
SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Realistic Data-Driven Traffic Flow Animation
Using Texture Synthesis

Qianwen Chao, Zhigang Deng, Senior Member, IEEE , Jiaping Ren,
Qianqian Ye and Xiaogang Jin, Member, IEEE

Abstract—We present a novel data-driven approach to populate virtual road networks with realistic traffic flows. Specifically, given a
limited set of vehicle trajectories as the input samples, our approach first synthesizes a large set of vehicle trajectories. By taking the
spatio-temporal information of traffic flows as a 2D texture, the generation of new traffic flows can be formulated as a texture synthesis
process, which is solved by minimizing a newly developed traffic texture energy. The synthesized output captures the spatio-temporal
dynamics of the input traffic flows, and the vehicle interactions in it strictly follow traffic rules. After that, we position the synthesized
vehicle trajectory data to virtual road networks using a cage-based registration scheme, where a few traffic-specific constraints are
enforced to maintain each vehicle’s original spatial location and synchronize its motion in concert with its neighboring vehicles. Our
approach is intuitive to control and scalable to the complexity of virtual road networks. We validated our approach through many
experiments and paired comparison user studies.

Index Terms—traffic flow animation, crowd simulation, data-driven method, texture synthesis.

F

1 INTRODUCTION

In recent years, virtual environments (e.g., cities, road
networks, and buildings) have been increasingly used in
a variety of applications including virtual reality, digital
tourism, urban planning, training, evacuation simulation,
and so on. However, virtual environments alone, without
populated crowds and traffic flows, would be unrealistic
and thus often less useful for many applications.

A number of simulation based methods, including
macroscopic (e.g., [1], [2], [3], [4]) and microscopic control
models (e.g., [5], [6], [7]), have been developed to generate
realistic traffic flows on road networks. However, they suffer
from the following two inherent limitations:

• Compared to the ground truth data, the simulated
traffic flows (Fig. 1(a)) by them are too regular, lack-
ing of motion varieties that are essential characteris-
tics of real-world traffic flows (Fig. 1(b)), due to the
simplicity of their employed heuristic rules.

• They can only offer the user indirect control through
the tedious non-trivial tuning of low-level model
parameters in a trial-and-error manner, which is un-
intuitive and inefficient from the user’s perspective.
The main reason is that, it is technically impossible
for the user to know (predict) beforehand what new
traffic flows would approximately look like when
adjusting those low-level model parameters.

Meanwhile, recently a few data-driven approaches have
been proposed to populate virtual environments with hu-
man crowds or manipulate multi-character animation in

• Q. Chao is with Computer Science Department, Xidian University, Xi’an,
710071, P. R. China.

• J. Ren, Q. Ye and X. Jin are with State Key Lab of CAD&CG, Zhejiang
University, Hangzhou, 310058, P. R. China.

• Z. Deng is with Computer Science Department, University of Houston,
Houston, TX, USA.

• X. Jin is the corresponding author. E-mail: jin@cad.zju.edu.cn

（a） （b） （c）

Fig. 1. (a) An example of synthetic two-lanes traffic flows by the well-
known Intelligent Driver Model (IDM) based simulation method. (b)
Ground-truth traffic flows recorded in real world. (c) The corresponding
synthesized traffic flows by our approach. The trajectories of different
vehicles are plotted in different colors.

crowds [8], [9], [10], [11]. These methods directly manipulate
agents’ trajectories to fit both user requirements and the
topological constraints of the virtual environment. They
provide more direct user control than the aforementioned,
purely simulation based methods, because ultimately the
synthesized results depend on input examples, which can
be easily controlled by users. However, they cannot be
straightforwardly extended to populate virtual road net-
works with realistic traffic flows, due to the following main
difference: In a human crowd, typically it is assumed that
agents can move along any trajectories with various speeds
as long as collision avoidances are handled. By contrast, in
addition to collision avoidances, vehicles on the road also
need to obey strict traffic rules, such as safe lane chang-
ing, acceleration/deceleration, and road regulations. As
a result, straightforwardly extending existing data-driven
crowd populating approaches to traffic flows would lead
to less realistic results.

In a sharp departure from widely-used, simulation-
based traffic flow generation methods due to their afore-
mentioned limitations, in this paper we present a new data-
driven traffic flow simulation approach for virtual road net-

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(a) (b) (c)

Fig. 2. Examples of traffic flows synthesized by our approach. (a) The synthesized traffic flows on a curvy road. (b) The synthesized traffic flows on
a traffic-light controlled road. (c) The synthesized traffic flows on an urban highway network.

works. Specifically, given a limited set of vehicle trajectories
as input samples, we first synthesize a large set of vehicle
trajectories through the combination of texture synthesis
with microscopic traffic behavior rules. Besides minimizing
the local repetitions of vehicle behaviors, the synthesized
trajectories of vehicles can not only strictly follow traffic
rules but also break the limits of vehicle number, lane
number, and frame number in the input samples. After that,
we fit the synthesized vehicle trajectory data to virtual road
networks using an adaptive cage-based registration scheme,
where a few traffic-specific constraints are enforced to main-
tain each vehicle’s original spatial location and synchronize
its motion in concert with its neighboring vehicles.

Through many experiments as well as paired compar-
ison user studies, we demonstrate that our approach can
effectively generate more realistic traffic flows on a variety
of virtual road networks than existing simulation based
methods. Fig. 2 shows several traffic flow examples gen-
erated by our method including a curvy road, a traffic-light
controlled road, and a complex urban highway network.

The main contributions of this work can be described as
follows.

• It introduces a novel data-driven scheme to generate
a large set of new vehicle trajectories through the
non-trivial fusion of texture synthesis and traffic
behavior rules.

• It introduces a new cage-based traffic flow registra-
tion algorithm to precisely snap synthesized vehicle
trajectories to various virtual road networks, where
traffic-specific constraints are introduced to maintain
the vehicles’ original spatial location and synchro-
nize their motions with neighboring vehicles.

• To the best of our knowledge, our approach is the
first example-based traffic flow populating solution
for virtual road networks, which is completely differ-
ent from widely-used, simulation-based traffic flow
generation methods. Besides generating more natu-
ral traffic flows than existing simulation-based meth-
ods, our method can inspire future research efforts
along this new direction to simulate realistic traffics
in various complex settings.

2 RELATED WORK

Traffic simulation: Traffic simulation has become an in-
creasingly popular and effective tool for analyzing a wide

variety of dynamical problems about traffic flows, which
cannot be accurately modeled using analytical methods.
Based on the level of simulation details, existing methods
can be roughly categorized into two types: macroscopic and
microscopic models.

A macroscopic model describes vehicles’ behaviors and
interactions at a low level of details, in which a traffic
stream is represented by a continuum in terms of charac-
teristics including speed, flow and density [1], [2], [3], [4].
By contrast, a microscopic model treats each vehicle as a
discrete autonomous agent with specific governing rules,
and it can typically produce vehicle motions at a high
level of details [5], [6], [7], [12]. Among existing micro-
scopic models, the Intelligent Driver Model (IDM) [6] for
acceleration/deceleration decision and Kesting et al.’s lane-
changing model [13] are two notable examples.

Data-driven traffic visualization techniques have re-
ceived noticeable attentions recently, including the recon-
struction of traffic flows from spatio-temporal data acquired
by existing in-road sensors [14], [15] and the generation of
traffic flows by learning individual-specific driving charac-
teristics [16]. As the latest development of data-driven traffic
animation methods, Wilkie et al. [15] estimate the states of
input traffic flows and then drive an agent-based traffic
simulator to produce traffic animations that statistically
match the given sparse traffic conditions.

