
CGI2021 manuscript No. 7
(will be inserted by the editor)

Efficient real-time dynamic diffuse global illumination using
signed distance fields

Jinkai Hu · Milo K. Yip · Guillermo Elias Alonso · Shihao Gu ·
Xiangjun Tang · Xiaogang Jin B

Abstract We present SDFDDGI, a novel approach to
compute dynamic diffuse global illumination in real
time using Signed Distance Fields (SDF). For an in-
put scene, we first construct its compact representa-
tion using SDF. Different from traditional SDF which
are stored by discrete voxels, our approach approxi-
mates the scene by a set of simple primitive shapes,
which facilitates real-time computation and dynamic
changes. Then, we reconstruct the irradiance function
in the space domain by discrete samples (referred to
as probes), which are positioned heuristically for real
time performance. The probe irradiance can be updated
and interpolated effectively supported by our compact
SDF representation. Subsequently, a screen-space re-
finement method is developed to enhance rendering de-
tails and visual quality. We validate our approach by
comparing the performance and quality of our method
to other state-of-the-art real-time global illumination
methods. Our approach is able to calculate real-time
diffuse global illumination for both dynamic geometry
and dynamic lighting efficiently without any precom-
putation, while also supporting multi-bounced light. It
is also hardware free, and can manage both large open
scenes and indoor high-detailed scenes.

Keywords Real-time rendering · Global illumination ·
Signed distance fields

Xiaogang Jin, jin@cad.zju.edu.cn

Jinkai Hu · Guillermo Elias Alonso · Xiangjun Tang · Xiao-
gang Jin
State Key Lab of CAD&CG, Zhejiang University, Hangzhou
310058, China

Milo K. Yip
MoreFun Studio Group, Tencent, China

Shihao Gu
Independent Researcher, China

1 Introduction

Global Illumination (GI) has been a long standing goal
in pursuing more photorealism in the heavy real-time
rendering industry. However, the high expense of com-
puting the rays traversing the scene, as well as the com-
plexity of estimating physical reflection models, and
reconstructing noise-free renderings, necessitate faster
approximation approaches than naïve path tracing. To
this end, many approaches have emerged in the past few
decades, such as, the baking approach that records the
precomputed lighting information into static lightmaps;
extension of the baking approach that supports dy-
namic changes of scene elements [17]; Precomputed Ra-
diance Transfer (PRT) [20], which dynamically cap-
tures soft shadows, interreflections, and caustics in low-
frequency environments. In addition, researchers have
begun to explore some deep-learning-based methods,
such as Deep Illumination, which approximates GI with
offline rendering quality at interactive rates [22]. More-
over, all of these approaches have limitations, either
regarding variation of scene geometry or dynamic light.
Existing methods also usually rely on heavy precompu-
tation, which substantially constrains artistic choices.

Recently, some methods have been developed to
manage fully dynamic global illumination, including
Voxel-Based Global Illumination (VXGI) [4], real-time
Ray Traced Global Illumination (RTGI) [18] and Screen
Space Global Illumination (SSGI) [15, 19, 21]. Indeed,
these methods offer achievable solutions to real-time
global illumination. However, as approximation approaches,
these methods pose challenges to engineering robust-
ness. For instance, they potential produce artifacts, in-
cluding light leakage and noise corruption, as well as
limitations on traverse depths of light and performance
issues.

2 Jinkai Hu et al.

·

Direct Lighting
1.29ms

Our approach
2.59ms(+1.30)

Ground truth
> 2 min

Fig. 1: Images rendered with global illumination off/on using our SDFDDGI method for the Sponza scene. It costs
only 1.3 milliseconds extra time for computing the indirect global illumination, comparing to the ground truth result
rendered by an offline path tracer which costs more than 2 minutes. Our method is able to reconstruct multi-bounce
diffuse global illumination and is noise-free.

In this paper, we propose an approach to address
these challenges, by employing SDF as a representation
of the scene, which, as substitute for of conventional
triangle meshes, accelerate the computation of GI.

