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Enhancing the symmetry and proportion of 3D
face geometry

Qiqi Liao, Xiaogang Jin, Wenting Zeng

Abstract —We present an engine for enhancing the geometry of a 3D face mesh model while making the enhanced version share
close similarity with the original. After obtaining the feature points of a given scanned 3D face model, we first perform a local
and global symmetrization on the key facial features. We then apply an overall proportion optimization to the frontal face based
on Neoclassical Canons and golden ratios. A nonlinear least-squares solution is adopted to adjust the feature points so that the
face profile complies with the aesthetic criteria, which are derived from the profile cosmetology. Through the above processes,
we obtain the optimized feature points, which will lead to a more attractive face. According to the original feature points and the
optimized ones, we perform Laplacian deformation to adjust the remaining points of the face in order to preserve the geometric
details. The analysis of user study in this paper validates the effectiveness of our 3D face geometry enhancement engine.

Index Terms —facial attractiveness, facial symmetrization, facial proportion, facial profile, facial geometry.

✦

1 INTRODUCTION

THE human face plays an important role in making
a first impression and conveying emotion. As a

result, beautiful faces are more pleasurable to look
upon, as they are interpreted as implying purity and
goodness. Scientific studies have corroborated the
advantages of attractive faces [1].

The question of what makes a face attractive has
been studied by researchers for centuries. Recent work
has shown that ingredients of beauty are neither
arbitrary nor culturally bound. We can achieve a
high cross-cultural agreement in attractiveness ratings
from perceivers of different races. For example, new
born infants prefer to look at faces that adults find
attractive regardless of the faces’ race, gender or
age [2]. In addition, people from different cultures
show considerable agreement about which faces are
attractive [3]. These findings raise the possibility that
some standards of beauty may be set by nature rather
than culture convention. In this paper, we focus on
three factors that have been deemed significant in pre-
vious work: symmetrization, frontal proportion and
profile adjustment. By removing facial disharmonies
and fitting faces into standard ratios, we explore the
possibility of enhancing aesthetic appeal of human
faces.

Recently, researchers have introduced a method to
enhance facial attractiveness for 2D facial images [4].
Given an input facial image, their method can gener-
ate a more attractive version using supervised learn-
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Fig. 1: An example of 3D face geometry enhancement
by our method. The top three images are the left
profile, the frontal face and the right profile of an
input 3D face model. The bottom three images are
their corresponding enhanced versions.

ing techniques. Their technique is image-based and
thus can only deal with 2D facial images and it
remains unclear how the warped image can be used to
enhance the geometry of a 3D model. Enhancing the
3D geometry of a given face is a different challenge.
To the best of our knowledge, no published work
has dealt with the attractiveness enhancement of 3D
face models. The attractiveness of a 3D face is more
involved than image-space techniques. The attractive-
ness of face is not only determined by frontal portrait,
but also by the profile view, and the combination of
the two. Extending data driven methods to 3D is not
a viable solution since collecting and setting up a 3D
training set with proper geometric resolution is too
technically involved. Therefore, our approach is un-
supervised and based on geometric priors. The main
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challenge in this work is to enhance the 3D geometry
of a face while keeping the local characteristics of
human face.

Applications. Photo retouching has become com-
monplace in print journalism as it taps into the natural
human instinct to pursue beautiful faces. With the fast
development of humanoid avatar applications, a tool
for 3D face enhancement has great potential. Our tool
has applications in numerous diverse fields, such as
following:

3D online virtual communities. Many online virtual
3D communities and games (e.g. Second Life [5] )
provide users services to model avatars resembling
their real selves. Enhancing the avatars’ faces with the
help of our tool could expand this market because an
attractive face will receive more attention in virtual
world, as it would in real life. Our tool can be inte-
grated into games as an additional feature like virtual
clothing, hair, make-up and fashion accessories which
are sold in the virtual shops (e.g. marketplace [6] in
Second Life).

3D interactive characters in e-commerce. Facial at-
tractiveness is very important in e-commerce, as con-
sumers prefer to deal with good looking sales people.
Large companies such as IKEA and eBay are using
automated online 3D assistants to offer online sup-
port to their customers. Our tool can be employed
to retouch 3D avatars in these e-commerce systems,
which can help to create positive feelings towards
these companies, and potentially lead to a growth of
sales.

Instant 3D communication. Our tool can be used as
an interesting addition to instant 3D communication
technologies like video conferencing [7] and talking
heads [8]. By using our tool, not only the character-
istics of the users face could be kept but also a more
harmonious and pleasing aesthetic appeal would be
presented. Users would enjoy a relatively higher self-
confidence. These technologies are now populating
not just web sites but desktops, e-learning centers
and mobile phones. With the inevitable increase in
popularity of these technologies, the popularity of a
3D face enhancement tool is expected.

Contributions. A novel geometric enhancement
framework for 3D face models is proposed. We re-
move facial disharmonies by enhancing frontal faces
and face profiles simultaneously. Profile proportion
enhancement is formulated as a new energy function
and solved by a nonlinear least-squares method. We
also propose a novel method to calculate the facial
attractiveness score for a 3D face. The weights for
symmetry, frontal proportion and angular profile pro-
portion are obtained via a user study.

2 RELATED WORK

Research work related to faces has attracted lots of
researchers in the computer graphics and computer

vision communities. These researches include face
modeling and animation [9], [10], face recognition [11]
and face beautification [12], [13], [4], [14].

The most relevant work on facial attractiveness en-
hancement mainly deals with 2D face images. Tong et
al. [12] proposed a cosmetic transfer method by which
the cosmetic style captured in an example-pair can be
realistically transferred to another person’s face. Guo
and Sim [13] advanced a program of creating face
make-up upon a face image with the style example of
another image. Since this method modifies the color
and skin details of a face whose structure remains
undamaged, it is parallel to the physical making up.
However, these methods are used to transfigure and
paint the original image in a way without altering the
contour and geometry of the facial features.

