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Parallel Style-aware Image Cloning for Artworks
Yandan Zhao, Xiaogang Jin, Member, IEEE, Yingqing Xu, Hanli Zhao, Meng Ai, Kun Zhou

Abstract—We present style-aware image cloning, a novel image editing approach for artworks, which allows users to seamlessly insert
any photorealistic or artificial objects into an artwork to create a new image that shares the same artistic style with the original artwork.
To this end, a real-time image transfer algorithm is developed to stylize the cloned object according to a distance metric based on the
artistic styles and semantic information. Several interactive functions, such as layering, shadowing, semantic labeling, and direction
field editing, are provided to enhance the harmonization of the composite image. Extensive experimental results demonstrate the
effectiveness of our method.

Index Terms—non-photorealistic rendering, image editing, seamless cloning, image stylization, style transfer, GPU
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1 INTRODUCTION

IMAGE cloning is very important and useful in image
editing applications. It seeks to clone an object from

a source image into a target background to create a
seamless composite. Most of recent works (e.g., Poisson
image editing [1] and seamless image cloning [2]) have
focused on solving the color discrepancies between the
source object and target background along the cloning
region boundary. While these algorithms can generate
good results for real world images, they may create
undesirable results for artworks, especially if the source
and target regions are of inconsistent visual styles (see
Fig. 1(d)). Some methods can be used to correct the tex-
ture inconsistency between the source and target using
multi-scale techniques [3] and patch-based synthesis [4].
However, when inserting an object into an artwork, these
methods may still suffer from artifacts (Fig. 1(e)) because
objects and textures in the source and target are too
different.

In order to solve the above problem, texture transfer
techniques [5], [6], [7] can be used to stylize the photo
to match the artistic style of the artwork. However,
discoloration artifacts may exist by using these methods
because the semantic information of the cloned object is
not explored. Moreover, when editing an artwork, sys-
tem responsiveness is essential. We notice that the above-
mentioned methods use a scan-line order to perform
texture transfer, and are not suitable for a fast parallel
implementation.

In this paper, we present a style-aware image cloning
approach for artworks editing (see Figs. 1(b) and (c)).
Since our cloning algorithm employs rich image seman-
tics, it is able to simulate the styles of artists better.
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(a) Objects/Artwork (b) Result

(c) Our method (d) Poisson editing(e) Image melding

Fig. 1. Given some objects (a girl and a wolf) and a pastel
landscape drawing, our method creates a scene of Little
Red Riding Hood by seamlessly integrating the objects
into the given artwork. Top (left to right): (a) inputs; (b)
our result. Bottom: (c) close-up of our result; (d) Poisson
editing [Pérez et al. 2003]; (e) the image harmonization
application of image melding [Darabi et al. 2012].

The semantic information is obtained by some easy-
to-use interactive editing tools such as RepFinder [8],
layering, shadowing, semantic labeling, and direction
field editing. We formulate the artistic style transfer
with semantic information as an energy minimization
problem and solve it on the GPU for real-time editing.
We also perform a user study to compare our presented

0000–0000/00$00.00 c⃝ 2013 IEEE



SUBMITTED TO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Input

Interactive

Segmentation

Similarity Analysis

Output

Stylization

User Interaction

Processing Unit

Postprocessing

Preprocessing
O

R

A

Fig. 2. Schematic view of our style-aware image cloning framework. The green lines denote optional operations.

approach with prior works, verifying the usefulness and
effectiveness of our synthesis framework.

The main contributions of this paper are twofold.
First, we introduce a novel image editing framework for
seamlessly cloning an object from a source image into a
target artwork so that the composite looks harmonious
with consistent color, luminance, and internal texture.
Second, we develop a new distance metric function
which takes into consideration the luminance, texture,
direction, local coherence, and semantic information of
images, and solve it via a new parallel algorithm on the
GPU to achieve real-time performance.

2 RELATED WORK

Object cloning techniques have been extensively studied
in order to reduce the difference in illumination and
color between the cloned objects and the target image.
A successful method is proposed by Pérez et al. [1],
who introduce a variety of tools for seamless editing of
image regions based on solving Poisson equations with
Dirichlet boundary conditions. McCann and Pollard [9]
develop a GPU-based image editing approach in the
gradient domain by extending Poisson equations. They
introduce an edge brush coupled with special blending
modes to allow users with real-time local manipulations.
Farbman et al. [2] propose a mean-value coordinate-
based approach for seamless cloning of a source image
patch into a target image. Rather than solving a large
Poisson linear system, the value of the interpolation is
given by a weighted combination of values along the
boundary. The use of mean-value coordinates enables
real-time cloning of large regions and interactive cloning
of video streams. These methods effectively guarantee
seamless boundaries between the cloned objects and the
target image. However, when the styles between the
interiors and exteriors of an object are quite different, un-
natural compositions may arise. Xue et al. [10] compute
the statistical measures of images and improve the real-
ism of the composites by automatically adjusting these
measures. These approaches are all designed for photo-
realistic images. Recently, Sunkavalli et al. [3] present
an image harmonization framework for the blending

between objects and target images. A multi-scale pyra-
mid decomposition technique is employed to match
contrast, texture, noise, and blur of the images for the
production of harmonious composites. Unfortunately,
this method still fails to harmonize complex texture
styles which are common in non-photorealistic artworks.
Image melding [4] can be used for image cloning and
image harmonization by synthesizing a transition region.
However, it suffers from the same limitation as the
method of [3] when the source and target textures are
too disparate.