In Sect. 3.1, we introduce a compact representa-
tion of the SDF. In traditional applications, the SDF
is stored by discrete voxels in volume textures, which
requires enormous storage and consumes a consider-
able expense on dynamic changes. Our compact rep-
resentation, however, offers a solution to resolve this
issue. Then, in Sect. 3.2, we present a probe position-
ing scheme based on our compact SDF, which also de-
termines which probe should be updated. In Sect. 3.3,
we describe how to update probe irradiance effectively
and retain stability. In Sect. 3.4, we provide a feasible
approach to perform probe visibility tests in a more
accurate and less expensive manner when performing
probe interpolation. In Sect. 3.5, a screen-space method
is developed to enhance the final result. In Sect. 4, we
compare the performance and quality of our algorithm
to other state-of-the-art real-time global illumination
methods. In summary, our paper makes the following
contributions:
– A novel scene-dependent probe positioning method

based on SDF that captures the spatial distribution
of the irradiance function.

– A new solution to prevent light leakage, which can
handle the artifacts presented in previous methods.

– An efficient screen-space refinement approach that
enhances detail and quality of probe-based GI.

2 Related work

Ever since Kajiya first pioneered research of the ren-
dering equation [9], the goal of photorealism through
GI has been shaping the development of rendering. We
list several recently emerged methods that attempt to
meet the challenge of real-time GI.

Virtual Point Lights (VPL) [12] and Reflective Shadow
Maps (RSM) [5] are two of the earliest real-time GI
techniques. The main idea of VLP is the substitution
of GI computation by adding virtual point light sources
at areas illuminated by direct lighting. RSM, on the
other hand, is based on the same idea as shadow maps.
RSM not only stores depth information but also light
source directions and radiant flux, and uses this reflec-
tive shadow map as global illumination. However, these
possess have some known limitations.

RSM and VPL ultimately evolved into Light Prop-
agation Volumes (LPV) [10]. LPV introduced the con-
cept of volume in VPL and transferred illumination
data across space. This method solved many of the
problems of VPL and RSM, but light leakage remained
a serious concern as well as some certain accuracy is-
sues.

There are also voxelization approaches [4], which
first voxelize the scene into a sparse voxel tree and then
inject lighting data. This allows estimation of GI at
real-time frame rates, but it also produces light leakage.
Furthermore, in scenes with highly varying dynamic ge-

Efficient real-time dynamic diffuse global illumination using signed distance fields 3

ometry, the computational cost of voxelization is pro-
hibitively high.

High-end global illumination approaches, such as
Ray Tracing GI [18] reconstruct world coordinates and
normals out of G-buffers, and then sample the hemi-
sphere to compute global illumination. The number of
computations of this kind of approach is very large,
and thus it is only viable for a small number of sam-
ples and high-end hardware. For this reason, it requires
a final denoising stage [16] [11] to achieve an accept-
able result. The main limitation of this method is its
performance, in which it is almost impossible to calcu-
late multi-bounce illumination, apart from the cost of
additional denoising.

Until now, the best choice in terms of performance
has been screen space GI, such as screen space dif-
fuse GI [15] [19] or screen space specular reflections
(SSR) [21]. Comparatively, necessary information for
specular reflections normally resides inside of the screen
space; where as diffuse GI often lacks most of the needed
lighting information, and is thus unable to provide an
optimal result.

Last year, NVIDIA proposed a new approach RTXGI
[13] using its ray tracing accelerated hardware, by means
of discretizing the spatial distribution of the irradiance
function. Compared to common probe-based GI [14], its
main contribution is the use of depth information and
Variance Shadow Maps (VSM) [7] in order to prevent
light leakage artifacts that arise from the discretization
of irradiance. However, the effect of GI concerning de-
tailed geometry is not ideal, light leakage is not com-
pletely solved and it possesses hardware limitations.

SDF, however, can be utilized to simplify the scene
representation, and is useful for low-frequency GI, such
as diffuse GI. SDF is a scalar field in the space domain,
which represents the distance from a point in space to
the nearest surface in the scene. A positive value is as-
signed if the point is in the outer region of the nearest
surface and negative if it is inside. In this way, it pro-
duces a compact representation of the geometry infor-
mation of a scene.

On the basis of RTXGI and using SDF, we pro-
pose a novel approach SDFDDGI, which overcomes the
aforementioned constraints and possesses the following
advantages:

– It can manage dynamic geometry, dynamic lighting
and animations.

– It provides interframe stability and low delay re-
sponse for dynamic changes.

– It completely eradicates light leakage problems by
performing pixel-level visibility tests.

– The proposed technique is not limited to ray tracing
accelerated hardware.