Recently, Leyvand et al. [4] proposed a data-driven
approach to aesthetic enhancement of human faces
while maintaining close similarity between the origi-
nal and the new version. However, this beautification
engine is limited to 2D face images, and it cannot be
applied to 3D face models directly.

Blanz and Vetter [15] proposed a morphable model
for the synthesis of 3D faces from one or more pho-
tographs. Later, Blanz et al. [16] proposed a top-down
approach to 3D data analysis by fitting a morphable
model to scans of faces. Kim and Choi [17] proposed
a method for enhancing the symmetry of a scanned
3D face.

Mesh editing approaches based on differential rep-
resentation have been prevailing in recent years [18]
because they can preserve the geometric details of
the surface as much as possible. Different from the
traditional global Cartesian coordinates, a differen-
tial surface representation encodes the information
about the local shape of the surface, the size and the
orientation of local details [19]. The main principle
behind these deformation techniques is to use an
intrinsic surface representation to achieve an intuitive
and detail-preserving deformation result by putting
the local differential properties under deformation.

Different from 2D face beautification approaches,
our face attractiveness enhancement engine for 3D
faces is based on the principles of Neoclassical
Canons, symmetry, golden ratios and the definition of
facial appeal standards in cosmetology. Our method
adopts Laplacian surface deformation techniques to
adjust the geometry of a 3D face model so as to keep
its geometrical details. As a result, we obtain a more
attractive 3D face model bearing close similarity with
the input face.

3 OVERVIEW

Figure 2 illustrates the geometry enhancement process
of our approach. All faces in our database are without
makeup, accessories, and hair. Our method begins
with a scanned 3D face with both geometry and tex-
ture information. We set up a left-handed coordinate
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Fig. 2: Our 3D face geometry enhancement engine.

system in the face model where the positive x-axis
points to the right and the positive y-axis points up.
Then, we identify a set of facial landmarks (feature
points) manually. According to these features, we par-
tition the face into several facial feature regions and
create symmetrical point-pairs for the face. Based on
Neoclassical Canons, golden ratios, and the aesthetic
criteria for face profile, we perform face symmetriza-
tion, frontal face proportion adjustment and facial an-
gular profile proportion correction sequentially. After
that, we get a set of modified feature points which
will lead to a higher predicted attractiveness score
than that of the input face model. We finally employ
differential coordinates based deformation method to
change the shape of the face model while keeping the
geometric details. The effectiveness of our method is
validated by a user study.

4 3D FACE GEOMETRY ENHANCEMENT EN-
GINE

In this section, after defining the attractiveness score
and the feature points of a 3D face, we propose three
complementary techniques for the enhancement of a
3D face model: (1) a local and global symmetrization
for the key facial features, (2) an overall frontal face
proportion optimization for the facial outline and
internal characteristics and (3) an optimized facial
profile proportion correction.

4.1 Facial attractiveness score

To enhance the attractiveness of 3D faces, it is neces-
sary to quantify the results in term of the changes we
make. We believe that both beauty rules for frontal
face and face profile are very important. Therefore,
we take the symmetry, frontal proportion and angular
profile proportion measure as the final factors influ-
encing the attractiveness of a 3D face. The frontal
proportion factor consists of Neoclassical Canons and
golden ratios. Thus, we propose the following formula
to calculate the attractiveness score for 3D faces:

Score = w1 × Ssymmetry+

w2 × Sproportion + w3 × Sprofile,
(1)

Fig. 3: Landmarks on the frontal face (left) and the
right face profile (right). Sez is a point used to calcu-
late profile angles and the line connecting Se and Sez
is parallel with z-axis.

where Score is the final facial attractiveness score
for a 3D face, Ssymmetry, Sproportion and Sprofile are
scores for symmetry, frontal proportion and angular
profile proportion respectively, and w1, w2 and w3 are
the weights for them, w1 + w2 + w3 = 1. To decide
the values of wi, we perform a user study to find
how each step contributes to the degree of the final
enhancement effect. We get the value w1: w2: w3 =
0.374: 0.326: 0.300 through analyzing the results of
our user study, which will be discussed in Section
5. In each step, we use the coefficient of variation
instead of the standard derivation to measure the
differences, as Schmid et al. did in [20]. The coefficient
of variation is useful when comparing between data
sets with different units or widely different means,
which is necessary when we measure more than two
differences.

4.2 Facial feature points

We manually identify 57 landmarks based on the
existing literature [21], [20], [22], [23] and our own
definitions. We suggest that the face models be well
calibrated. Figure 3 shows the layout of the land-
marks on the frontal face and the right face profile.
Landmarks on the left and right profiles share similar
positions. The sequence of the points starting from 0
have been marked.

Most of the feature points are defined in [21], [20],
[22]. In literature [23], points 29 and 30 are the left
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Fig. 4: Line of symmetry (x = xsym) and a pair of
symmetrical points.

and right zygions of the face respectively and point
56 is the nasion. In our own definition, landmarks
from point 38 to point 53 are the facial outline points.
Points 54 and 55 are the highest points on the upper
margins of the left and right eyes respectively.

Except for point 5 and point 8, landmarks from
point 0 to point 30 and points 36, 37, 54, 55, 56 are used
for in proportion and symmetry operations. Points 2,
17, 18, 19, 22, 27, 31, 32, 33, 34, 35, 36, 37 are used for
facial profile correction manipulation, and the rest are
used for facial outline control.

Based on these feature points, we can obtain the
point-pairs and calculate the values of Neoclassical
Canons, symmetry, golden ratios and facial profile
angular measures. The attractiveness score for the
original face can then be computed.

4.3 Face symmetrization

Symmetry is an essential aspect of human faces and
is considered to be an important factor for attractive-
ness [24]. We modify the point-pairs described in [21]
and put them into our own symmetry analysis. We
divide a face into six local regions. Each region has
several feature pairs:

• Eyebrows (points 1 and 3; points 6 and 7)
• Eyes (points 10 and 13; points 11 and 12; points

14 and 15; points 54 and 55)
• Nose (points 17 and 19)
• Lips (points 21 and 23; points 24 and 26)
• Ears (points 4 and 9; points 16 and 20; points 36

and 37)
• Face (points 29 and 30)

We define key facial points as point-pairs in these re-
gions for face symmetrization. Each of above regions
belongs to the same feature except for the face region.
To reduce the distortion caused by the translation of
points 29 and 30, we adjust the landmarks identifying
the facial outline according to the changes of points
29 and 30 in order to make all the changes uniform.

