.00 0.73
5 7.94 6.49 3.36 3.35
2 2.78 4.06 2.93 2.47

TABLE 4
Reconstruction errors using five dictionaries with different numbers of

atoms.

Atom number Data-1 Data-2 Data-3 Data-4 Data-5
84 10.29 10.39 11.21 11.24 38.91
179 3.95 3.80 3.56 4.03 13.31
252 1.33 1.79 1.13 1.81 1.80
302 1.33 1.78 1.11 1.79 1.77
352 1.32 1.73 1.10 1.78 1.74

Effect of the dictionary size: To test the effect of dictio-
nary size on the reconstruction of virtual traffic, we tested
five dictionaries with different number of atoms on five seg-
ments of traffic simulation data: DATA-1, DATA-2, DATA-
3, DATA-4, and DATA-5. Table 4 gives the resulting recon-
struction errors RY . For each simulation data, RY decreases
as the atom number increases. Our adaptive dictionary
learning algorithm indicates the optimal atom number is
252. It is notable that the reconstruction error of DATA-1 and
DATA-2 are similar (10.29 and 10.39), when the dictionary
contains a relatively small number of atoms (84 atoms).
Their fidelity can be clearly distinguished and evaluated

only when the number of atoms increases up to 252 which
is the optimal atom number selected by our algorithm.
The reconstruction error does not have significant changes
when more atoms are further added into the dictionary. It
should be noted that, an incomplete dictionary could make
misleading evaluation in some cases. For instance, Data-2
exhibits a significantly lower value than Data-5 when the
atom number is 84, which indicates Data-2 is much more
realistic. However, a complete dictionary shows that Data-
2 and Data-5 have approximately the same fidelity. This
demonstrates the effectiveness of our adaptive dictionary-
based fidelity measure.

6 LIMITATIONS

As a common problem with data-driven methods, the com-
position of the training real-world traffic data has a direct
impact on the generated dictionary, thereby further affect-
ing the dictionary-based evaluation outcome. To test the
influence, we generated two input real-world traffic datasets
with a combination of low-density and high-density traffic
flows. These two datasets have the same size but different
compositions: one (called the Low-Set) is with 70% low-
density and 30% high-density traffic flows, while the other
(called the High-Set) has 30% low-density and 70% high-
density traffic flows. Then, we generated two TPD dictionar-
ies using the two datasets, respectively. The performances of
the dictionaries were tested with three virtual traffic flows in
low density (marked as Low-1, Low-2, and Low-3) and three
in high density (marked as High-1, High-2, and High-3),
respectively. Table 5 shows the dictionary-based evaluation
results.

TABLE 5
Fidelity evaluation results of three low-density virtual traffic flows

(Low-1, Low-2, and Low-3) and three high-density traffic flows (High-1,
High-2, and High-3), using two different dictionaries generated from
different real-world traffic datasets (the Low-Set and the High-Set).

Dataset Low-1 Low-2 Low-3 High-1 High-2 High-3
Low-Set 1.97 8.99 5.75 2.70 8.60 4.50
High-Set 2.98 8.99 6.09 0.84 8.52 2.96

From Table 5, we can see that the virtual traffic flows
with low density typically get lower dictionary-based scores
(that is, higher plausibility) if the training real-world traffic
dataset contains a large proportion of low-density traffic
flow data. Similar results can also be obtained for high-
density virtual traffic flows. It is notable that, for virtual
traffic simulations that are very unrealistic (e.g., Low-2 and
High-2), their measured fidelity scores were the same or
very close based on the two different training datasets.
This is because the vehicles’ behavior patterns in unrealistic
traffic simulations cannot easily find their matches in both
of the two dictionaries.

Finally, in the real world, drivers may make distinct
driving decisions on roads with different shapes, such as
tend to make a deceleration decision at the corners of a road.
However, our current dictionary-based metric does not take
the geometric shapes of roads into consideration.

7 CONCLUSION AND FUTURE WORK

We present an effective dictionary-based metric to evalu-
ate the fidelity of any traffic simulations, given a training
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dataset of real-world traffic flows. By adaptively learning a
Traffic Pattern Dictionary in an unsupervised way to describe
the common patterns in vehicle behavior dynamics, our ap-
proach can be directly applied to any input traffic flow and
objectively measure its fidelity through a dictionary-based
reconstruction process. Moreover, our method can also be
directly used to quantitatively compare the performances of
different traffic simulation techniques.

As the future work, we plan to explore various applica-
tions of this evaluation framework, such as the automatic
optimization of traffic simulation models according to real-
world traffic flow input. In addition, more features on
traffic flow should be considered and extracted to describe
traffic patterns in the current framework, such as vehicle
constraints, road restriction rules, and driver characteristics.
However, it is challenging to extract these features from real-
world traffic flow data, which is often unavailable in many
acquired traffic flow datasets, unfortunately. We also plan
to extend this dictionary-based metric to measure several
macroscopic aspects of traffic flow motions including flow
density and velocity, and generalize this traffic evaluation
framework to other kinds of aggregated crowds such as
insect swarms, flocks, and human crowds. Last but not least,
we are interested in applying the dictionary-based metric to
the assessment of autonomous vehicle behaviors.
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