Style transfer approaches try to transfer visual appear-
ances between images based on feature-guided neigh-
borhood matching techniques. Color transfer is a general
form of color correction that transfers one image’s color
characteristics to another [11], [12], [13], [14].

Hertzmann et al. [5] explore the style transfer for the
textural aspects of non-photorealistic media and propose
a texture transfer framework called Image Analogies.
With the help of a pair of training images, the approach
automatically creates an analogous transferred result for
an input image. Bénard et al. [15] extend the Image
Analogies algorithm to create temporally coherent ani-
mation. Given an input photo and an artistic example
image, image quilting [16] can synthesize an artistic
result by stitching together small patches from the input
artistic example. With a training set of images, Drori et
al. [17] generate a new style by first adaptively parti-
tioning images into fragments in the training set and
then stitching together novel fragments. Ashikhmin [6]
presents a fast texture transfer approach by extending
the search space of the coherent synthesis. Lee et al. [7]
propose a directional texture transfer algorithm to ex-
press the directional effect based on the feature flows of
images. The output image obtained from the algorithm
expresses not only the style feature of the example
image but also the feature flow of the input image.
However, these approaches either fail to provide real-
time visual feedback or do not take semantic information
into consideration.

Some other techniques are also related to the work of
this paper. Fischer et al. [18] apply filtering-based styl-
ization techniques to generate augmented reality images
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Fig. 3. Illustration of propagating passes. (c) and (d) show the corresponding direction fields of (a) and (b) respectively.

for reducing the visual realism of both the camera image
and the virtual graphical objects. The non-photorealistic
rendering approach effectively improves immersion in
augmented reality. Zhao et al. [19] investigate the stroke
placement problem and present a method to parameter-
ize painterly rendering styles. Karsch et al. [20] propose a
method to realistically insert synthetic objects into exist-
ing photographs with only a small amount of annotation.
Their amazing results demonstrate that synthetic images
are confusable with real scenes, even for people who
believe they are good at telling the difference. The light
estimation technique of Lopez-Moreno et al. [21] is able
to recover complex lighting configurations in a single
image and this method shows convincing image cloning
results in photographs. These techniques motivate us to
develop a new framework for editing artworks blending
between objects by inserting objects from ubiquitous
photos.

3 FRAMEWORK OVERVIEW

As shown in Fig. 2, our framework takes an artistic
image A and the objects O to be cloned as input, and
generates a resultant image R with the user-desired
objects cloned.

Our approach begins with a preprocessing step which
tries to match the hue and the lightness of the photo-
graphic objects to the artwork. We decrease the ambient
difference between O and A by histogram matching and
reduce the number of O’s distinct colors by bilateral fil-
tering and luminance quantization [22]. Because the col-
ors of O and A can be quite different, A may not always
contain enough data to match O using RGB channels.
Hence, we convert A and O from RGB color space to
the YIQ color space and use the Y channel as luminance
for the following similarity analysis. Then, we formulate
a novel distance metric with style features and semantic
information in the similarity analysis step. Some user
interactions are optionally needed to get the sematic
information when dealing with occlusions, shadow cast-
ing, semantic labeling, and direction field editing. Before
the interaction, the artwork A is segmented into several
parts which represent different layers. Details of the
interactive editing tools are presented in Section 5. After
that, a stylization step is performed to harmonize the
cloned objects with the artistic image. A new parallel
stylization technique is developed to achieve real-time
feedback. Section 4 describes our artistic style transfer
technique in detail. Finally, in the postprocessing step

Algorithm 1 Artistic style transfer
1: Initialize the correspondence M by blocks in random
2: Compute the energy value E using Formula (1)
3: repeat
4: E′ = E
5: for each pixel p ∈ O do
6: find q′ ∈ A with minimal D(p,q′)
7: Update M(p) = q′

8: end for
9: Update E using Formula (1)

10: until (E′ − E)/E < τ
11: return M

we convert O (with updated Y channel) from YIQ color
space to RGB color space. Our framework provides two
ways to create the colored final result. One way is to
use the original color of O, which is used in most of our
examples, such as Fig. 1(b). The other way is to use the
color of A according to the map, such as the results in
Fig. 5(e) and Fig. 15. To guarantee seamless boundaries
between O and A the object mask is employed. The mask
is blurred with a Gaussian filter and then used for α-
blending.