4.3.1 Computation of symmetrical score

In our implementation, we take the y-axis as the
symmetry axis and we adopt the method proposed
in [20] to compute face score, which uses horizontal
distances and angles to compute the symmetry of a
face.

Let (xAi,yAi
) and (xBi,yBi

) be the x-y coordinates of
the i-th point-pair, as shown in Figure 4. The formulae
of horizontal distances dAi

, dBi
and angle αi can be

described as follows:

dAi
= |xsym − xAi

| , dBi
= |xsym − xBi

| ,

αi = tan−1

( |yAi−yBi
|

dAi
+ dBi

)

,
(2)

where x = xsym represents the vertical line of sym-
metry.

We use the coefficient of variation covHi
to measure

the differences between dAi
and dBi

while covVi
for

differences between αi and 0. The face score in sym-
metry can then be calculated as follows:

Ssymmetry =
1

m

m
∑

i=1

(wHi
× SHi

+ wVi
× SVi

), (3)

SHi
=

{

0 covHi
> 1

1 −√
covHi

otherwise,
(4)

SVi
=

{

0 covVi
> 1

1 −√
covVi

otherwise,
(5)

where SHi
and SVi

are the scores of the horizontal and
vertical symmetries for the i-th point-pair respectively,
wHi

and wVi
are their corresponding weights, wHi

+
wVi

= 1, and m represents the number of point-pairs
in the face model. In our current implementation, m =
13, wVi

= wHi
= 0.5.

4.3.2 Symmetrical enhancement

The local and global symmetrization is based on the
method proposed by Mitra et al. [25]. We show the
symmetrization process in Figure 5. For each region,
we conduct a local symmetrization according to its
point-pairs. We take the yz-plane as the central plane
of the human face model. Based on the difference and
the local axes in each region, we perform correspond-
ing translation and rotation globally for the feature
points in all regions. Finally, we adjust the feature
points conforming to the facial outline according to
the changes of points 29 and 30. The detailed adjust-
ment will be addressed in the distortion reduction of
Section 4.4.2.

Let T be a reflective transformation which maps
one point p to another point q. Given a set of point-
pairs, we aim to find the optimal reflective symmetry
transformation T which minimizes the symmetry cost
caused by the corresponding displacements of these
point pairs:

E =
∑

i

(

‖dpi
‖2

+ ‖dqi
‖2
)

= 2
∑

i

‖dpi
‖2

, (6)

where dpi
and dqi

represent the vectors displaced
from p and q respectively. The good pairs are updated
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Fig. 5: Frontal face symmetrization. (a) Asymmetrical face model input. (b) Local symmetrization for every
region. (c) Global symmetrization for the whole face.

Fig. 6: An example of symmetrization. Left: original
model. Right: result after symmetrization.

iteratively until the change of the energy function E
is less than a user-specified threshold.

A global symmetrization now can be performed by
aligning the ideal symmetry of every local region with
the fixed yz-plane. We apply matrix Tg to each of the
local point-set Li and Tg is

Tg = R (T (Li)) , (7)

where T is a translation matrix which transforms the
point-set to make its symmetry line go through the
origin of xy-plane resultantly, and R is a rotation
matrix which rotates the translated points about z-
axis and aligns the plane in which the points are set
with the yz-plane.

Finally, we locate points 0, 2, 18, 22, 25, 27, 28, 31,
32, 33, 34, 35 and 56 in the symmetry axis (y-axis) and
set the x-coordinates of these points as zero. Figure 6
demonstrates the comparison of models without and
with symmetrization.

4.4 Frontal face proportion adjustment

Neoclassical Canons date back to the Renaissance
when artists proposed them and regarded them as
the direction to draw beautiful faces afterwards. These
artists thought that the portions of an attractive face
should follow certain ratio rules. Farkas et al. [26]
summarized these rules in nine Neoclassical Canons
and their variations. Popular literatures like [27] have

TABLE 1: Canon formulae and golden ratios for pro-
portion attractiveness.

Rater/face Canon formulae Ratio nos.
Female/female 6,8 5,6,7,14,17
Male/female 2,4,5,6,8 2,5,7,14,17
Female/male 2,6 5,6,7
Male/male 2,4,6,8 5,6,7

reported that faces that have features with propor-
tions or ratios close to golden ratios are thought to
be aesthetically pleasing. According to these reports,
faces tend to be more agreeable in the aesthetic point
of view if they have features with ratios similar to the
golden ratios.

Schmid et al. [20] proposed six Neoclassical Canons
and seventeen golden ratios as important principles
to the judgment of frontal attractiveness. By clarify-
ing the experimental results, the authors reached the
conclusion that five Neoclassical Canons (including
the 2nd, 4th, 5th, 6th and 8th ones) and six golden
ratios (including the 2nd, 5th, 6th, 7th, 14th and
17th ones) are the most crucial factors in judging
the attractiveness of a female frontal face, irrespective
of whether the judger is male or female, while four
Neoclassical Canons (including the 2nd, 4th, 6th, 8th
ones) and three golden ratios (including the 5th, 6th,
7th ones) are the most influential for males, as shown
in Table 1.

Therefore, we take the five Neoclassical Canons and
the six golden ratios as the rules to decide whether
the female facial proportions correspond with the
aesthetic standards, and apply the four Neoclassical
Canons and the three golden ratios to males. It should
be noted that Schmid conducted his experiment for
the purpose of finding factors most related to attrac-
tiveness, he made no attempt to use these principles
to enhance faces, which we have done in this work.