While the above methods can generate plausible traffic
flows to a certain extent, it is difficult to ensure the realism
of the generated traffic flows due to the use of heuristically
designed driving rules. By contrast, our work generates
more vivid traffic animations directly from the real-world
data without any simulator involved.

Crowd manipulation: Interactive manipulation tech-
niques for editing multiple character motions has been
studied with a varying level of control specifications. Kown
et al. [17] use a graph structure to model the spatio-temporal
group behavior of pedestrians and employ mesh editing
algorithms to manipulate the animation interactively. Kim et
al. [18] and Ho et al. [19] extend this manipulation method
to handle a wide range of group behaviors with complex
interactions. Recently, Kim et al. [11] edit large-scale crowd
animations by extending cage-based deformation and as-
rigid-as possible deformation, and demonstrated convinc-
ing results. However, these methods are only applicable to
animations with a limited number of agents and with a
relatively short length; they still need non-trivial manual
efforts to generate more complex crowd animations at a

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

larger scale.
Crowd patches: The crowd patches technique [8] par-

tially overcomes the limitations of the above motion editing
approaches by automatically assembling periodic pieces of
given crowd animations, in order to create infinitely large,
yet repetitive, animated crowds. It tiles crowd patches to
populate large-scale virtual environments on-the-fly. Kim et
al. [9] extract patchable trajectories of multiple characters
from a limited set of input animations and tile patches
seamlessly to create a dense crowd of characters interacting
with each other. Jordao et al. [10] introduced a crowd sculpt-
ing method to interactively design populated environments
with an extension of crowd patches. However, the most
notable limitation of patch-based methods is the lacking of
motion varieties. For instance, if the user’s point of view
remains static for a while, the periodicity of synthesized
crowd animations could be visually noticeable. In addition,
certain strict principles must be defined to ensure a seamless
transition between patches.

Texture synthesis: Various texture-based flow visualiza-
tion techniques [20], [21], [22], [23], [24], [25] have been
designed to provide a flexible, dense visual representation
for a flow field with high spatio-temporal coherencies. In
addition, texture synthesis has been extensively used in
computer graphics and vision applications, including tex-
ture mapping [26], image completion and restoration [27],
and pattern synthesis [28]. For a comprehensive survey on
texture synthesis techniques, please refer to the recent work
by Wei et al. [29]. Despite the success of applying texture
synthesis on 2D, 3D, and spatio-temporal data, without con-
siderable efforts it would be difficult to straightforwardly
extend existing texture synthesis techniques for traffic flow
synthesis, because vehicles on the road need to strictly
obey various traffic rules, including collision avoidance, lane
changing, acceleration/deceleration, etc.

3 APPROACH OVERVIEW

Given a virtual road network, and a limited set of vehi-
cle trajectory samples (recorded from real-world traffics or
even synthetic traffic data), our approach first synthesizes
new vehicle trajectories segment by segment. Then, the
synthesized vehicle trajectory segments are automatically
concatenated together, and further geometrically registered
with the road network through cage-based registration.

The input vehicle trajectory set contains a variety of
traffic flow segments in terms of the number of lanes and
flow density. Each segment contains vehicles’ trajectories
in a time period, denoted as {P1,P2, ...,Pi, ...,PM}, where
Pi = {p1

i ,p
2
i , ...,p

j
i , ...,p

Ni
i }. Here, Pi is the trajectory of the

i-th vehicle, and pj
i ∈ R2 is the 2D position of the i-th vehicle

at the j-th frame. M and Ni are the total number of vehicles
and the total number of motion frames of the i-th vehicle,
respectively. At the preprocessing step, we cluster these
input trajectories into groups based on their average flow
velocities. In this way, during our traffic flow synthesis step
(§4), we can select different traffic flow groups as the input
traffic flow samples, based on the specific traffic density and
speed requirement of the road segment.

In real world traffic flows, each vehicle’s motion de-
pends on its surrounding vehicles, which is similar to the

Timeline
Position

V
eh

ic
le

s

Texture

Trajectories in two lanes

La
ne

x

y

Fig. 3. Texture analogy of a set of two-lanes vehicle trajectories. The
spatio-temporal information of the trajectory set can be conceptually
viewed as a 2D texture, and each traffic texel encodes a vehicle’s states
at a certain frame, including its movement information and position
relationship with its neighboring vehicles.

locality characteristic of texture synthesis. Therefore, we
propose a novel concept of Traffic Texture, in which the
spatio-temporal information of a traffic flow segment is
conceptually regarded as a 2D texture. It is noteworthy that
our defined traffic texture is different from traditional 2D
texture that is based on fixed grids. Each texel in traffic
texture encodes a vehicle’s state at a certain frame including
its velocity, position and dynamic relationships with its
neighboring vehicles (refer to Fig. 3 for illustration). Its
neighboring vehicle IDs are not fixed since the neighboring
vehicles could change over time.

Based on the above analogy, we propose a new traffic
flow synthesis method by combining texture synthesis with
traffic behavior rules. We define a traffic texture energy metric
according to traffic behavior rules to measure the similarity
between the synthesized traffic flows and given traffic flow
samples. Each vehicle’s velocity in the synthesized traffic
flows is determined by finding the best matched texel in
the input traffic flow samples. The information of the leader
vehicle is also introduced during the synthesis process to
ensure collision avoidances in the synthetic traffic flows,
which will be elaborated in §4.

After a new traffic flow segment is synthesized, we
automatically fit it to the virtual road network using a cage-
based registration scheme as follows: we first introduce a
traffic-specific cage form to encapsulate the synthetic traffic
flows by considering vehicles’ strict behavior rules. Then,
we accurately register it with the virtual roads based on
as-rigid-as-possible deformation with several soft and hard
constraints, which will be elaborated in §5.

4 CREATING NEW TRAFFIC FLOWS

The goal of this step is to produce various new vehicle
trajectories for new road networks, which strictly follow
traffic rules and break the limits of vehicle number, lane
number, and frame number in the input samples. The gen-
erated new traffic flows are different from, yet similar to by
nature, the input traffic flow samples. To show the varieties
in space and time, we synthesize new traffic flows using
different input samples, segment by segment. With different
initialization settings (§4.1), our method can generate both
temporal segments and spatial segments. The length of each

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Leader vehicle

Safe gap

Safe gap

v

Fig. 4. The initialization of the leader vehicle’s states in the synthesized
traffic flows (blue) is based on the states of the last vehicle in the
previous segment of traffic flows (red).

segment can be specified by users, which is suggested to be
consistent with the length of the input traffic flow sample.

In this work, to generate a new traffic flow segment, we
extend the classical pixel-based texture synthesis methodol-
ogy [30], [31], [32], [33] that creates a new texel sequentially
by finding and copying the texel with the most similar
neighborhood in the input texture samples. Formally, let Ts
denote the input traffic flow samples and T denote the new
synthesized traffic flows, we define a traffic texture energy
metric to measure the similarity between the synthesized
traffic flows and the input traffic flow samples as follows:
For a vehicle i at frame j in T , its surrounding states are
compared with the neighborhood states of all the vehicles
in Ts, and the velocity of the vehicle with the minimal
traffic texture energy will be chosen to update pj

i accord-
ingly. With the growing of texels, we can update all the
vehicles’ velocities at all the frames in T and generate new
traffic flows. Repeating this search-and-update process can
iteratively refine the initial estimate of the new traffic flows,
with the decreasing of the total traffic texture energy. This
iterative update process will be elaborated in §4.2.