4 ARTISTIC STYLE TRANSFER

4.1 Similarity Energy Minimization
The primary task of the artistic style transfer is to
establish the correspondence M that maps each pixel p
in O to a pixel q in A, i.e. M(p) = q. Based on the map,
we can render O using the pixels coming from A. The
resultant image R we expect contains not only the basic
structure information of O but also the detailed texture
information of A.

We define the energy function E as the sum of dis-
tances D(p,q) between each pixel p and its correspond-
ing pixel q. The energy function E is defined as:

E =
∑
p∈O

D(p,M(p)) (1)

where the distance D will be described in Subsection 4.2.
When p and M(p) are similar, their distance

D(p,M(p)) is small, and so does the energy E. In this
paper, we take the transfer process as the minimization
of the energy function E. Algorithm 1 shows the pseudo
code of our framework. To decrease the energy, we
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Fig. 4. Illustration of the direction alignment while search-
ing candidates of M(p). Without alignment we search
candidates via q1 according to M(p0) = q0. With align-
ment we rotate vector −−−→q0q1 with β degree in clockwise
which is the angle between vectors p0 and q0 (black
arrows), and then search candidates via q2 and rotate
the neighborhoods of q2 for neighbor matching (the dark
green region).

search more similar pixels q′ to update M(p) repeatedly.
The iteration continues until the reduction rate of the
energy is smaller than a threshold τ , which is set to 0.001
in all our experiments. The stylized result is obtained by
sampling the mapped colors from A. The evolution of
each iteration is illustrated in Fig. 3.

4.2 Distance Metric Definition

It is challenging to model artistic style features in
artworks. However, style feature plays a critical role
in generating artistic results for the cloned objects. In
this paper, we propose a compositional feature which
contains luminance, direction, texture, local coherence,
and semantic information. The luminance, direction and
texture features are measured between O and A. The
local coherence feature tries to keep the local coherent
appearance of R when the pixels of O are replaced by
those from A.

Luminance For a corresponding pixel pair, if their
neighborhoods are similar, the luminance difference be-
tween them is small. Ashikhmin [6] and Lee et al. [7]
utilize the sum of the following two parts to define the
luminance feature: the difference of neighborhood aver-
ages between O and A, and the difference of the standard
deviation of luminance of the L-shaped neighborhoods
in O and R. Our experiments show that the results,
regardless of inclusion of the second part, are similar. For
better performance, we define the distance of luminance
feature as the difference of mean luminance:

L(p,q) = ∥N(p) − N(q)∥ (2)

where N(p) and N(q) stand for the average of the
circular neighborhood of p and q, respectively.

Direction Most artworks have salient strokes strength-
ened by artists. These strokes are used to shape objects
and characterize artworks. To better emulate an artistic
style, the directions of the strokes in the cloned objects

should follow the direction field of O instead of A. The
directional texture transfer [7] expresses the directional
effect by adding a directional factor which relies on the
already synthesized neighborhoods in a scan-line order.
Different from their approach, the direction feature in
our framework is not added into the distance metric D
as a directional factor. Instead, the directional effect is
achieved by performing direction alignments. We em-
ploy the local structure estimation algorithm [23] to cal-
culate the direction fields of O and A. Alternatively, we
could employ the non-oriented MLS field algorithm [24]
to compute the direction field.

We illustrate the different correspondences with and
without alignment in Fig. 4. Let p0 and q0 be the
known seeds, p = p0 + (1,−1) and q1 = q0 + (1,−1)
be the corresponding neighboring pixels. In the case
without alignment, we can search the mapping of p
via q1 with the same relative coordinate (1,−1) in the
neighborhoods of p0 and q0, respectively. This is based
on the idea of coherence [25], [26]. In our alignment, we
perform necessary rotations before the feature matching
test. Let β be the angle between the direction vectors
of p0 and q0. We can find q2 by rotating −−−→q0q1 with β
degree in clockwise and we define q2 = ROT (q1, β).
Therefore, we can search M(p) via q2. We use a circu-
lar neighborhood to perform the luminance calculation
since the luminance in such a region is the same no
matter it is aligned or not.

Without loss of generality, we define the s-step neigh-
boring pixel of p as p1 = p + (i, j) where (i, j) denotes
the relative coordinate from p, s denotes the length of
the jump step and i, j ∈ {−s, 0, s}. The user can tune the
directional influence according to the style of an artwork
by using the spherical linear interpolation between q1

and q2. The candidate pixel q for updating the map of
p can now be determined by:

q1 = M(p − (i, j)) + (i, j) (3)

q =
sin((1 − u)β)

sin(β)
q1 +

sin(uβ)
sin(β)

ROT (q1, β) (4)

where u ∈ [0, 1] is the interpolation parameter. Smaller
values of u are set in examples of pointillism, watercolor,
and some types of oil painting without salient directional
strokes. Larger values are set in the examples of pencil
sketch, pastel drawing and crayon drawing. For the
pastel landscape drawing example shown in Fig. 1, we
set u = 1.0.