4.4.1 Computation of frontal proportion score
In our work, we eclectically regard Neoclassical
Canons and golden ratios as two principal factors
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influencing whether certain facial proportions are in
line with the aesthetic rules. We use the coefficient of
variation to measure how much the facial proportion
agrees with Neoclassical Canons and golden ratios.
For example, one of the Neoclassical Canons can be
described as A = B = C or A = B. Then, we can use
the coefficient of variation to measure the difference
between A, B and C (or A and B). In this way,
we can obtain the correspondence degree between
the facial proportion and this Neoclassical Canon.
Similarly, one of the golden ratios can be described

as A
B

=
√

5+1

2
. Then we can use the coefficient of

variation to measure the difference between A
B

and
√

5+1

2
, and the correspondence degree between the

facial proportion and this golden ratio measurement.
Thus, the face score for proportion can be calculated

as follows:

Sproportion =
wN

m
×

m
∑

i=1

SNi
+

wG

n
×

n
∑

j=1

SGj
, (8)

SNi
=

{

0, covNi
> 1

1 −√
covNi

otherwise,
(9)

SGj
=

{

0, covGj
> 1

1 −√
covGj

otherwise,
(10)

where covNi
and covGj

represent the coefficient of
variation values for the i-th neoclassical canon and the
j-th golden ratio respectively, SNi

and SGj
represent

facial scores for the i-th neoclassical canon and the
j-th golden ratio respectively, wN and wG are the
weights of Neoclassical Canons and golden ratios in
the facial proportion grading, and wN + wG = 1.
m and n are the numbers of Neoclassical Canons
and golden ratios involved in the facial proportion
scoring. We adopt five Neoclassical Canons and six
golden ratios for female models, and four Neoclassical
Canons and three golden ratios for male models as
described in [20], which are the most influential in
the attractiveness of human face. Here, we adopt
wN = wG = 0.5.

4.4.2 Frontal proportion enhancement
In this subsection, we address how to make the frontal
face proportion better fit the standards of Neoclassical
Canons and golden ratios. In order to better elaborate
the details of the algorithm, we use Pi(x

P
i , yP

i ) and
P ′

i (x
P ′

i , yP ′

i ) to represent the i-th feature point before
and after the transformation respectively, where x
and y represent the x- and y- coordinates of the
points in Figure 3. Meanwhile, we use PS

i (xS
i , yS

i )
and PD

i (xD
i , yD

i ) to represent the i-th source points
(anchor points) and the destination points. During
the frontal proportion enhancement process, a ratio
(or a canon) always relates to two anchor points
and two destination points. We set the anchor points
unchanged and then calculate the coordinates of the

TABLE 2: Definitions and descriptions of feature
points denotations.

Denotation Feature descriptions Feature points.
Fh Forehead height |y0 − y56|
Nl Nose length |y56 − y18|
Lfh Low face height |y18 − y28|
El Ear length |y4 − y16| or |y9 − y20|
Fl Face length |y0 − y28|

Fw Face width |x29 − x30|
Nw Nose width |x17 − x19|
Id Interocular distance |x11 − x12|

Efw Right (or left) eye fissure width |x13 − x12|
Mw Mouth width |x24 − x26|

destination points based on the anchor points and the
ratios (or canons).

According to the experimental results of Schmid
et al, eleven principles have a significant relationship
with female’s attractiveness and seven principles with
male (see Table 1). As some golden ratios are in
correspondence with Neoclassical Canons, we eclecti-
cally employ five Neoclassical Canons and two golden
ratios for females, four Neoclassical Canons and one
golden ratio for males. Table 2 provides the definitions
and the descriptions of feature points denotations we
use in the frontal proportion enhancement steps.

The process for females can be summarized as the
following seven steps:

1) According to Neoclassical Canon 2, Fh
α1

= Nl
α2

=
Lfh
α3

, we have

|yS
0
−yD

56|
α1

=
|yD

56
−yD

18|
α2

=
|yD

18
−yS

28|
α3

, (11)

where α1, α2, α3 are user-control parameters for
Fh, Nl and Lfh respectively, and α1 +α2 +α3 =
1. In our implementation, we set α1 = α2 = α3 =
1/3. Thus, we can calculate the coordinates of
points 18 and 56 based on points 0 and 28 and
the revised canon.

2) According to Neoclassical Canon 4, Nl = El, we
have

∣

∣yS
56 − yS

18

∣

∣ =
∣

∣yS
4 − yD

16

∣

∣ =
∣

∣yS
9 − yD

20

∣

∣ . (12)

3) According to golden ratio 14, we have Fl
Fw

= α,
where α is a user-control parameter and we set α
to the golden ratio in our implementation. Since
the face models we use are without hair, it is
difficult to measure the length of the face. So
we revise the definition of the length of the face
in literature [20] according to literature [23], and
use Fl =

∣

∣yP
0 − yP

28

∣

∣ × β, β > 1 to represent it,
where β is the ratio of the length of the face to
the vertical distance between point 0 and point
28 and is close to 1.1 in our work. Moreover, we
revise the definition of the width of the face in
literature [16] to mark the feature points more
accurately and use Fw =

∣

∣xP
29 − xP

30

∣

∣. Therefore
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we have
∣

∣yS
0 − yS

28

∣

∣× β =
∣

∣xD
29 − xD

30

∣

∣× α,
∣

∣xD
29

∣

∣ =
∣

∣xD
30

∣

∣ .
(13)

4) According to Neoclassical Canon 8, Fw
Nw

= α, we
have
∣

∣xS
29 − xS

30

∣

∣ =
∣

∣xD
17 − xD

19

∣

∣× α,
∣

∣xD
17

∣

∣ =
∣

∣xD
19

∣

∣ ,
(14)

where α is a user-control parameter, and we set
α = 4 in our implementation.

5) According to Neoclassical Canon 5, Id
Nw

= α, we
have
∣

∣xD
11 − xD

12

∣

∣ =
∣

∣xS
17 − xS

19

∣

∣× α,
∣

∣xD
11

∣

∣ =
∣

∣xD
12

∣

∣ ,
(15)

where α is a user-control parameter, and we set
α = 1 in our implementation.