4.1 Initialization

In order to bootstrap our traffic flow synthesis process,
we employ an initialization process, described below. Since
we synthesize new traffic flows segment by segment, we
first need to specify both the number of vehicles and the
total number of frames in each segment. Different settings
of the initial states of the leader vehicles can lead to the
synthesized traffic flows as a temporal segment or a spatial
segment. Since a synthesized temporal segment is contin-
uous in time domain, its leader vehicles at the first frame
should maintain safe gaps with the endmost vehicles at
the last frame of the previous traffic flow segment, while
a spatial segment should maintain a safe gap between
vehicles at every frame. Fig. 4 illustrates the relationship
between the synthesized traffic flow segment (blue) and its
adjacent traffic flow segment (red).

Then, our initialization algorithm will automatically de-
termine other vehicles’ states based on traffic car-following
rules [5] and vehicle kinematics. This is done by assigning
a random velocity value from the input sample set Ts while
maintaining a safe gap between vehicles.

This initialization process makes our method totally
different from the patch-based populating method [8]. Our
method can generate realistic traffic flows for the virtual
roads without any trajectory stitching traces, since addi-
tional stitching algorithms are not needed to merge two
trajectory flow segments into a longer one.

U

(a) (b) (c)

U

Ugapnf gapnl

gapol

gapnl

gapol

gapnl

Fig. 5. An illustration of lane-changing process of vehicle U and its
position relationship with its surrounding vehicles. (a) At the beginning
of the lane changing. (b) In the middle of the lane changing. (c) At the
end of the lane changing.

The lane changing behavior is detected and marked
when initializing the position and velocity of a vehicle.
According to the safety criteria in the lane-change model
by Kesting et al. [13], lane changing takes place if the
distances between a vehicle and its neighboring vehicles
are large enough for a safe lane changing. As illustrated
in Fig. 5(a), we use a simplified criterion for the vehicle U’s
safe lane changing, that is, the distances between U and U’s
neighboring vehicles gapol, gapnl and gapnf must be larger
than a minimal safe gap. The gap between two vehicles can
be straightforwardly computed using their positions.

4.2 Iterative Update Process

The initial estimate of the synthesized traffic flows is itera-
tively refined, guided by our introduced texture similarity
measurement—traffic texture energy. We define the traffic
texture energy with respect to a local neighborhood sim-
ilarity in a Markov Random Field. At each iteration, the
velocity of a vehicle is updated by finding the neighborhood
in the input trajectory samples that is most similar to its
neighborhood in the synthesized traffic flows.

To update the velocity vi,j of a vehicle i at frame j,
we design specific forms of traffic texture energy for the
following three conditions: the velocity in the forward direc-
tion vyi,j , the velocity perpendicular to the forward direction
vxi,j , and the lane changing scenario. We handle the lane-
changing behavior separately, since it is more complex than
acceleration/deceleration decision-making in a single lane.

In the simplest case, the vehicle i is not marked as a
lane changing vehicle during initialization. Its movement at
frame j is only related to its leader vehicle’s states at the
current frame j and its previous states at frame j-1, which
together form its neighborhood in our synthesis algorithm.

Traffic texture energy for updating vyi,j : For a texel
candidate in Ts, assuming the vehicle r at frame k, its
traffic texture energy Ey over its neighborhood is defined
as follows:

Ey = ωvE
y
v + ωbE

y
b + ωgE

y
g + ωsE

y
s , (1)

where the velocity similarity termEy
v measures the current

velocity similarity between the vehicles r and i, the velocity
consistency term Ey

b measures the similarity between the two
vehicles’ velocities at their respective previous frames, the
follower-leader gap energy term Ey

g measures the similarity
between their gaps with their own leader vehicles, and the
collision avoidances term Ey

s is introduced to preserve the
vehicle i’s safe gap with its leader vehicle in T . ωv , ωb, ωg ,
and ωs are normalized weighting parameters.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

The velocity similarity term Ey
v and the follower-leader

gap energy term Ey
g are designed to ensure the synthesized

traffic flows have a similar motion pattern with the input
traffic flow samples, defined in Eq. 2 and Eq. 3, respectively.

Ey
v =

∥∥∥vyi,j − vyr,k∥∥∥
2
, (2)

Ey
g = ‖di,j − dr,k‖2 . (3)

In the above equations, vyi,j and vyr,k denote the forward
velocity of the vehicle i at frame j in the synthesized traffic
flows T , and that of the vehicle r at frame k in the input
samples Ts, respectively; di,j and dr,k denote the distance
gap between the vehicle i and its leader vehicle at frame
j in T , and the distance gap between the vehicle r and its
leader vehicle at frame k in Ts, respectively.

The velocity consistency term, Ey
b , is introduced to en-

sure the motion continuity, defined in Eq. 4.

Ey
b =

∥∥∥vyi,j−1 − v
y
r,k−1

∥∥∥
2
, (4)

where vyi,j−1 and vyr,k−1 are the forward velocities of the
vehicles i and r at their previous frames, respectively.

Collision avoidances are realized through the introduc-
tion of Ey

s . Suppose vyr,k is assigned to vyi,j for updating the
position of the vehicle i in T , we need to make sure that
the vehicle i keeps a safe distance with its leader vehicle in
frame j, which leads to the following formula for Ey

s :

Ey
s =

∥∥∥yleaderi,j − (yi,j−1 + vyr,k∆t)− d0
∥∥∥
2
, (5)

where yleaderi,j is the position of i’s leader vehicle in the
forward direction at frame j, yi,j−1 is the position of the
vehicle i in the forward direction at previous frame, ∆t is the
time step, and d0 is the minimal safe gap between vehicles.

Traffic texture energy for updating vxi,j : Vehicles of-
ten need to make sideways movement (perpendicular to
the forward direction) for better observing surrounding
traffic conditions and avoiding obstacles. Previous traffic
simulation methods often model vehicle movement in this
direction by simply adding random fluctuations, which is ad
hoc by nature. To make the synthesized traffic flows more
resemble real-life traffic flows, we search for the most sim-
ilar neighborhood in Ts to update vxi,j . The corresponding
texture energy Ex is defined as follows:

Ex = ωvE
x
v + ωbE

x
b + ωlE

x
l , (6)

where ωv , ωb and ωl are user-specified weights for differ-
ent terms,Ex

v andEx
b are defined in a similar way asEy

v and
Ey

b , respectively. The lane keeping term Ex
l is introduced to

measure the energy arising from the the vehicle i’s deviation
from the lane center, since vehicles must keep driving inside
the lane marks according to traffic laws and regulations.

Assume vxr,k is assigned to vxi,j to update vehicle i’s
position in the sideways direction, Ex

l is defined as follows:

Ex
l =

∥∥xi,j−1 + vxr,k∆t− pml

∥∥
2
, (7)

where xi,j−1 is the position of the vehicle i in the sideways
direction at frame j-1, pml denotes the center position of the
lane. Here we assume drivers typically prefer to drive their
vehicles close to the lane center as much as possible.

Lane changing conditions: As illustrated in Fig. 5, a
vehicle’s lane changing process can be divided into three
phases:

(1) The vehicle has the intention to switch to an adjacent
lane, but it still stays in the current lane at that time
(Fig. 5(a)).

(2) The vehicle is in the middle of two involved lanes
(i.e., the old lane and the new lane) for lane changing
(Fig. 5(b)).

(3) The vehicle has arrived the target lane, but the lane
changing process has not finished, which is illus-
trated in Fig. 5(c).

When updating vyi,j , we need to determine which phase
the vehicle is at, since vehicle movements at different phases
are different. This also leads to different texture neigh-
borhood compositions and different traffic texture energy
components. In this work, we assume that the vehicle’s
movement in the forward direction at the phases (1) and
(3) is the same as driving in a single lane. So, accordingly,
the definition of traffic texture energy for updating vyi,j can
be the same as Ey in Eq. 1.