𝐿

𝐸

𝐷

𝐷

(a) Common LDDE path

𝐿

𝐸

𝐷

𝐷

𝐷2

𝐷1

𝐷

(b) Deviation of LDDE path

Fig. 2: The discretization of space in our diffuse GI
model produces deviations on the LDDE path. Instead
of taking the point D on the actual path, we interpolate
irradiance at nearby points D1 and D2 on the irradi-
ance’s discrete space domain.

3 Approach

Our approach is inspired by the framework of RTXGI.
In the pipeline of RTXGI, it first updates the scene’s
bounding volume hierarchy (BVH), and then updates
probes by traversing the BVH to compute radiance. At
the same time, it saves hit point depth information.
Subsequently, RTXGI interpolates probes to compute
each pixel’s irradiance. In order to prevent light leakage,
RTXGI uses low-resolution depth information to carry
out probe visibility tests.

We adopt the same expression notation for paths
as [23], but we use L and E to represent any type of
light and camera, respectively. RTXGI makes approxi-
mations on the D-D part of the LDDE path by moving
the first D vertex to the position of the probe, which
causes light leakage problems since visibility may be
different from these points, as shown in Figure 2. To
avoid such artifacts, RTXGI uses VSM with the afore-
mentioned low-resolution depth information. However,
it has limitation of resolution in that one probe only
has a resolution of 16 × 16 to map the whole sphere
of directions. Moreover, VSM itself produces light leak-
ing artifacts. As a consequence, it cannot completely
eradicate the problem.

As Figure 3 shows, our SDF representation, which
is composed of simple SDF primitives, can be consid-
ered as an approximation of the scene geometry. These
primitives are culled according to the position of the
camera, and put together into clusters by proximity.
This SDF representation is also used to adjust the po-
sitions of probes to prevent unsuitable sampling points,
and to decide which probes are turned on or off. Then,
we traverse the SDF to obtain intersections from the
probe, and sample RSM to compute the radiance. In

4 Jinkai Hu et al.

·

𝑑𝑒𝑝𝑡ℎ
𝑑𝑖𝑓𝑓𝑢𝑠𝑒

𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

𝐴

𝐵

𝐶

SDF clusterScene

RSM
generation

Probe updateProbe interpolate

Contact GI
Using G-Buffer

Fig. 3: To calculate the dynamic diffuse GI in SDFDDGI, we first gather and pack the SDF primitives representing
the scene into clusters. Then, the generated RSM together with the SDF primitives are used to update the radiance
on the probes, whose position may be adjusted according to scene geometry. Finally, we computer the shading as a
weighted sum (according to ambient occlusion) of the result of interpolating probes and screen-space Contact GI.

our approach, in an LDDE path, L-D is implemented
with RSM, D-D with the traversal of SDF, and D-E
with the G buffers. Finally, for each pixel, we interpo-
late probes to obtain the pixel’s irradiance, with probe
weights determined by SDF soft shadow tests to elimi-
nate light leakage. To compensate for the loss of detail
produced by the simplified SDF geometry and the dis-
cretization of the irradiance function, we use G buffer
data to add Contact GI to enhance the details, which
is based on the horizon-based Ambient Occlusion.

3.1 SDF Clusters

SDF is usually stored in volume textures. However, such
an approach necessitates a trade-off between the reso-
lution and details of the scene. In addition, it is dif-
ficult to use volume textures to store dynamic scenes.
Therefore, we represent our scene with a SDF composed
of different simple SDF primitives, such as rectangular
blocks, spheres, planes, cylinders, or other primitives
whose SDF values can be computed analytically and ef-

ficiently instead of performing voxelization of the scene.
Consequently, our simplified SDF representation can be
stored at a small storage cost. Taking the Sponza Palace
scene as an example (see Figure 1), only 4 KB is needed
to store its SDF representation.

In our implementation, we create the SDF repre-
sentations of the test scenes manually for simplicity.
SDFDDGI is not very sensitive to the accuracy of the
SDF representation (see Sect. 4.5) unless the maximum
2-D projection area of an object is very high. For most
cases, we can also directly use the bounding volume
(used for collision detection) associated with each ob-
ject as its SDF primitive. For small objects, whose pro-
jection area is small, we do not even create any cor-
responding SDF primitives. This is because the main
contribution to indirect illumination of them is pro-
vided by Contact GI, and the cost of SDF primitives
could be saved, what will be detailed in Sect. 3.5. As
can be seen in the Sponza scene, we can use very simple
SDF primitives (see Figure 4) while still achieving good
results.