6) According to Neoclassical Canon 6, Efw
Id

= α,
we have
∣

∣xS
11 − xS

12

∣

∣× α =
∣

∣xD
13 − xD

12

∣

∣ =
∣

∣xD
10 − xD

11

∣

∣ ,
(16)

where α is a user-control parameter, and we set
α = 1 in our implementation.

7) According to golden ratio 17, Mw
Nw

= α, we have
∣

∣xD
24 − xD

26

∣

∣ =
∣

∣xS
17 − xS

19

∣

∣× α,
∣

∣xD
24

∣

∣ =
∣

∣xD
26

∣

∣ ,
(17)

where α is a user-control parameter, and we set
α to the golden ratio in our implementation.

Similarly, the process for males is summarized as
the following five steps:

1) Identical to step 1 of females’ enhancement pro-
cess.

2) Identical to step 2 of females’ enhancement pro-
cess.

3) Identical to step 4 of females’ enhancement pro-
cess.

4) According to Neoclassical Canon 6, Id
Efw

= α,
we have
∣

∣xD
11 − xD

12

∣

∣ =
∣

∣xS
13 − xS

12

∣

∣× α,
∣

∣xD
11

∣

∣ =
∣

∣xD
12

∣

∣ ,
(18)

where α is a user-control parameter, and we set
α = 1 in our implementation.

5) According to golden ratio 5, Mw
Id

= α, we have
∣

∣xD
24 − xD

26

∣

∣ =
∣

∣xS
11 − xS

12

∣

∣× α,
∣

∣xD
24

∣

∣ =
∣

∣xD
26

∣

∣ ,
(19)

where α is a user-control parameter, and we set
α to the golden ratio in our implementation.

Rather than simply make the frontal face proportion
fit the standards of Neoclassical Canons and golden
ratios, we revise several rules of Neoclassical Canons
and golden ratios so that faces are likely to meet
modern aesthetics. The study of Schmid et al. [20]
shows that smaller noses, a larger distance between
eyes, and smaller widths of mouth are desirable
traits for female. So in our implementation, when

one of above features in female models does not
meet Neoclassical Canons or golden ratios, the feature
remains unchanged. Moreover, golden ratios 6 and
7 in literature [20] are very important for point 22
to point 27 and could have been used in the last
step of the above process for both females and males.
However, we have found another golden ratio in
literature [28] which is more effective in generating
attractive lips. The new golden ratio is applied to the
profile correction because it relates to point 32 which
is adjusted in this process.

After solving all the equations, we obtain the dis-
placement for each feature point di(dxi, dyi) = P ′

i −
Pi, 0 ≤ i ≤ 56. The final positions of the facial feature
points are then represented as:

P ′
i = Pi + di · α, (20)

where α represents the extent of facial enhancement
by proportion, and 0 ≤ α ≤ 1. α = 1 indicates that the
face completely corresponds to the aesthetic standard
after the frontal proportion enhancement. Figure 7
demonstrates the comparison of models without and
with frontal proportion enhancement, where α = 0.6.

Distortion reduction. Since each principle will lead
to the adjustment of feature points, we employ fol-
lowing two rules to reduce the distortion.

1) Equivalent adjustment. In general, the change of
facial features’ locations will lead to the equiva-
lent change of other facial features. For example,
Neoclassical canon 2 introduces the adjustments
of points 18 and 56. To reduce distortion, facial
features around point 56 (including eyes, eye-
brows, ears) and point 18 (including nose, lips)
will be adjusted identical to the way points 18
and 56 have been changed respectively. Simi-
larly, the change of the face width in golden ratio
14 influences the location of ears. Specifically,
Neoclassical canon 5 changes the interocular
distance, which indicates the location change
of eyes. So we adjust the location of eyes and
eyebrows based on the change of points 11 and
12.

2) Proportional adjustment. To keep the shape of
the facial features, we add local constraints on
them. Points in ears, lips and eyes should re-
main in a proportional relationship. For exam-
ple, when the length of ears is changed, as we
have addressed in Neoclassical Canon 4, the
positions of points 36 and points 37 will also be
changed to reduce distortion. We adjust points
36 and 37 proportionally using the following
formulae:

P ′
36 = P36 +

(

1 − yP
4 − yP

36

yP
4 − yP

16

)

(P ′
16 − P16) , (21)

P ′
37 = P37 +

(

1 − yP
9 − yP

37

yP
9 − yP

20

)

(P ′
20 − P20) . (22)



8

Similarly, golden ratio 17 introduces the change
of points 24 and points 26, so we adjust points
21 and 23 based on the following formulae:

P ′
21 = P21 +

(

1 − xP
24 − xP

21

xP
24 − xP

22

)

(P ′
24 − P24) , (23)

P ′
23 = P23 +

(

1 − xP
26 − xP

23

xP
26 − xP

22

)

(P ′
26 − P26) . (24)

Since human perception of faces is extremely
sensitive to the shape of the eyes, a restriction is
imposed on the eyes when changing the width
of the eyes – In Neoclassical canon 6, the land-
marks identifying the height of the eyes will be
adjusted at the same time:

P ′
14 = P14 +

(
∣

∣xP
12 − xP

14

∣

∣

∣

∣xP
12 − xP

13

∣

∣

)

(P ′
13 − P13) , (25)

P ′
15 = P15 +

(
∣

∣xP
11 − xP

15

∣

∣

∣

∣xP
11 − xP

10

∣

∣

)

(P ′
10 − P10) . (26)

Points 54 and 55 can be dealt with in a similar
way. Moreover, we want to change the vertical
length of the eye according to the variation of
the horizontal width of the eye while keeping
the enhanced version sharing the same ellipticity
with the original. We adjust points 14 and 54 in
the left eye and points 15 and 55 in the right eye
using the following formulae:

yP ′

14 = yP
14 − ∆yl/2, yP ′

54 = yP
54 + ∆yl/2, (27)

yP ′

15 = yP
14 − ∆yr/2, yP ′

55 = yP
54 + ∆yr/2, (28)

where ∆yl and ∆yr are the vertical changes of
the left and right eyes before and after adjust-
ment respectively:

∆yl =
∣

∣yP
54 − yP

14

∣

∣





∣

∣

∣xP ′

13 − xP ′

12

∣

∣

∣

∣

∣xP
13 − xP

12

∣

∣

− 1



 , (29)

∆yr =
∣

∣yP
55 − yP

15

∣

∣





∣

∣

∣xP ′

11 − xP ′

10

∣

∣

∣

∣

∣xP
11 − xP

10

∣

∣

− 1



 . (30)

Specifically, keeping the shape the facial outline
is necessary when we change the face width
(points 29 and 30). We define the left and right
facial outline point-sets as A={38, 39, 40, 5,
44, 45, 46, 47, 48} and B={41, 42, 43, 8, 49,
50, 51, 52, 53} respectively. From point Pi =

Fig. 7: An example of frontal proportion enhancement.
Left: original model. Right: result after proportion
enhancement.