Texture The luminance feature fails to handle image
blocks with small luminance differences but different
textures. The texture feature is measured by the differ-
ence in the texture between the neighborhoods of p and
q.

Similar to the method by Qu et al. [27], we use
the statistical feature in Gabor wavelet domain [28] to
measure the texture feature. We first construct a vector
V using the mean and the standard deviation of the
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(a) (b) (c) (d) (e)

Fig. 5. We take an object to be cloned (a) and the artwork in Fig. 1(a) as input, discoloration artifacts may arise if
we stylize the cloned object using its own color (b). The stylized result using the colors in the crayon drawing without
semantic information cannot solve this problem (c). With semantic information obtained by finding the most similar
object (white region) (d), we can generate the result in (e).

magnitude of the transform coefficients with 2 scales and
4 orientations inside a 16 × 16 window:

V = (µ00, σ00, µ01, σ01, · · · , µ13, σ13) (5)

where µij and σij (i ∈ [0, 1], j ∈ [0, 3]) are the mean
and the standard derivation of the transform coefficients.
Then the distance of texture feature T is defined as the
difference of vector V:

T (p,q) = ∥V(p) − V(q)∥ (6)

Local coherence If two pixels in A are neighbors,
their mapped pixels in R are likely to be neighbors as
well. This property is called local coherence [25]. In the
coherent synthesis [25] and k-coherence search [26], the
coherence is preserved in a serial scheme. That is, the
candidates of pixels in R are selected according to the
pixels that have been synthesized in the neighborhood.
Different from them, because our synthesis scheme is
parallel and iterative, the pixels already synthesized are
always changing. In addition, the candidates of p come
from the shifted pixels respected to its immediate neigh-
bors in these methods. However, the candidates come
from the shifted pixels respected to its s-step neighboring
pixels in our parallel scheme. When the step s is large,
many pixels are skipped over and the coherence should
be further considered.

Therefore, we introduce a coherence item C to con-
strain our matching as follow:

C(p,q) =
1
n

∑
pij∈N(p)

min(∥qij − M(pij)∥, r) (7)

where N denotes the pixels of the neighborhood block,
n is the number of pixels of N , and r is the radius of
N . We set r = 2 in all experiments. The relationship of
local coherence between p and pij in O corresponds to
the relationship between q and qij in A, that is, they
have the same relative coordinate (i, j). The truncation
of distance by r is necessary because qij may be quite
far from M(pij).

(a) u = 0.0 (b) u = 0.5 (c) u = α2 = 0.0

(d) α2 = 0.0 (e) α2 = 1.0 (f) r = 4

Fig. 6. Effects of varying parameters. Each caption
specifies the modified parameter value from the default
ones: u = 1.0, α2 = 0.1, r = 2.

Semantics To guide synthesis [25], we take the se-
mantic information into consideration and employ it as
the weight of the aforementioned features. The semantic
feature W describes the semantic similarity between the
inserted object region and object regions in the artwork.
In previous methods [5], [29], the regions of A and O are
labeled and then constitute the label maps. The synthesis
is guided by adding comparisons between neighbors
from the label maps in the traditional neighborhood
matching. We directly use the semantic weight W for
each segmented region pair. W of all pairs are initialized
with 1.0. Usually, a user may edit an artwork by inserting
objects similar to the ones in the scene of the artwork.

Similar objects are expected to have similar appear-
ances in the resulting image. Therefore, we employ the
RepFinder algorithm [8] to find similar object regions by
using O as the template.

In addition, we find the most similar region by com-
paring the average color difference between their bound-
ary band matching regions and the object. The most
similar region is assigned with 0.001 to increase the
matching possibility. Take Fig. 5 for example, although
the cloned tree is stylized (see Fig. 5(b)), it is easy to find
the discoloration artifact. If we can color the cloned tree
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Fig. 7. Illustration of tile shifts. Half of the tile size shifts
in horizontal and vertical directions guarantee the local
coherence of boundary pixels.

with the color of the trees in the crayon drawing, the
cloning result will be more harmonious (see Fig. 5(e)).
However, we can only get Fig. 5(c) without semantic
matching where palpable artifacts are unavoidable. With
semantic matching, the cloned result with the style of the
trees in the artwork is more harmonious (see Fig. 5(e)).
Another example is the oil drawing shown in Fig. 9, the
apple is also semantically transferred from the one in the
artwork.