Efficient real-time dynamic diffuse global illumination using signed distance fields 5

Fig. 4: Example of the SDF primitives that we used for
our experiments for the Sponza scene. Curtains are rep-
resented as planes, most of the building structure as
cubes, and experimental objects as spheres. Shading in
this image is only for visual cohesion.

The performance of our method remains relatively
stable as long as the SDF primitives can be fitted into
the GPU L1 cache memory. Most of our experiments
were carried on an RTX 2080Ti GPU (see performance
on lower-end hardware in Sect. 4.4), in which the in-
crease in cost for larger scenes is negligible even when
processing 200 SDF primitives, which is sufficient for
a large scene after camera-dependent culling (the to-
tal number of primitives that we used for the Sponza
scene is 43). Apart from camera-dependent culling, SDF
primitives LOD for far objects and other culling are be-
yound the scope of this work.

In each frame, we cull SDF primitives near the cam-
era and then generate a cluster structure to speed up
the SDF query. We use a standard clustering algorithm
on the CPU to pack near SDF primitives into a cluster.
K-means is performed by using the primitive center. For
general hardware, these distance-based clustering algo-
rithms are sufficiently fast and will not create any per-
formance bottleneck. Such an approach achieves perfor-
mance that is superior to BVH [24] for small-scale data
and its cost is negligible in comparison to other stages
of our approach. Using this algorithm, we can achieve
a 10% to 100% speed-up in different scenes. See Sect.
4.5 for more information.

Simultaneously, since necessary data are mainly in
the L1 cache, global memory is available for other parts
that have higher requirements on memory access. As
a consequence, shading stages that have high require-
ments on memory but are computationally inexpensive
(e.g. volumetric effects or shadow map generation), can
be run in parallel with SDFDDGI, thus increasing the
GPU general utilization rate.

3.2 Probe choice

Since irradiance is a R5 function, we split its domain
into two parts: space coordinates R3 and the direction
R2 as shown in Equation 1:

P =
[
x y z

]>
, D =

[
ω θ
]>
, Irradiance = E(P,D). (1)

Our method discretizes the spatial domain of the irradi-
ance function E into many sampling points P, which are
referred to as probes. Every probe stores the irradiance
on a sphere of directions around its position. We create
a spatially arranged probe volume around the camera
and use these probes to interpolate global illumination.

Irradiance is not a continuous function in its spatial
domain. For example, there are potential discontinuities
in walls or at occluded points, which are the main cause
of light leakage in most real-time global illumination
algorithms. To represent the irradiance distribution in
space reasonably, it is necessary to place these probes
carefully.

In a traditional production-ready GI baking system,
users will place probes manually or use some time-
consuming optimization methods to optimize the po-
sitions of probes [6]. However, such a placement ap-
proach is too slow to be used in real-time applications.
It is worth noting that two probes far away from an
object will have a similar sampling result. In addition,
a probe will lead to dark leakage when it is very close
to an object or inside of the object. Therefore, probes
should not be positioned too far away from an object,
while they should maintain a smallest distance from the
object in order to prevent them from falling into the
object. Fortunately, by using our compact SDF repre-
sentation, such a positioning process can be performed
at a very fast speed. Moreover, no baking is required in
our framework.

To this end, we first calculate the SDF value at the
original probe location. If the value is smaller than a
threshold value, which means that the probe is too near
to other objects or even inside of an object, this probe
position will negatively impact the quality of the sam-
pling. In this case, we query the gradient of SDF and
use the gradient descent method to obtain an accept-
able sampling point near the original position. If the
displacement between the positions of last and current
frame exceeds a threshold, the irradiance at last frame
will need to be rejected, so we allocate more rays to this
probe to ensure a more stable result. The pseudocode
of the algorithm is listed in Figure 5.

In order to reduce the number of probe updates, in
each frame we first choose which probes need to be up-
dated and divide the updates between different frames
for better performance. Probes are assigned different

6 Jinkai Hu et al.

1: procedure UpdateProbePos
2: lastPos← position of probe in last frame
3: pos← position of probe in the uniform grid
4: if querySdf(pos) < threshold1 then
5: pos← gradientDescent(SDF, pos)

6: if distance(pos, lastPos) > threshold2 then
7: markRejectHistory(probe)
8: return pos

Fig. 5: Pseudocode for the algorithm to find a suitable
position for a probe.

weights according to their distances and directions to
the camera in order to determine which probes should
be updated.