{Pi(x
P
i , yP

i )|Pi ∈ A} we can obtain the adjusted
point P ′

i (x
P
i , yP

i ) using the following formula:

P ′
i = Pi +

(
∣

∣xP
i − xP

31

∣

∣

∣

∣xP
29 − xP

31

∣

∣

)

(P ′
29 − P29) . (31)

The new position for point Pj =
{Pj(x

P
j , yP

j )|Pj ∈ B} can be computed similarly
by:

P ′
j = Pj +

(
∣

∣xP
j − xP

31

∣

∣

∣

∣xP
30 − xP

31

∣

∣

)

(P ′
30 − P30). (32)

4.5 Facial angular profile proportion correction

The attractiveness of a 3D face is determined not
only by the frontal view, but also the profile view.
To the best of our knowledge, there is no work on
the profile enhancement. The research by Peck [29]
shows that there is a universal standard for facial
beauty in the profile view. Although the averageness
hypothesis has been widely accepted, it can be further
improved. Composites of beautiful people [30] were
rated more appealing than those made from the larger,
random population [3]. Therefore, we believe that the
averageness of beautiful people’ profiles identifies a
more attractive profile. Park et al. [22] collected 71
profiles of famous beautiful female, and developed
a photogrammetric profile analysis method to help
clinicians perform appropriate aesthetic operations in
facial plastic surgery. In this work we use the same
data collection of profile angles collected by Park. As
there has been no published facial angular profile pro-
portion standard for male models, we currently adopt
the same enhancement method both for male and
female face models. Notice that Park et al. use profile
analysis to offer aesthetic plastic surgeons reference
while our intent here is to create a more attractive
profile view.

4.5.1 Computation of facial profile proportion score

As shown in Figure 3, there are 11 anatomical land-
marks (points 2, 17, 18, 22, 27, 31, 32, 33, 34, 35 and
36) in the face model. Park et al. [22] developed a
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TABLE 3: Three new angular measures. RAMA and
MPL represent recommended aesthetic mean angulars
and maximum permissible limit respectively.

Calculated profile angles RAMA MPL
6 g − se − sez 85.0 2.0
6 dc − g − pg 2.5 1.0
6 t − dc − pg 73.0 6.0

profile standard including 19 angular measures to de-
termine whether a person’s profile is agreeable. There
are 19 recommended aesthetic mean angles (RAMA)
and each of them has a standard deviation. The i-th
measure can be represented as Ri(µi, σi), 1 ≤ i ≤ 19,
where µi and σi are the aesthetic mean angle and the
standard deviation of the i-th measurement respec-
tively. For an input model M , after we have calculated
its 19 profile angle values {ai, 1 ≤ i ≤ 19}, we
divide the angles into two kinds. If the ai is between
(µi − σi, µi + σ ), we think it’s the case that complies
with the standards, so we set the score to 1.0. Oth-
erwise, we calculate the coefficient of variation value
between |ai−µi|and σi which means the distance with
the standards. The beauty score of the profile can be
computed as follows:

Sprofile =
1

m

m
∑

i=1

Spi
, (33)

Spi
=







1 |ai − µi| ≤ σi

1 −√
covi |ai − µi| > σi and covi < 1

0 |ai − µi| > σi and covi > 1
(34)

where Spi
and covi represent the score and the

coefficient of variation value for the i-th profile stan-
dard angular measure respectively. m is the number
of standard angular measure and m = 19.

4.5.2 Profile proportion enhancement
Based on the 19 standardized reference data used
in [22], we add three angular measures and two
restrictive functions to solve some problems we found
in the process, as shown in Table 3 and Table 4, where
point tags are derived from Figure 3. The first new
angular measure is added in order to avoid point
se protruding point g. The 2nd and 3rd new angu-
lar measures are used to adjust point dc in vertical
and horizontal directions respectively. The first new
restrictive function f1 is derived from literature [28]
and used to generate more attractive lips. In order
to make as little change to the length of the lips in
profile adjustment, we add the 2nd new restrictive
function. Therefore, we can have 24 measurements
including recommended aesthetic mean angle and
corresponding standard deviation which can be rep-
resented as Ri(µi, σi), 1 ≤ i ≤ 24 in the profile
proportion enhancement process.

Our rule in the profile proportion enhancement
can be succinctly stated as follow: Make the profile

TABLE 4: Two new restrictive functions. RAMV and
MPL represent recommended aesthetic mean value
and maximum permissible limit of the restrictive
functions respectively. f1 represents ratio of the dis-
tance of nosetip to chin to the distance of lips to chin.
G represents the golden ratio. Lh and f2 represent the
lengths of the lips before and after profile correction
respectively.