At the above phase (2), however, the vehicle is between
the two lanes. Besides the influence of the vehicles in its
old lane, its own movement in the forward direction is
also affected by the leader vehicle in the new lane. When
computing the texture energy for updating vyi,j , we add an
additional energy term Ey

n into Eq. 1, to ensure the safety of
lane changing. So, the traffic texture energy Ey for the phase
(2) has a new form shown in Eq. 8:

Ey = ωvE
y
v + ωbE

y
b + ωgE

y
g + ωsE

y
s + ωnE

y
n, (8)

Ey
n =

∥∥∥yt leader
i,j − (yi,j−1 + vyr,k∆t)− d0

∥∥∥
2
, (9)

where ωn is the weight for Ey
n. Ey

n is computed using Eq. 9,
which is similar to Eq. 5. Here, yt leader

i,j is the position of i’s
leader vehicle in the new lane in the forward direction.

Since there does not exist the restriction of keeping the
vehicle’s sideways movement in a single lane during the
lane changing process, the neighborhood for updating vxi,j
is only composed of its previous states. Therefore, the cor-
responding traffic texture energy Ex can be simply defined
as:

Ex = ωvE
x
v + ωbE

x
b . (10)

Using the above defined texture energy functions, we
can find the best matched texel in the input traffic flow
samples to update each vehicle’s states in the synthesized
traffic flows. This procedure is performed iteratively to
decrease the total traffic texture energy until a user-specified
maximum of iterations are reached. Moreover, by specifying
the leader vehicles’ states or the leader-follower relation-
ships, our method can generate some emergent patterns of
traffic flows such as jams and unstable, stop-and-go patterns
of traffic flows (Fig. 6), or the evolving of traffic flows when
meeting traffic-light signals (Fig. 2(b)). At the end, we can
generate a variety of realistic, natural traffic flows based on
input traffic samples.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 6. An example of synthesized traffic flows by our method to show
jams and unstable, stop-and-go patterns of traffic flows.

cage

subcages

trajectories

triangulation

cage

[Kim et al. 2014]Our method

triangulation

...

...

Fig. 7. Cage construction using Kim et al’s method [11] (the blue part)
and our method (the yellow part). In our method, a cage is divided into
several subcages for computing the new positions of vehicle trajectories
after deformation. The number of the subcages equals to the number of
lanes in the input vehicle trajectories.

5 CAGE-BASED TRAFFIC FLOW REGISTRATION

After a new set of vehicle trajectories are synthesized, then
we need to fit them to virtual roads properly. To tackle this,
we introduce a cage-based automatic registration scheme to
accurately place the synthesized vehicle trajectories onto the
target roads.

Inspired by the recent crowd editing method [11], we
also employ a cage to enclose the vehicle trajectories. By
deforming the cage to match with the shape of the road,
the trajectories of multiple vehicles can be deformed and
fitted to the road in a coordinated manner. However, if we
directly use an arbitrarily concave polygon as the cage form,
as in the work of [11], for traffic flow registration, it would
be difficult to deform and strictly align such an irregularly
shaped cage to the regularly shaped road (refer to Fig. 7 for
an illustration). To ensure traffic flows strictly reside within
the road boundaries, we define a specific cage structure.
Moreover, we design a few traffic-specific constraints for
cage deformation to preserve the characteristics of the input
traffic flows as much as possible.

5.1 Cage Construction and Representation

For each set of input vehicle trajectories, its target road
information can be easily obtained, including the road
structure (expressed as the boundary marker points), the
number of lanes, and the road length/width. The outer
boundaries of the cage can be constructed based on the road
information, by establishing the mapping between vehicle
trajectories and their current road. As shown in Fig. 7, we

construct a cage as follows: First, the four corner points
of the cage are fixed to exactly match with the width and
position of the road. Then, based on these corner points,
more cage vertices are created via sampling according to the
marker points on the road boundaries to ensure smooth cage
deformation. Specifically, after the outer boundaries of the
cage are determined, its interior region is tessellated using
constrained Delaunay triangulation [34]. We add splitting
points (gray points in Fig. 7) between lanes in the interior
region of the cage, in order to ensure vehicle trajectories
always stay within their own lanes, and the lanes always
maintain their relative widths, without local extrusions dur-
ing the deformation.

Vehicle trajectories inside the cage are represented by
mean value coordinates (MVCs) [35] with respect to the
cage vertices. The computed MVCs are fixed during the de-
formation process. However, using a single cage to deform
the trajectories of all the vehicles cannot robustly keep each
trajectory in its original lane during the deformation, which
may cause vehicle collisions and lane departure in anima-
tion. So, we introduce a subcage for the vehicle trajectories
in each lane. Fig. 7 shows two subcages for a set of two-lanes
vehicle trajectories.

Given the cyclically-defined subcage boundary vertices
V = {v1,v2, ...,vm}, the MVCs of pk (a point on a vehicle
trajectory), {λ1k, λ2k, ..., λmk }, are defined as follows:

λik =
ωi∑m
j=1 ωj

, ωi =
tan (φi−1/2) + tan (φi/2)

‖pk − vi‖
, (11)

where φi is angle ∠vi+1,pk,vi in the cage, andm is the total
number of cage vertices.

Then, the location of the point can be described as
a weighted linear combination of the subcage boundary
vertices. When the cage vertices are changed, the updated
position of pk, denoted as p̂k, is computed as follows:

p̂k =
m∑
i=1

λikv̂i, (12)

where {v̂1, v̂2, ..., v̂m} are the updated subcage boundary
vertices.

5.2 Traffic Positioning via Cage Deformation

Different from the interactive manipulation of human
crowds, traffic positioning challenges us to automatically
deform the cage to match with an arbitrary road section. We
use a cage-based automatic registration scheme to achieve
this. Specifically, we formulate the deformation of the tri-
angular cage mesh as an as-rigid-as-possible mesh defor-
mation [36]. In this deformation process, several vertices
on the cage boundaries are first specified to match with
certain sampling points on the road. These vertices are used
as the control points for deformation, and then the other
vertices on the cage mesh are manipulated based on the
as-rigid-as-possible deformation formula. Moreover, a set of
constraints are enforced in the deformation formula, which
can be divided into two types: soft and hard constraints.
A soft constraint is included as a term in the deformation
energy function, while a hard constraint needs to be exactly
satisfied.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Original vehicle trajectory
Length-preserving
 constraint(a)

(b)

(c) Trajectory stretch

Fig. 8. Cage-based traffic flow registration with the soft constraints alone
may lead to the stretching of vehicle motion. (a) The original vehicle
motion. (b) The deformed result by our approach with the hard length-
preserving constraint. (c) The deformed motion with the soft constraints
alone.

Original vehicle trajectories

 with the width-preserving
 constraint

 without the

width-preserving

 constraint

(b)(a) (c)

Fig. 9. Without the width-preserving constraint, the deformed vehicle
trajectories may not always stay in the same lanes as the original vehicle
trajectories. (a) The deformed trajectories without the width-preserving
constraint. (b) The original vehicle trajectories. (c) The deformed vehicle
trajectories by our approach with the width-preserving constraint.

Soft constraints: Soft constraints are mainly designed
to ensure that the cage deformation is as rigid as possible
and the control points are matched with the sample points
on the road as closely as possible, which leads to two
corresponding energy items: the cage deformation energy
term, ED , to measure the cage mesh distortion, and the
control point error term, EC , to describe the matching error
between the control points and the sampling points on the
road. These two soft constraints can be satisfied by solving
an energy minimization problem, in which the objective
function is written as ED + ωcEC . Here ωc is the weight
for Ec.