Due to the random probe choice, this method may
produce jitter between frames. This phenomenon, how-
ever, is not as evident as in the original RTXGI since
the performance of our approach enables us to perform
a more extensive sampling. Furthermore, to reduce this
artifact, we can perform an interpolation from the sur-
rounding probes to make the result stable.

In contrast to RTXGI, our method does not need
human intervention to have a better probe distribu-
tion, and it can rapidly and accurately respond to scene
changes. This also reduces the leaking caused by dy-
namic objects.

3.3 Probe update

We use compute shaders to sample the radiance L over
a sphere of directions at each probe to calculate the
irradiance E :

E(P,D) =

∫
4π

max(0, cos(D,D′)) · L(P,D′)dD′. (2)

In this phase, we use an 8x8 thread block to update
each chosen probe. Prior to sampling, all threads in a
block need to cooperate to move the SDF primitives
(and cluster structures) into the L1 cache, since they
will be queried frequently.

When performing the SDF query, we first calculate
the distance from a primitive to clusters and reject all
the primitives in a cluster if the distance to the cluster
is greater than the current distance. When performing
the SDF sphere tracing, many clusters can also be re-
jected using twice the previous SDF query result as the
initial distance. This is because the Lipschitz constant
of SDF is always 1 and, therefore, the SDF value of the
current point will be always less than double the value

at the last point. This can be explained mathematically
as follows. As we have

|sdf(A)− sdf(B)| ≤ 1× ||A−B||,
|sdf(A)| − |sdf(B)| ≤ |sdf(A)− sdf(B)|,

(3)

and therefore we have

|sdf(A)| ≤ ||A−B||+ |sdf(B)| ≤ 2|sdf(B)|. (4)

This especially increases performance when the SDF
value is smaller. Therefore, this works fairly well for
sphere tracing, in which query density is very high near
object boundaries, i.e. where the SDF value is small.
Moreover, this algorithm is both stack-free and GPU-
friendly.

We sample the irradiances at random low-discrepancy
directions and store them in the L1 cache. To calculate
the intersections with the scene, we perform an accel-
erated version of sphere tracing [2] for our scenarios.

After the intersection point is calculated, RSM [5] is
employed to obtain its flux. Additionally, the emission
value stored inside of the primitive is used in order to
support area lights and self-emission.

By reusing the probe GI data of the last frame,
we can achieve multi-bounce global illumination. Since
multi-bounce diffuse GI is generally of lower frequency
than first bounce diffuse GI, we limit its sample number
to a lower level in order to decrease the computational
expense. In addition, we can speed up GI response by
multiplying multi-bounce GI by a coefficient between 0
and 1, in order to decrease loop gain effects.

After synchronizing all threads in a block, each thread
calculates the irradiance in its own direction D using
Equation 2, and uses octahedral mapping [3] to write
irradiance data into a probe atlas texture. We maintain
a balance between the number of samples and the de-
gree of temporal mixing. If there are too few samples,
we apply a stronger temporal mixing in order to pre-
vent jittering. By storing the radiance samples to the
L1 cache, we can reuse them across threads to compute
the irradiance, and thus stabilize the result.

3.4 Per-pixel GI shading

Probe visibility tests play an important role to prevent
light leakage triggered by the discretization of irradi-
ance in the spatial domain.

RTXGI uses probe depth buffers generated by ray
tracing and VSM [7] to perform visibility tests. Such
an approach is limited to the resolution of the depth
buffer, and thus it is unable to eliminate light leakage
completely, especially for leakage caused by thin ob-
jects. Inspired by the easy generation of soft shadows

Efficient real-time dynamic diffuse global illumination using signed distance fields 7

using SDF [1], we employ the SDF shadow trace to run
visibility tests, which can naturally produce soft indi-
rect shadows and transitions.

Each pixel needs to interpolate 8 probes. This means
performing sphere tracing 8 times, making it unaccept-
able as it is too expensive to compute. Fortunately, we
only need to perform a probe visibility test instead of
sampling radiance, enabling us to markedly reduce com-
putation cost.

Fig. 6: Example of min/max checkerboard downsam-
pling algorithm. Green areas take the highest value and
blue areas take the minimum value.