Restrictive functions RAMV MPL

f1 =
yP
32

−yP
28

yP
22

−y
y
28

G G × 2%

f2 = yP
22

− yP
27

Lh Lh × 5%

correspond with aesthetic standards while the feature points
should move as less as possible to avoid the face being out
of proportion. We fix points of soft tissue profile (points
2 and 36) in order to normalize variable facial profile
angles. In addition, we adjust profile feature points in
yz-planes without altering their x-coordinates. There-
fore, we have only nine feature points and their re-
lated 18 variables unknown. We define the profile face
point set as Ω = {2, 17, 18, 22, 27, 31, 32, 33, 34, 35, 36},
and the goal of our profile proportion enhancement is
to find the optimal displacements of the nine feature
points that minimize the cost E:

E =

(

∑

i

Ei

)

+ E′, (35)

where Ei is the i-th measurement, for example, the
first measurement can be expressed as the following
formula:

E1 =
1

σ1

(

arccos

(

(P2 − P31) • (P36 − P31)

‖P2 − P31‖ ‖P36 − P31‖

)

− µ1

)

,

(36)
where µ1 and σ1 are the aesthetic mean angle and the
standard deviation of the 1-th measurement.

E′ is a new energy function added by us in order
to attain the slightest move of feature points in the
profile face point set,

E′ =
1

σg

(

∑

i

‖Q′
i − Qi‖2 − µg

)

, (37)

where Qi ∈ Ω represents a feature point before
face profile adjustment and Q′

i is its corresponding
adjusted point. µg and σg represent the average value
and the variation of coefficient of the displacement
distance of profile feature points respectively. In our
implementation, exhaustive searching is used to deter-
mine the value of µg and σg . When E is minimized,
σg and µg with smaller E′ will generate better results
and smaller distortion simultaneously. Note that users
can also modify these parameters.

We adopt a nonlinear least square method to solve
this optimal system and obtain nine optimized coordi-
nates of profile feature points. Figure 8 demonstrates
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Fig. 8: An example of profile angular enhancement.
Left: original model. Right: result after profile angular
enhancement.

the comparison of models without and with profile
angular enhancement.

4.6 3D Face Deformation

Given the displacements of the facial feature points,
Noh and Neumann [31] proposed to use Radial Basis
Functions (RBF) to calculate the displacements of the
non-feature points for expression cloning. It is well
known that there is a wide variety of geometric
details in a human face and human perception is
extremely sensitive to facial distortion. We should
keep the information of local characteristics of the
human face when we deform the face. This is in
line with the detail-preserving property of the differ-
ential representation-based approach. Therefore, we
employ Laplacian deformation method which is based
on differential surface representation [18] as it can
preserve geometric details as much as possible. By
utilizing Laplacian deformation, local feature details
can be retained effectively when we adjust the human
face. In this way, the deformed face still shares some
similarities with the original one.

To deform the original face mesh, we use 57 feature
points vi as handles which are illustrated in Figure 3.
These handles are moved to new positions ci which
are calculated by our facial geometry enhancement
engine. The solution is better if the handle constraints
are satisfied in a least square sense rather than solved
exactly [18]. With the following 57 constraints

xi = ci, i ∈ 0 . . . 56, (38)

we can calculate the x-coordinates of all face points
x̃ by solving the following quadratic minimization
problem:

x̃ = arg min
x

(‖Lx− δx‖2
+

56
∑

i=0

|xi − ci|2) (39)

where matrix L is the topological Laplacian of the
face mesh, x is the vector of the x-coordinate of all
the vertices, δ is the Laplacian coordinate matrix.
The same goes for y and z coordinate vectors. As
a result, we have enhanced the attractiveness of the
face models so that they look more pleasing while
preserving their original details.

Fig. 11: An example of different degrees of enhance-
ment. Left: original model. Middle: result with α =
0.6. Right: result with α = 1.0.

5 RESULTS AND DISCUSSION

We have implemented our face geometry enhance-
ment prototype system on a 64bit 2.83GHz Intel(R)
Core(TM)2 Quad Q9550 CPU with 8GB RAM. All the
face models but the hair are scanned from real per-
sons. The color information of a face is stored in each
scanned model. We clean the raw scanned point cloud
data of a face and triangulate them into a triangular
mesh. The mesh encoding both the geometry and
color information is used as the input of our system.
We have enhanced the attractiveness of 19 face models
using our enhancement system and 10 of them are
shown in Figure 9 and Figure 10. In each example,
we show the left profile, the frontal face, the right
profile and their enhanced versions. The statistics for
the results are shown in Table 5.

There are two reasons for the attractiveness score of
the enhanced version not being close to one. The first
is that we adopt the revised principles in Neoclassical
Canons and golden ratios in the frontal proportion
enhancement process. The second is that we expect
the profile angle values after profile proportion en-
hancement vary between (µi − σi, µi + σi) , where µi

and σi are the aesthetic mean angle and the standard
deviation of the i-th measurement respectively, and
the model will not get full score unless all 19 angles
are equal to their corresponding aesthetic mean an-
gles.

As mentioned in Section 4.4.2, the user can en-
hance the frontal proportion by specifying the desired
degree using α, as shown in Figure 11. The result
with α = 0 corresponds to the original face without
the frontal proportional enhancement. When α = 1,
the enhanced face complies with aesthetic standard
completely in the frontal proportion enhancement. To
keep the similarity between the original model and
the enhanced one, the degrees of the results shown
in Figure 9 and Figure 10 are set roughly between 0.4
and 0.6.

Empirical Validation. To assess our facial attractive-
ness enhancement technique objectively, we perform
an empirical user study to validate the enhancement
effect. By using this tool, human raters can observe
the original model and the enhanced one side by
side freely with camera synchronized. Our 3D viewer
presented 19 pairs of faces (original and beautified)
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Fig. 9: Eight 3D face geometry enhancement examples of females.
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Fig. 10: Two 3D face geometry enhancement examples of males.