The final distance D can now be defined as:

D(p,q) = W (p,q)(L(p,q) + α1T (p,q) + α2C(p,q)) (8)

where α1 and α2 are used for the balance of the dis-
tances of the three features. Empirically, α1 = 0.005 and
α2 ∈ [0.005, 0.1] can produce satisfactory results in our
experiments.

Fig. 6 illustrates various effects by adjusting the pa-
rameters. Figs. 6(a) and (b) illustrate the effects of the
direction feature parameter u. Figs. 6(c) and (d) do
not take the local coherence into consideration whereas
Fig. 6(e) improves the performance with the local coher-
ence. Fig. 6(f) show the result by changing the size of
the neighborhood.

4.3 Parallel Stylization Scheme

The neighborhood matching scheme in Step 6 of Al-
gorithm 1 plays an important role in our approach.
Traditional texture transfer techniques [5], [16], [6], [7]
heavily rely on the scan-line scheme. Although they
employ a coarse-to-fine multi-resolution approach to
accelerate the convergence, the serial scanning makes it
slow. Lefebvre and Hoppe [30], [31] present a parallel
neighborhood-matching-based texture synthesis scheme.
The high-quality synthesis is attained on the GPU using
multi-resolution jittering together with coordinate up-
sampling and sub-pass correction. They use a fixed
neighborhood for each resolution level. Different from
them, we employ a parallel neighborhood matching
scheme which performs in the original finest resolution
to avoid the construction of image pyramids.

Our stylization scheme can be viewed as a variation
of the jump flooding algorithm [32]. This scheme prop-
agates quickly from each seed to neighboring samples
in logarithmic steps. It has been adapted by Barnes et

s= 4 s= 2 s= 1

Fig. 8. Parallel stylization scheme. A pass is composed of
three sub-passes if the maximal length equals to 4. Each
sub-pass propagates from each seed to neighboring pix-
els in a variational logarithmic step length.

al. [33] to perform propagation over several iterations
with a maximum jump step of 8 and 4 neighbors at
each jump step. Their synthesis approach is in a coarse-
to-fine manner and random search is employed in each
pass. In this paper, we adapt the standard jump flooding
scheme with two stages: the global optimization and
the local optimization. The major difference between our
approach and the existing parallel algorithms in [30],
[31], [33] is that our approach operates on the original
image without image pyramid generation and coarse-to-
fine correspondence propagation.

In the global optimization, we set all the pixels in the
image as seeds and flood them with four rounds. The
jump steps are sequentially 23k, 22k, 2k and 1, where k
is ⌈(log2 n)/3⌉. Although the attained result of the first
stage is a highly noisy version of the object, it provides
a good approximation for further propagations.

In the local optimization stage, we arrange four passes
each of which is composed of four rounds and the
corresponding step lengths are 8, 4, 2 and 1, respectively.
We split the whole image into multiple 16×16-sized tiles
and assign each tile with four seeds that carry smallest
distances. We consider the fact that smaller distances
corresponds to more similar feature styles.

In order to avoid visible incoherence along the bound-
aries of tiles, these boundary pixels should be updated
appropriately by all their neighbors. Accordingly, we
shift the tile by half of the tile size in horizontal and
vertical directions, as illustrated in Fig. 7.

In each style matching round, we select the candi-
dates for each pixel p from the shifted pixels which
are respected to s-step neighboring pixels of p. If one
candidate is a seed and its distance is smaller than that
of the current map correspondence, the mapped pixel
is updated with this candidate. If a pixel is affected by
multiple seeds, its correspondence is determined by the
candidate which has the smallest distance. Consequently,
the energy function E is minimized iteratively. We obtain
the final solution when the reduction rate of the energy
is smaller than a user-specified threshold τ . Fig. 8 shows
an example of jump flooding with three rounds. Colored
pixels in the leftmost chart are the original seeds with the
smallest distance.

5 INTERACTIVE EDITING TOOLS
Our framework provides not only basic operations such
as scaling and moving objects, but also some premier op-
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(a) Photos (b) Artwork (c) Segmentation (d) Casting shadow (e) Our cloning result

Fig. 9. Adding a coffee cup and an apple (a) into the still life oil painting (b), we can put them in arbitrary positions
interactively. We put the apple behind the pear via layering based on the segmentation (c). We can also change the
length and position of the shadow (d) by adjusting the frame with blue lines. The green point represents the highest
point of the object and the red point is its corresponding shadow.

(a) Artwork/photo (b) Segmentation (c) Without Labeling (d) With Labeling

Fig. 10. Comparison between the results of without and with semantic labeling.

erations like occlusion, casting shadows, direction field
editing, and semantic labeling. All the operations below
are based on the interactive image segmentation [34].