ED is designed to ensure the cage mesh deformation
as rigid as possible, which sums up the local deformation
energy over each triangle in the cage mesh to compute the
global energy [11], [37]:

ED =
T∑

t=1

2∑
i=0

cot(θti)
∥∥(v̂t

i − v̂t
i+1)−Rt(v

t
i − vt

i+1)
∥∥2,

(13)
where T is the total number of triangles in the cage mesh,
vt
i , vt

i+1, v̂t
i and v̂t

i+1 are the locations of the i-th and (i+1)-
th vertices in t-th triangle before and after deformation, re-
spectively, and Rt is the estimated rotation matrix between
the original t-th triangle and the deformed t-th triangle.
Here, cot(θti) is the per-edge weight for compensating non-
uniform triangle shape, in which θti is the angle opposite to
the edge (vt

i ,v
t
i+1) in the t-th triangle.

EC is defined as follows:

EC =
C∑

c=1

‖v̂c − rc‖2 , (14)

where C is the total number of control points, v̂c and rc
are the deformed position of the c-th control point and the
position of the corresponding road sampling point.

Hard constraints: Using the as-rigid-as-possible mesh
deformation with the above soft constraints alone may lead
to undesired results in the deformed traffic flow animation,
such as the stretching of vehicle motion (Fig. 8) and the
mixing of the trajectories in different lanes (Fig. 9). So, it is
necessary to preserve certain features of the vehicle trajecto-
ries during the deformation. In this work, we introduce two
traffic-specific hard constraints for this purpose.

First, we add a length-preserving constraint to preserve the
cage’s original length, because cage stretching or squeezing
may directly lead to the undesired change of the vehicles’
speeds or even vehicle collisions. The increased (or de-
creased) length of deformed trajectories makes the vehicles
to move faster (or slower) than their original speeds (refer to
Fig. 8). For example, the vehicles may have to move faster
at some time intervals on the deformed trajectories while
move slower on other intervals, or their velocities may be
even much faster than the allowed maximum speed of the
road. Such an irregular speed change is usually undesired
in traffic flow animation. Our length-preserving constraint
ensures the cage will not be stretched or squeezed during
the deformation, and the vehicles in the deformed traffic
flows move with their original speeds. This constraint can
be expressed as follows:

k−1∑
i=1

(‖v̂i+1 − v̂i‖ − ‖vi+1 − vi‖) = 0, (15)

where k is the number of vertices on one side of the cage
boundaries. Since the cage shape is symmetrical, we can
easily infer k = m/2.

Second, we introduce a width-preserving constraint to en-
sure the deformed vehicle trajectories stay in the same lanes
as the original vehicle trajectories. Even though our subcage
mechanism is designed to maintain the vehicles’ relative
formation and separate the trajectories into different lanes,
the deformed vehicle trajectories can still lead to potential
collisions or an insufficient clearance between vehicles, as
shown in Fig. 9. Hence, the width-preserving constraint,
defined below, is introduced to prevent such artifacts.

‖v̂i+k − v̂i‖ − ‖vi+k − vi‖ = 0, i = 1, 2, ..., k. (16)

We employ an alternating least-square optimization al-
gorithm [37] to minimize ED + ωcEC with the above two
hard constraints, where V̂ and {Rt} are unknowns. As
an example, our cage-based traffic registration method can
work well for large-scale deformations such as a curvy road
in Fig. 2(a).

6 EXPERIMENTAL RESULTS AND EVALUATIONS

To demonstrate our method, we genetrated different density
traffic flows on a few virtual road networks. Fig. 2 shows
snapshots of our synthesized traffic flows in different types

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a)

(b)

(c)

1th frame 90th frame 160th frame 250th frame

1th frame 90th frame 160th frame 250th frame

1th frame 90th frame 160th frame 250th frame

Fig. 10. Snapshots of the generated traffic flows on virtual road networks from the driver’s view: (a) with the ground-truth data, (b) using the IDM
model [7], and (c) using our method.

of road networks. Fig. 10 shows the visual comparisons
among our method, the ground-truth data, and the IDM-
based simulation method [7] from the driver’s view (anima-
tion comparisons are enclosed in the supplemental video).
We can see that the vehicles simulated by our method show
a variety of acceleration/deceleration patterns similar to
those in the ground-truth data, while the vehicles simulated
by the IDM-based method tend to keep similar gaps with
their neighboring vehicles.

The input vehicle trajectory set can be any vehicle trajec-
tory data, either acquired via various sensors or video-based
tracking, or even vehicle trajectory data synthesized by
other methods. In our experiments, the input samples were
extracted from the Next Generation Simulation (NGSIM)
program [38], where the vehicle trajectories are acquired
from multiple cameras installed along the road. Therefore,
in this work we consider the NGSIM traffic flow data as
the ground-truth data. The original trajectory data in the
NGSIM dataset exhibits certain noise artifacts. Therefore, we
pre-processed all the trajectories before using a filter [39].
Note that, since low-frequency noise or left/right bias can-
not be perfectly separated from irregular vehicle movements
via filtering, they may still be kept in the filtered dataset. To
this end, in our experiments, the used traffic flow samples
were spatio-temporal segments with the duration in the
range of 20 to 300 frames, with the number of vehicles in
the range of 5 to 210, and with the number of lanes in the
range of 2 to 4. As shown in the demo video, our synthesized
results reproduced not only the original vehicle movement
patterns in the input sample data but also some non-ideal
behaviors (such as sudden start/stop and left/right bias)
that are also manifested in the filtered ground-truth data.

Parameter Value Description

ωv 3.2 weight for Ey
v and Ex

v

ωb 1.6 weights for Ey
b and Ex

b

ωg 0.81 weight for Ey
g

ωs [0.56, +∞) weight for Ey
s

ωn [0.56, +∞) weight for Ey
n

ωl 60 weight for Ex
l

d0 3 the minimal safe gap between vehicles

TABLE 1
Parameter values used in our experiments

6.1 Performance and Convergence

Table 1 summarizes key parameter values used in our
experiments. It is noteworthy that the values of ωs and
ωn depend on the distance gap between the vehicle and its
leader vehicle. A smaller gap implies larger weight values
for these two parameters; and vice versa. If the gap is
smaller than the minimal safe gap d0, the two parameters
are set to positive infinity.

0 4 8 12 16 20 24 28

20

60

100

0

Number of Iterations

Te
xt

ur
e

En
er

gy

40

80

X= 10
Y= 18.72

X= 1
Y= 76.81

X= 20
Y= 11.34

Fig. 11. Convergence of our traffic flow synthesis algorithm. The blue
line shows how the traffic texture energy of the synthesized results is
changed over iterations. The green vehicle within the yellow ellipses
have better car-following and lane-keeping behaviors when more iter-
ations are executed.

Runtime performance: Table 2 shows the runtime per-
formances of our method for synthesizing a set of new
vehicle trajectories and registering it to virtual roads. The
runtime performance of our synthesis method highly de-
pends on several parameter settings, including the vehicle
number and frame number in the synthesized traffic flows,
the vehicle number and frame number of the input trajec-
tory sample set and the iteration level of the algorithm. The
runtime of our vehicle trajectory synthesis process has an
approximately linear relation to each of these parameters.
The runtime of our cage-based registration process mainly
depends on the subdivision level of the cage mesh, which is
also shown in Table 2. All the reported times were obtained
on a 64bit desktop machine with a 3.30GHz Inter Xeon CPU
E3-1230 v3 processor and 8GB memory.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

synthesized trajectories input trajectory samples iteration
number

synthesis
time

(second)

cage
triangles
number

registration
time

(second)

total
time

(second)
vehicle
number

frame
number

lane
number

vehicle
number

frame
number

lane
number

8 50 2 8 20 2 1 0.001 64 0.008 0.009
11 100 2 9 50 2 10 0.08 132 0.02 0.10
50 400 3 18 100 2 20 13.07 798 0.56 13.63
67 700 4 39 200 3 30 210.82 1864 2.31 213.13

TABLE 2
Runtime statistics of our method

Convergence of our synthesis algorithm: In our experi-
ments, all the generated traffic flows were converged within
30 iterations. The convergence is reflected by the decreasing
of the traffic texture energy to a steady state. In Fig. 11,
we plot how the traffic texture energy of the synthesized
traffic flows is decreased over iterations when we applied
our method to populate a simple straight road with two
lanes. As shown in this figure, the traffic texture energy is
quickly decreased when more iterations are executed. In this
figure, we also show the snapshots of the synthesized traffic
flows at iteration #1, iteration #10, and iteration #20. As more
iterations are executed, we can see the synthesized traffic
flows have more realistic car-following and lane-keeping
behaviors.