TABLE 5: Statistics of attractiveness score for the ten examples in Figure 9 and Figure 10 .
Symmetry Score Proportion Score Profile Score Attractiveness Score

Model Original Enhanced Original Enhanced Original Enhanced Original Enhanced
A 0.759 0.998 0.725 0.783 0.665 0.802 0.720 0.869
B 0.788 0.997 0.651 0.707 0.655 0.887 0.703 0.869
C 0.828 0.999 0.656 0.754 0.799 0.874 0.763 0.882
D 0.805 0.998 0.707 0.784 0.693 0.979 0.740 0.922
E 0.815 0.999 0.648 0.778 0.654 1.000 0.712 0.927
F 0.746 0.997 0.711 0.742 0.437 0.613 0.654 0.813
G 0.701 0.995 0.621 0.697 0.843 0.984 0.721 0.868
H 0.738 0.998 0.747 0.775 0.786 0.970 0.755 0.917
I 0.778 0.986 0.701 0.798 0.701 0.722 0.715 0.846
J 0.697 0.987 0.661 0.785 0.786 1.000 0.712 0.925

of females (15 faces) and males (4 faces). The position
(left or right) of each pair is determined randomly
Thirty-two participants (16 males and 16 females)
were chosen aged from 18 to 40 years. Each rater was
required to give an overall consideration to each pair
and choose the more attractive face in each pair. They
were also asked to rate the more attractive face on a
scale from 1 to 100 indicating how much the results
were improved based on his or her opinion.

The results show that 78.33% of the raters chose
the enhanced version

(

P − value = 3.055× 10−27
)

and the average improved scale was 35.39
(

P − value = 9.670× 10−19
)

. Note that these findings
are both statistically significant. Our results indicate
that our method is capable of enhancing the facial
attractiveness of the faces we experimented with.
In addition, we did a Pearson’s product moment
correlational analysis on the average rating and the
scale of each model, which is used to find how
two variables are related. The result showed that
average ratings achieved a pretty high correlation of
0.819 with the scales. Since random two variables
has a correlation of zero, the result indicated that
the models that were chose for most of users
generally got a high scale identifying the degree
of enhancement. It further proved that our tool
was capable of enhancing the facial attractiveness
regardless of the size and difference of rater samples
and face model samples.

We have also performed an experiment to deter-
mine the contribution of three factors, symmetry,
frontal proportion and angular profile proportion to-
ward attractiveness of a face. Using the 3D viewer,
three groups of faces (57 faces) were presented to 32
raters. In each group, one face was the original model
while the other was the enhanced version by certain
step operation (symmetry, frontal proportion or an-
gular profile proportion). The raters were asked to
choose the more attractive one. As we can expect, each
step’s contribution to the degree of final enhancement
effects is not the same. In the experiment of symmetry,
75.26% of the raters chose our version, and 65.56%
in the experiment of frontal proportion while 60.35%
in the experiment of angular profile proportion. The
reason for the symmetry step’s large proportion may
be that raters are more sensitive to the symmetry of a
face even though these differences were quite subtle.
This observation has been proved by an experiment
conducted by Rhodes et al [32]. Therefore, we set the
weights for symmetry, frontal proportion and angular
profile proportion as 0.374, 0.326 and 0.300.

Comparisons. As far as we know, there is no pub-
lished work on the attractive enhancement of 3D face
models. One relevant attempt is made by Blanz [14] in
his homepage to manipulate the facial attractiveness
for 3D face models. Based on a set of faces with
manually assigned labels describing the markedness
of attractiveness, Blanz computes the weighted sum of
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differences, which can be added or subtracted from
an input face to make it more attractive or more
unattractive. However, as facial attractiveness is a
highly non-linear attribute [4], the similarity between
the original face model and its enhanced version can-
not be guaranteed for this approach. On the contrary,
our method can enhance the attractive of 3D faces
while keeping close similarity with the input face.

Leyvand et al. [4] proposed a data-driven approach
to enhance the attractive of 2D face images. This is
the most relevant state-of-the-art method we have
found so far. However, their beautification engine is
limited to 2D face images with no enhancement to the
profiles. As we have found in the empirical validation,
profiles also play an important role in determining
the attractiveness of a face. Although Leyvand et al.
mentioned that their 2D enhancement method can be
extended by fitting a 3D morphable model to the 2D
enhanced result, no results are presented. Moreover,
such an extension does not use the geometry of the
input face, therefore the geometry similarity between
the original face model and its enhanced version can-
not be preserved. Since we perform the enhancement
directly on the 3D faces, our method applies not least
to the applications with 3D face inputs.

6 CONCLUSIONS AND FUTURE WORK

We have developed a 3D face geometry enhancement
method based on the revised Neoclassical Canons,
symmetry, golden ratios and revised facial profile
measurements. In order to preserve the facial feature
details, we use Laplacian editing tools to deform face
models. In addition, we propose a new method to
grade the attractiveness of a human face. As a result,
our method enhances the attractiveness of a 3D face
model while keeping similarity between the input
model and the new version.

There is still much work to be done, both in im-
proving the presented method and investigating other
approaches. Here are some directions we would like
to explore in the future.

Automatic facial feature points extraction. In our
current implementation, facial feature points are spec-
ified manually. This is a limitation of our approach
as we focus on the process of enhancing the facial
attractiveness. To make our method more usable,
automatic facial feature points extraction algorithms
are desirable.

3D face models with more general expressions.
Our method is limited to 3D face models with a
neutral expression. Attractiveness enhancement for
faces with more general expressions is part of our
future work. We believe that with no limitation on
the expression, the application of our method will be
more extensive.

Data-driven profile enhancement. The profile pro-
portion enhancement method for male models can be

updated as soon as facial profile measurements for
males are published. Moreover, it would be interesting
to enhance our profile view by employing a data-
driven method. As the beauty enhancement can be
computed using the landmark set which is indepen-
dent of the representation of a face model, we can
use a collection of human profile images as a training
set and establish the corresponding ratings to enhance
the profiles of 3D face models.

Facial enhancement for non-frontal views. Most
of the state-of-the-art 2D facial enhancement methods
are designed for frontal views. By generating a 3D
face from a non-frontal image and enhancing the
model with our framework, our method provides the
possibility to enhance facial images for non-frontal
views.

Employing more factors. There are lots of other
factors which may affect the attractiveness of a hu-
man face, such as the color of skin, skin textures,
eyes, eyelashes, mouths, noses, fatness, hair styles,
and even emotions. Currently we are investigating
how to integrate other factors into our attractiveness
enhancement engine. Machine learning may provide
some solutions to our problem. We believe that even
better results can be achieved if we take more factors
into consideration.
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