Thanks to our interactive performance, all our oper-
ations become simpler and easier to use, which can be
seen in the accompanied video. Empirically, most of the
style-aware image cloning processes can be completed
within one minute by taking advantage of these simple
operations.

Layering We segment the artwork in advance and put
the partitions in different layers. Users can move up
and down the layers to change their occlusion relations
with the cloned objects. They can also put the objects in
arbitrary positions. In Fig. 9, the apple is occluded by
the pear in the painting by layering.

Casting shadow Shadow provides viewers the cues
for shape and depth perceptions. In cel animation,
cartoon and computer-generated films, a broad set of
techniques [35], [36], [37] have been employed to create
shadow mattes. However, it is not trivial to add the
shadow of the inserted object into the artwork since we
do not know the geometry of the artwork and some
artworks do not have clear lighting directions. Scientific
studies show that the physics of shadow used by our
visual brain is simpler than true physics and this fact
has been used by artists [38]. As a result, artists can take
some liberties when they draw shadows.

Therefore, we compute the shadow using a simplified
shadow casting model and then project the shadow onto
the image. We assume an orthogonal projection with
a 45-degree angle between the image and the shadow
receiver. Our model is based on a directional light and a
plane shadow receiver. We use the mask of the inserted
object to approximate the silhouette of its corresponding
3D model. As illustrated is Fig. 9(d), users indicate the
light direction by adjusting a frame with blue lines,
which represent an object on the ground and its shadow
respectively. The yellow point is designed as the con-
tact point between the inserted object and the shadow
receiver. Finally, the shadow regions are darkened and
stylized using our style transfer algorithm.

Semantic labeling The semantic labeling is used to
enhance the result if imperfect matching happens using
automatic semantic features. With the semantic labeling
function, users can optionally specify the semantic sim-
ilarity between the object and an arbitrary region in the
artwork by clicking on the region. After the labeling,
the sematic weight W of the user-specified region is set
to 0.001 and that of other regions are assigned with
1.0. An example for semantic labeling is provided in
Fig. 10 where the user specifies the rock region (yellow
region) for the lion. The lion is expected to be hidden in
the image with the texture of surrounding background.
Without the semantic labelling, the texture of water
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(a) Photo (b) Strokes/Segmentation (c) Before interaction (d) After interaction

Fig. 12. Comparison between the results of before and after direction field editing. The photo (a) is an render snapshot
of the teapot mesh and is inserted into the drawing (Fig. 3(a)). We segment the teapot into several parts which have
different direction (b). Thus, the direction of one part can be modified alone and directions of others remain unchanged.
(c) and (d) are the results before and after the direction field editing.

(a) (b) (c) (d) (e)

Fig. 11. Comparison between the results of before and
after direction field editing. Before the interaction, the
direction field (b) has many undesired curls and the
corresponding result (d) is the same as Fig. 5(e). After
employing the direction field editing operation (a), the
direction field is (c) and the corresponding result (e)
integrates the cloned tree into the drawing harmoniously.

(white speckles) will be undesirably used to stylize the
lion.

Direction field editing The direction field generated
by the local structure estimation algorithm [23] is based
on the gradient field of the image. In some cases, these
automatically extracted direction fields are not appropri-
ate for the artwork. See Fig. 11(b), the automatically com-
puted direction fields of the cloned tree and the artistic
trees are quite different. In another instance Fig. 12(c), the
direction field of the teapot generated automatically fails
to describe its geometrical characteristics. To improve
the effectiveness of results like these, we allow users to
edit the direction field by taking advantage of adjustable
Bézier curves, as illustrated in Figs. 11(a) and 12(b). The
directions of pixels on the Bézier curves are specified as
the tangential directions of respective positions on the
curves. We interpolate directions at the remaining pixels
using Gaussian radial basis functions. As illustrated in
Figs. 11 and 12, users can modify the direction field for
the entire object or one part of the object based on the
semantic segments with a few editing strokes.

6 USER STUDY

We have devised a user study to objectively verify the
effectiveness of our style-aware image cloning method.
The user study consists of two cases. The first case
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Fig. 13. Percentage of times which users chose ours
over other algorithms. (1) Fast texture transfer (FTT), (2)
PatchMatch (PM), (3) generalized PatchMatch (GPM), (4)
image melding (IM), (5) image quilting (IQ), (6) image
analogies (IA), (7) Poisson editing (PE), and (8) image
harmonization (IH).

compares the synthetic results of our method with sev-
eral state-of-the-art methods to illustrate that our image
cloning method achieves better effects. Eight out of ten
samples in our user study are fully automatic. For the
remaining two samples (Figs. 1 and 17), some user
interactions are employed. To make fair comparisons,
we do use the same segmentation for all methods. The
segmentations in our method are mainly used for the
layering and casting shadow operations. The layering
operations designed for the occlusion effect are also used
for other methods. The only user interaction not used
in other methods is the casting shadow operation. The
second case compares some original artworks with the
synthetic ones produced by our method to justify that
the synthetic parts match the original art style well.
This case is designed to test the practicability of our
method and the participants do not know the purpose
of the study. We assume that participants prefer images
with fewer noticeable style artifacts. It is expected that
there are no remarkable differences between the two
options. If so, it gives an evidence that our results do
not introduce noticeable style artifacts.
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(a) (b) (c) (d)

(e) (f)

Fig. 14. Results designed for user study. (a), (c), (e) are original artworks, while (b), (d), (f) are our created results.