6.2 Comparison and Validation

In order to evaluate the effectiveness of our approach, for
the same set of test virtual roads, we generated traffic flows
by three different methods: (1) the ground-truth (i.e., the
NGSIM traffic flow data), (2) our method, and (3) one of the
latest developments of the IDM model [7].

The reasons we choose to compare our method with
the IDM-based simulation method, instead of other clearly
related previous works in traffic simulation including traf-
fic simulation models [4], [7], [40] and traffic reconstruc-
tion method [15] are: In our comparison user study, the
comparison with simulation is aimed to compare the syn-
thesized microscopic traffic details such as the accelera-
tion/deceleration and lane-changing behaviors. Sewall et
al.’s continuum traffic [4] cannot generate detailed motions
of vehicles. The hybrid simulation method [40] controls each
vehicle’s detailed motion by an agent-based car-following
method [6] that is an extension of IDM. In addition, Wilkie
et al’s traffic flow reconstruction work [15] estimates the full
states of the traffic flows from sparse sensor measurements,
which is quite different from our traffic populating method.
Therefore, we choose Shen et al.’s work [7], one of the latest
developments of IDM, for our comparison user study. For
the sake of a fair comparison, the initialization of the IDM-
based method [7] is the same as that of our method. The
used parameter values in the IDM-based method, including
the average velocity, the maximum acceleration, the mini-
mum deceleration, and the minimum gap, were calibrated
by first fitting the IDM model to the NGSIM traffic flow
data, and then they were further diversified by adding ran-
dom variations. It is noteworthy that the simulation results
by our implementation are consistent with those provided
by the authors of the IDM model [41].

Paired comparison user studies: For each test virtual
road, we generated three different traffic flow animations

using the above three different approaches. Then, we per-
formed paired comparison user studies to evaluate the
comparative realism between any two of the three methods.
We chose the paired comparison methodology [42] for our
user studies due to its proven effectiveness. Its basic idea
is, instead of explicitly rating visual stimuli, participants
are asked to select the perceptually better one between two
visual stimuli (a pair). As noted by Ma and Deng [43], in
a paired comparison study, the participants can avoid to
make forced, inaccurate perception decisions, e.g., assign a
subjective and quantitative rating to each stimulus. Instead,
they just need to pick the perceptually better one between
two visual stimuli (a pair), which increases the accuracy and
robustness of the experiment outcomes.

We chose 7 test virtual road scenes for our studies. For
each test scene, we generated 3 traffic simulations using the
above three different methods. Then, for each traffic simu-
lation, we rendered it using two different camera views: the
bird’s eye view, and the driver’s view. In the bird’s eye view, we
render the traffic animation from the view of a bird; while at
the driver’s view, we put a virtual camera at a fixed position
in a moving vehicle (i.e., approximating the driver’s view)
and render the corresponding traffic animation. The main
reason for including the driver’s view in our studies, besides
the conventional bird’s eye view, is that, most people are
much more familiar with real-world traffic flows from the
driver’s view, other than from the bird’s eye view. Therefore,
we argue that conducting a paired comparison study with
the driver’s view would produce more sound experiment
outcomes. To the end, we produced a total of 42 traffic
animation clips as the stimuli in our studies (7 scenes ×
3 methods × 2 views). Based on the 42 animation clips,
we further formed 42 pairs for our comparison studies.
Specifically, for each test scene, we obtained 3 pairs (ground-
truth versus our method, our method versus IDM, and
ground-truth versus IDM) for the bird’s eye view study (a
snapshot of the bird’s eye view study is shown in Fig. 12(a)),
and similar 3 pairs for the driver’s view study (a snapshot
of the driver’s view study is shown in Fig. 12(b)).

We recruited 37 participants to participate in our paired
comparison studies. All the participants are graduate stu-
dents in a university, whose ages are in the range of 20
to 30, with normal visions. They were asked to select the
more realistic one between the two animation clips in a
pair. Besides, the participants were allowed to select the
undecided option if they cannot decide which clip is per-
ceptually better. To counterbalance the order of the visual
stimuli, the comparison pairs were displayed in a random
order for each participant. The participants can choose to
play the two animation clips in a pair one after another (do
not need to play them simultaneously), and they can view

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(a) (b)

Fig. 12. Snapshots of the bird’s eye view study (a) and the driver’s view study (b).

16 7 14 24 7 6 9 8 20Scence 1

Ours VS. Real Data Ours VS. IDM IDM VS. Real Data

14 10 13 30 3 4 5 1 31

12 2 23 27 10 8 3 26

7 11 19 21 9 7 4 6 27

9 10 18 20 9 8 9 3 25

12 5 20 32 2 3 8 1 28

13 11 13 29 1 7 7 3 27

Scence 2

Scence 3

Scence 4

Scence 5

Scence 6

Scence 7

83 56 120 183 31 45 50 25 184Total Votes
p=0.076 p=0.005 p=0.001

(a)

25 5 7 32 1 4 4 1 32Scence 1

Ours VS. Real Data Ours VS. IDM IDM VS. Real Data

7 6 24 32 1 4 21 34

20 6 11 6 5 26

15 5 17 33 13 8 3 26

14 6 17 28 1 8 8 2 27

9 9 19 34 3 3 34

2 11 24 28 4 5 5 2 30

Scence 2

Scence 3

Scence 4

Scence 5

Scence 6

Scence 7

92 48 119 212 13 34 36 14 209Total Votes
p=0.495 p=0.001 p=0.001

25 5 7

(b)

Fig. 13. The experiment outcomes of the bird’s eye view study (a) and the driver’s view study (b). Black boxes at the left side and white boxes at
the right side indicate the total number of times when the participants voted the results by the corresponding method. Gray boxes in the middle
indicate “undecided choices” (i.e, perceptually equivalent). The symbol ? indicates the computed statistical significance according to a two-tailed
independent one-sample t-test with p-value < 0.05.

the clips for unlimited times before make their decisions.
(1) The bird’s eye view study: The experiment outcomes

of the bird’s eye view study are shown in Fig. 13(a). Besides
the votes for each test scene, we also show the information
of the total votes in this figure. As clearly seen in this
figure, our approach gained significant more votes than the
IDM method, while the ground-truth method (real data)
outperformed both our method and the IDM method, not
surprisingly. To quantify the statistical significance of the
voting outcomes, we also performed a two-tailed indepen-
dent one-sample t-test and computed the corresponding p-
values (reported in Fig. 13(a)). In this study, our method is
statistically significantly better than the IDM method even
if the significance level is set to 0.01, while the ground-
truth method cannot claim its statistical significance over
our method, with the p-value = 0.076.

(2) The driver’s view study: The experiment outcomes
of the driver’s view study are shown in Fig. 13(b). The out-
comes are consistent with those of the bird’s eye view study.
However, in the driver’s view study, the difference between
our method and the IDM method is further widened (e.g.,
the p-value goes down from 0.005 to 0.001), as shown in
Fig. 13(b). Meanwhile, the statistical difference between the
ground-truth method and our method is less obvious, with
the p-value going up from 0.076 to 0.495. These results show
that from the driver’s view, our method can synthesize
traffic flows that are highly similar to the ground-truth
data, and it is statistically significantly better than the IDM
method. To understand the outcome difference between
the bird’s eye view study and the driver’s view study,

we conducted informal post-study interviews with a few
selected participants. Majority of their feedbacks point to
that, in the driver’s view study, it is easier for them to vi-
sually notice those less regular movements of vehicles; they
typically judged the vehicles with less regular movements
more realistic.

Quantitative validation: In addition to the above paired
comparison studies, we also conducted a quantitative val-
idation among our method, the NGSIM dataset, and the
IDM-based method. For the results by each method, we
calculate the following two measurement distributions: i)
the distribution of the vehicle velocities, and ii) the distribu-
tion of the gaps between vehicles. The comparison results
are illustrated in Fig. 14. As clearly indicated in this figure,
compared to the IDM-based method, the results generated
by our method have more similar distributions with the
NGSIM dataset (i.e., real-data in this figure) in terms of both
velocity and the gap between vehicles. This indicates that
the synthesized traffic flows by our method can capture
more statistical characteristics of the real-world data than
the traditional IDM-based method.

7 CONCLUSION

We introduce an effective and scalable method to generate
realistic traffic flows on virtual roads, given a limited set
of traffic flow samples. To validate the effectiveness of
our approach, we conducted two paired comparison user
studies to validate the effectiveness of our approach. The
experiment outcomes show that our approach is able to

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Velocity (m/s)

Pr
ob

ab
ili

ty
 D

en
si

ty
Real-data
Our method
IDM

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

Gap (m)

Pr
ob

ab
ili

ty
 D

en
si

ty

Real-data
Our method
IDM

Fig. 14. Discrete probability density distributions of the vehicle velocities
and the gaps between vehicles among our method, the NGSIM dataset
(i.e., the real-data), and the IDM-based method.

produce statistically significantly better results than the state
of the art microscopic simulation based method (i.e., the
IDM model), and the results by our approach is reasonably
close to the ground-truth traffic flow data (i.e., the NGSIM
traffic data).

Collision avoidance has always been a challenging prob-
lem in crowd simulations. Since microscopic traffic rules
(e.g., a safe gap between vehicles) are incorporated into our
traffic texture energy metric, our method can guarantee ve-
hicles’ safe driving without collisions. Moreover, in our ve-
hicle trajectory registration process, our introduced subcage
mechanism and the two traffic-specific hard constraints for
deformation also prevent the potential collisions between
vehicles in the registered traffic flows.

The traffic behavior can be very complex when meeting
road splitting and merging. Handling road splitting and
merging is one of the limitations of our current work. As
an alternative solution, a hybrid strategy can be adopted
for handling road splitting and merging, that is, combining
our data-driven method with agent-based techniques such
as IDM. Indeed, similar hybrid strategies have been success-
fully used in Wilkie et al.’s traffic flow reconstruction work
[15].

The process of creating new vehicle trajectories in our
method can be implemented as an offline pre-computation
task given the basic information of the target virtual roads,
or can be called online before our cage-based automatic
traffic flow registration process. However, it still cannot pop-
ulate large-scale road environments at an interactive rate on
an off-the-shelf computer, which is one of the limitations
of our approach. In our vehicle trajectory synthesis process,
significant computational time is spent for searching all of
the input trajectory flow samples for each vehicle’s state
update during each iteration, which is less efficient. In the
future, we plan to investigate GPU-accelerated or parallel
computing schemes, or fast texture synthesis algorithms to
speed up our current approach.

Another limitation of our current approach is that, in the
real-word drivers may have different driving behaviors on
roads with different shapes, such as making a deceleration
decision at the corners of the road; however, our cage-based
registration process does not consider such factors, and it
just deforms the vehicle trajectory’s shape while preserving
its original motion pattern as much as possible. In addition,
our approach cannot handle the potential interaction be-
tween vehicles and other moving objects (e.g., pedestrians,

moving obstacles) on virtual roads.
In the future, we plan to extend our method to handle a

large variety of traffic behaviors, such as the dynamic per-
ception of surrounding environments and taking individual
drivers into consideration (that is, add new terms to char-
acterize different drivers to our synthesis formula). Adding
driver characterization to our current synthesis framework
is challenging. The main reason is, in order to add new
terms for driver characterization, we first need to somehow
extract the driver factors from the ground-truth traffic flow
data, which is not currently available in many recorded
traffic flow datasets, unfortunately. We are also interested in
integrating our approach with various crowd editing tools
and algorithms (e.g., [11]). In this way, users can flexibly
refine the quality of traffic flows directly synthesized by our
approach.

ACKNOWLEDGMENTS

Xiaogang Jin was supported by the National Natural Science
Foundation of China (Grant no. 61272298). Zhigang Deng
was supported by the Joint Research Fund for Overseas
Chinese, Hong Kong, and Macao Young Scientists of the
National Natural Science Foundation of China (Grant No.
61328204) and the National Science Foundation of United
States (Grant no. 1524782).

REFERENCES

[1] M. J. Lighthill and G. B. Whitham, “On kinematic waves. ii. a
theory of traffic flow on long crowded roads,” in Proceedings of
the Royal Society of London. Series A. Mathematical and Physical
Sciences, 1955, pp. 317–345.

[2] A. Aw and M. Rascle, “Resurrection of second order models of
traffic flow,” SIAM Journal of Applied Math, vol. 60, no. 3, pp. 916–
938, 2000.

[3] H. M. Zhang, “A non-equilibrium traffic model devoid of gas-like
behavior,” Transportation Research Part B, vol. 36, no. 3, pp. 275–290,
2002.

[4] J. Sewall, D. Wilkie, P. Merrell, and M. C. Lin, “Continuum traffic
simulation,” CGF, vol. 29, no. 2, pp. 439–448, 2010.

[5] D. L. Gerlough, “Simulation of freeway traffic on a general-
purpose discrete variable computer,” PhD thesis, UCLA, 1955.

[6] M. Treiber and D. Helbing, “Microsimulations of freeway traffic
including control measures,” Automatisierungstechnik, vol. 49, pp.
478–484, 2001.

[7] J. Shen and X. Jin, “Detailed traffic animation for urban road
networks,” Graphical Models, vol. 74, no. 5, pp. 265–282, 2012.

[8] B. Yersin, J. Maı̈m, J. Pettré, and D. Thalmann, “Crowd patches:
Populating large-scale virtual environments for real-time applica-
tions,” in I3D’09. ACM, 2009, pp. 207–214.

[9] M. Kim, Y. Hwang, K. Hyun, and J. Lee, “Tiling motion patches,”
in SCA’12. Eurographics Association, 2012, pp. 117–126.

[10] K. Jordao, J. Pettré, M. Christie, and M.-P. Cani, “Crowd sculpting:
A space-time sculpting method for populating virtual environ-
ments,” CGF, vol. 33, no. 2, pp. 351–360, 2014.

[11] J. Kim, Y. Seol, T. Kwon, and J. Lee, “Interactive manipulation
of large-scale crowd animation,” ACM Transactions on Graphics
(TOG), vol. 33, no. 4, p. 83, 2014.

[12] X. Lu, W. Chen, M. Xu, Z. Wang, Z. Deng, and Y. Ye, “Aa-fvdm: An
accident-avoidance full velocity difference model for animating
realistic street-level traffic in rural scenes,” Computer Animation and
Virtual Worlds, vol. 25, no. 1, pp. 83–97, 2014.

[13] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing
model mobil for car-following models,” Transportation Research
Record: Journal of the Transportation Research Board, vol. 1999, no. 1,
pp. 86–94, 2007.