Study details. In the first case, the task consists of
10 pairs of synthesized images. The two images in each
pair are produced by inserting the same objects into an
artwork, and the inserted photorealistic objects were pro-
cessed by our method and a method randomly chosen
from (1) fast texture transfer [6], (2) PatchMatch [33],
(3) generalized PatchMatch [39], (4) image melding [4],
(5) image quilting [16], (6) image analogies [5], (7)
Poisson editing [1], and (8) image harmonization [3].
We published our task on Amazon Mechanical Turk,
a web-based marketplace that has been used for user
studies [40], [41]. It allows requesters to offer paid
“Human Intelligence Tasks” (HITs) to many non-expert
workers. In one HIT, the order of images within each
pair is random. The workers were asked to perform
two-alternative forced choices (2AFCs), picking out the
one with less artifacts from the two candidates, namely,
the image looks harmonious as a whole. 114 workers
completed a total of 240 HITs, taking 2 minutes 43
seconds on average.

For the second case, we prepared 4 pairs of images.
Each pair contains a real-world artistic image and a
synthesized one from our algorithm. Some parts of
the original artworks were replaced with photorealistic
objects in the synthesized images. We invited 30 volun-

teers who had different artistic background and areas of
knowledge for this case. The 4 pairs were presented to
participants in random order and random placements.
Participants were asked to pick out the better looking
one from each pair, no matter from which aspect they
considered.

Results. We analyzed the data of the two cases sep-
arately. For the first case (see Fig. 13), when asked to
choose the one with less artifacts from the artworks re-
spectively created by our method and (1) the fast texture
transfer method, our method gets 71.33% of the total
times which the workers chose as shown in Fig. 13(1). It
also gets 78.67% against (2) PatchMatch, 80.33% against
(3) generalized PatchMatch, 78.00% against (4) image
melding, 79.00% against (5) image quilting, 74.33%
against (6) image analogies, 88.00% against (7) Poisson
editing, and 79.33% against (8) image harmonization. By
performing one-sample, one-tailed t-tests for all eight
state-of-the-art methods, we found that workers pre-
ferred our method (p-values≪ 0.001).

In the second case of the user study, we applied our
method to retouch artworks by replacing some parts
of the original image with photorealistic objects while
preserving stylistic harmony. We found that for sample
1, sample 2 (see Figs. 14(a), (b), (e) and (f)) and sample 4
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(a) (b) (c) (d) (e) (f)

Fig. 15. We generate different portraits ((b) and (d)) by replacing the original one (a) with face (f) (upper) and (f) (down).
We also compare our results (b) and (d) with the image harmonization [Sunkavalli 2010] (c) and image melding [Darabi
2012] (e).

(a) (b) (c) (d) (e)

Fig. 16. Comparisons with other methods of map work. From left to right: (a) inputs (the map image is courtesy of
Matthew Cusick); (b) results of our method; (c) image quilting [Efros and Freeman 2001]; (d) image analogies [Hertz-
man et al. 2001]; (e) image harmonization [Sunkavalli et al. 2010].

(a) (b) (c) (d) (e) (f)

Fig. 17. Comparison with other methods. From left to right: (a) Our result; (b) Fast texture transfer [Ashikhmin 2003];
(c) Image analogies [Hertzmann 2001]; (d) Image quilting [Efros 2001]; (e) Patchmatch [Barnes 2009]; (f) Generalized
Patchmatch [Barnes 2010].

(Figs. 15(a) and (b)), more than 50% volunteers chose our
synthetic ones (53.3%, 60%, and 86.7% respectively). But
for sample 3 (see Figs. 14(c) and (d)), the percentage is
36.7%, less than 50%. We performed the statistical anal-
ysis of this case using Pearson’s χ2 test and there was
no significant difference between the two choices of our
results and the original artworks (p = 0.9106). Through
this user study, we can conclude that our approach can
create harmonious artworks with no noticeable style
artifacts.

7 RESULTS AND DISCUSSIONS
We have developed an interactive editing system to alter
existing artworks using photorealistic or artificial objects.
Examples with various styles are shown in Fig. 5 (crayon
drawing), Fig. 14(a) (watercolor), Fig. 16 (map work),
Fig. 17 (oil painting), and Fig. 18 (hatching drawing).

The image analogies [5] and patch-based texture trans-
fer [16] are widely acknowledged approaches for style
transfer. We compare our approach with them in Figs. 16
and 17. We extend their distance metric and add plausi-
ble shadow to get more harmonious results.

In addition to this, our framework can generate better
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TABLE 1
Comparison of performance over other methods (in seconds)

example size of size of FTT IQ PM IH IM ours
artworks inserted photos C++ Matlab CUDA Matlab Matlab CUDA

Fig. 1 600 × 425 312×338, 144×128 0.270 15.273 0.154 7.452 743.333 0.038
Fig. 9 800 × 808 308×257, 258×246 0.330 38.694 0.161 12.425 1382.643 0.051

Fig. 16 372 × 468 192 × 184 0.110 4.998 0.070 6.330 264.255 0.024

(a) (b) Hatching drawing (c) Reasonable case

(d) Hatching drawing (e) Failure case

Fig. 18. Limitations for hatching drawings.

results (see Fig. 17) because we incorporate semantic in-
formation into the new distance metric. The employment
of interaction in Fig. 17 is happened in layering and
casting a plausible shadow.

PatchMatch [33] accelerates the nearest-neighbor
matching by using a randomized patch search. The
upgraded version [39] adds rotations and scales for com-
puter vision applications. When the distance between
matching patches are very small, which is tenable for
most applications of photograph in computer vision, the
results are nice. The comparisons with the approach are
given in Fig. 17.

Image harmonization [3] matches the color, contrast,
noise, texture and blur of the source to those of the
target images. It produces pleasing results under the
assumption that the target is a good model to match
the source, and noise and texture are stochastic. When
the assumption does not hold, artifacts may arise (see
Fig. 16(e)). We have compared our approach with it
through the example of human face transplanting in
Fig. 15. The eyes in Fig. 15(c) are still very clear while
our method Fig. 15(b) preserves the indistinct style as
showed in Fig. 15(a).

Image melding [4] makes excellent combinations of
the sources with different textures and structures, and
its harmonization application can handle the failure case
in image harmonization [3]. However, when the source
and target are largely different, it may produce dishar-
monious artifacts (see Fig. 1(e)). We also compare its har-
monization application with our approach in Fig. 15(e)
by using a scene similar to that used in Fig. 15(c).

The comparisons with Poisson image editing are
shown in Fig. 1(d). The cloned results of Poisson image
editing look like photographs rather than artistic images.
In contrast, our approach can clone the style of an art-
work in a seamless way, and generates more harmonious
results for such artworks.

Our system is implemented using NVIDIA CUDA
programming environment [42]. We ran the program
on a 3.40GHz Intel Core i7-2600 CPU and an NVIDIA
GeForce GTX 590 GPU. We compare our method with
other representative methods on the same machine for
performance comparison (see Table 1). Our approach
costs less than 0.1 seconds for a cloned object with
180,000 pixels. The most time-consuming interaction
time is spent on segmentation, which costs less than one
minute and it is the same for all methods. The editing
operations used in Figs. 1 and 9 are layering and casting
shadow (see the supplemental video). We use Adobe
Photoshop CS5 to achieve the occlusion effect of layering
for other methods. Fig. 16 is created automatically.

Our method can deal with most kinds of artworks,
including Vincent Van Gogh’s paintings. However, it
may fail for hatching drawings (see Fig. 18). For such
works, tonal or shading effects are created by painting
closely spaced parallel lines or cross lines. Therefore,
the directions of these lines are not directly related to
the variation of shadings. A reasonable result can be
generated by setting u to 0 (see Fig. 18(c)).

8 CONCLUSION AND FUTURE WORK

We have presented a novel interactive rendering frame-
work for cloning photo-realistic or artificial objects into
real-world artworks seamlessly. The harmonization be-
tween the cloned objects and the artwork is achieved
by transferring the style features encoding luminance,
texture, direction, local coherence, and semantic informa-
tion in the artistic images. Extensive experiments have
been conducted to demonstrate the effectiveness of the
proposed method. Our new image cloning approach can
facilitate designers to create new artworks by utilizing
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existing images with a high fidelity. Even amateurs can
also enjoy themselves through creating various non-
photorealistic images with our method.

In order to reduce the illumination difference between
the cloned object and the artwork, our approach adjusts
the color of the cloned image by histogram matching.
However, such an adjustment cannot simulate the light
interactions between the cloned object and the artwork.
As a result, the lights in the artwork cannot illuminate
the cloned object. Although we have simulated shadow
casting by projecting the contours of cloned objects
through some user interactions, a better solution which
can realistically insert cloned objects into existing art-
works accounting for their lighting interactions should
be developed. The work on rendering synthetic objects
into legacy photographs by Karsch et al. [20] provides
some inspirations for our future work.
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