[14] J. van den Berg, J. Sewall, M. Lin, and D. Manocha, “Virtualized
traffic: Reconstructing traffic flows from discrete spatio-temporal
data,” TVCG, vol. 17, no. 1, pp. 26–37, 2010.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

[15] D. Wilkie, J. Sewall, and M. Lin, “Flow reconstruction for data-
driven traffic animation,” ACM Trans. Graph., vol. 32, no. 4, pp.
89:1–89:10, 2013.

[16] Q. Chao, J. Shen, and X. Jin, “Video-based personalized traffic
learning,” Graphical Models, vol. 75, no. 6, pp. 305 – 317, 2013.

[17] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi, “Group motion
editing,” in ACM SIGGRAPH 2008 Papers, 2008, pp. 80:1–80:8.
[Online]. Available: http://doi.acm.org/10.1145/1399504.1360679

[18] M. Kim, K. Hyun, J. Kim, and J. Lee, “Synchronized
multi-character motion editing,” in ACM SIGGRAPH
2009 Papers, 2009, pp. 79:1–79:9. [Online]. Available:
http://doi.acm.org/10.1145/1576246.1531385

[19] E. S. L. Ho, T. Komura, and C.-L. Tai, “Spatial relationship pre-
serving character motion adaptation,” in ACM SIGGRAPH 2010
Papers. ACM, 2010, pp. 33:1–33:8.

[20] J. J. van Wijk, “Image based flow visualization,” ACM Trans.
Graph., vol. 21, no. 3, pp. 745–754, Jul. 2002.

[21] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” CGF, vol. 23, no. 2, pp. 203–221, 2004.

[22] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimiza-
tion for example-based synthesis,” ACM Trans. Graph., vol. 24,
no. 3, pp. 795–802, Jul. 2005.

[23] A. W. Bargteil, F. Sin, J. E. Michaels, T. G. Goktekin, and J. F.
O’Brien, “A texture synthesis method for liquid animations,” in
Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, ser. SCA ’06. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2006, pp. 345–351.

[24] V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and
M. C. Lin, “Texturing fluids,” Visualization and Computer Graphics,
IEEE Transactions on, vol. 13, no. 5, pp. 939–952, 2007.

[25] R. Narain, V. Kwatra, H.-P. Lee, T. Kim, M. Carlson, and M. C. Lin,
“Feature-guided dynamic texture synthesis on continuous flows,”
in Proceedings of the 18th Eurographics Conference on Rendering
Techniques, ser. EGSR’07. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, pp. 361–370.

[26] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped textures,” in
Proc. of SIGGRAPH’00, 2000, pp. 465–470. [Online]. Available:
http://dx.doi.org/10.1145/344779.344987

[27] I. Drori, D. Cohen-Or, and H. Yeshurun, “Fragment-
based image completion,” ACM Trans. Graph., vol. 22,
no. 3, pp. 303–312, Jul. 2003. [Online]. Available:
http://doi.acm.org/10.1145/882262.882267

[28] Y.-T. Yeh, K. Breeden, L. Yang, M. Fisher, and P. Hanrahan, “Syn-
thesis of tiled patterns using factor graphs,” ACM Transactions on
Graphics (TOG), vol. 32, no. 1, p. 3, 2013.

[29] L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in
example-based texture synthesis,” in Eurographics 2009, State of the
Art Report, EG-STAR. Eurographics Association, 2009, pp. 93–117.

[30] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in ICCV’99, vol. 2, 1999, pp. 1033–1038.

[31] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-
structured vector quantization,” in Proc. of SIGGRAPH’00. ACM
Press, 2000, pp. 479–488.

[32] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,”
ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 541–548,
2006.

[33] Y. Zhao, X. Jin, Y. Xu, H. Zhao, M. Ai, and K. Zhou, “Parallel
style-aware image cloning for artworks,” TVCG, vol. 21, no. 2, pp.
229–240, 2015.

[34] J. Shewchuk, “Triangle: Engineering a 2d quality mesh generator
and delaunay triangulator,” in Applied Computational Geometry
Towards Geometric Engineering. Springer, 1996, pp. 203–222.
[Online]. Available: http://dx.doi.org/10.1007/BFb0014497

[35] M. S. Floater, “Mean value coordinates,” Computer aided geometric
design, vol. 20, no. 1, pp. 19–27, 2003.

[36] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible
shape manipulation,” ACM transactions on Graphics (TOG), vol. 24,
no. 3, pp. 1134–1141, 2005.

[37] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,”
in SGP’07, 2007, pp. 109–116.

[38] “Next generation simulation,” http://ops.fhwa.dot.gov/traffican-
alysistools/ngsim.htm., 2013.

[39] C. Thiemann, M. Treiber, and A. Kesting, “Estimating acceleration
and lane-changing dynamics from next generation simulation
trajectory data,” Transportation Research Record: Journal of the Trans-
portation Research Board, no. 2088, pp. 90–101, 2008.

[40] J. Sewall, D. Wilkie, and M. C. Lin, “Interactive hybrid simulation
of large-scale traffic,” ACM Transactions on Graphics (TOG), vol. 30,
no. 6, p. 135, 2011.

[41] “Traffic-simulation.de: Ring road,” http://www.traffic-
simulation.de/, 2011.

[42] M. G. Kendall and B. B. Smith, “On the method of paired compar-
isons,” Biometrika, pp. 324–345, 1940.

[43] X. Ma and Z. Deng, “Natural eye motion synthesis by modeling
gaze-head coupling,” in IEEE VR, 2009, pp. 143–150.

Qianwen Chao is a Lecturer of Computer Sci-
ence at Xidian University (China). She earned
her Ph.D degree in Computer Science from the
State Key Laboratory of CAD&CG, Zhejiang Uni-
versity in 2016. Prior that, She received her
B.Sc. degree in computer science in 2011 from
Xidian University. Her main research interests
include crowd animation, cloth animation and
swarm micro-robotics.

Zhigang Deng is a Full Professor of Computer
Science at University of Houston.His research
interests include computer graphics, computer
animation, virtual human modeling and ani-
mation, and human computer interaction. He
earned his Ph.D. in Computer Science at the De-
partment of Computer Science at the University
of Southern California in 2006. Prior that, he also
completed B.S. degree in Mathematics from Xi-
amen University (China), and M.S. in Computer
Science from Peking University (China). Besides

the CASA 2014 general co-chair and SCA 2015 general co-chair, he
currently serves as an Associate Editor of Computer Graphics Forum,
and Computer Animation and Virtual Worlds Journal.

Jiaping Ren is a Ph.D candidate of the
State Key Lab of CAD&CG, Zhejiang University,
China. She received her B.Sc. degree in science
in 2013 from Zhejiang University of Technol-
ogy, China. Her main research interests include
crowd animation and insect swarm animation.

Qianqian Ye is a graduate student of the
State Key Lab of CAD&CG, Zhejiang University,
China. She received her B.Sc. degree in digital
media technology in 2014 from Zhejiang Univer-
sity. Her main research interests include crowd
animation and insect swarm animation.

SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Xiaogang Jin received the B.Sc. degree in com-
puter science and the M.Sc. and Ph.D degrees
in applied mathematics from Zhejiang Univer-
sity, P. R. China, in 1989, 1992, and 1995, re-
spectively. He is a professor in the State Key
Laboratory of CAD&CG, Zhejiang University. His
current research interests include digital geom-
etry processing, geometric modeling, 3D print-
ing, virtual try-on, insect swarm simulation, traffic
simulation, implicit surface modeling and appli-
cations, creative modeling, sketch-based model-

ing, and image processing. He received an ACM Recognition of Service
Award in 2015. He is a member of the IEEE and ACM.