First, we downsample the screen depth buffer ac-
cording to a min/max checkerboard to obtain a half-
resolution buffer. As shown in Figure 6, for checker-
board green pixels, we obtain the maximum value in
an area of 4 pixels in the full resolution depth buffer;
otherwise, we take the minimum for blue pixels. This
assures that we have valid samples that cover the whole
depth range. This algorithm was developed in 2019 by
the Red Dead Redemption team and it has proven to
be highly effective for downsampling in the domain of
low-frequency rendering.

Subsequently, in the min/max checkerboard down-
sampled depth buffer, we choose one pixel out of every
2 × 2 pixel block to formulate a 1/4 resolution buffer
as follows. (1). For different frames, we choose a differ-
ent pixel; (2). Cover the whole depth extent as much as
possible.

This can be accomplished simply by first choosing
a pixel according to the frame index, and then chang-
ing some of them by checking the neighbouring chosen
pixels.

We then perform a duplicate removal on each 2× 2

block unit in the 1/4 resolution buffer. We assume that
if the starting points are close, they will have the same
visibility test result for a specific probe. In this way, we
can avoid some duplicate computations.

After duplicate removal, visibility tasks are distributed
uniformly for each 4 threads assigned for every 2 × 2

block, making every thread’s visibility tasks diminish
from 8 to 4 on average. We use shared memory for the
pixels to exchange information. In our experiments, we

use a 4× 4 size block to obtain an optimal speedup ra-
tio, because an oversized block hinders the merging of
visibility test tasks, thus decreasing the effectiveness of
this algorithm.

After completing the visibility tests, we write the
result back into the L1 cache and distribute it to every
corresponding pixel in order to be used for probe inter-
polation. Since our approach can accurately obtain the
visibility of the probe, we do not need to perform an ex-
tra cosine weighting or any other additional weighting
terms like RTXGI to further avoid leakage artifacts.

Fig. 7: Dark room without light leakage even with thin
walls. Our approach is independent of probe resolution,
and thus will not produce light leakage for objects of any
thickness.

In the upsampling stage, if a pixel does not have a
valid result, we assign it a value according to its sur-
rounding pixels or the last frame’s reprojection result
using the motion vector. Although finding representa-
tive pixels in the second phase is more important for
the quality of the final result, we can reuse past results
and Neighborhood Clipping to reduce its influence until
it is negligible.

This method greatly compensates for the overwhelm-
ing strain produced by the per-pixel visibility tests. It
reduces 8 tests per pixel to 0.25 tests per pixel or lower,
which greatly increases the performance of our algo-
rithm without a negative impact on the result.

RTXGI uses a low-resolution depth buffer to per-
form visibility tests, which leads to light leakage arti-
facts. We employ a per-pixel probe visibility test instead
to eradicate light leakage completely and optimize the
process with effective downsampling to further reduce
the computational cost, as shown in Figure 7.

3.5 Contact GI

Although our method can greatly reduce the computa-
tional cost of GI by discretizing the irradiance on the

8 Jinkai Hu et al.

·

(a) Our approach (SDFDDGI) (b) SDFDDGI (illumination only) (c) Ray Tracing GI

(d) RTXGI (e) SSGI (f) VXGI

(g) (h) (i) (j) (k) (l) (m) (n)

Fig. 8: The full result of the Sponza Palace scene rendered by our real-time SDFDDGI method (a). We compare the
illumination only result of our approach (b) to that of other real-time GI methods (c)(d)(e)(f). Our method is able
to overcome limitations in prior methods such as extra noises and the lacking of multi-bounce lighting in real-time
Ray Tracing GI (h), light leakage on the dynamic yellow sphere in RTXGI (j), darker regions and incomplete GI
due to the use of only screen space information in SSGI (l), and rougher detailing in Voxel-Based GI (n). Our
zoomed-in counterpart results are shown in (g), (i), (k) and (m), respectively.

space domain, it may result in loss of detail. Therefore,
we present a screen space refinement approach that can
enhance the rendering details, dubbed Contact GI.

Ambient occlusion represents how much ambient
lighting an object surface receives according to the oc-
clusion received by surrounding objects. In the per pixel
GI shading stage, we can enhance its details by multi-
plying the GI shading result with AO. This works rea-
sonably well in dark regions. However, such an approach
does not take into account the effect of multi-bounce in-
direct illumination among other problems. For instance,
the effect of diffuse GI should be greater in directly lit
regions. However, we would incorrectly weaken the in-
direct illumination by simply multiplying the result by
the AO mask, as illustrated in Figure 9.

Inspired by horizon-based ambient occlusion (GTAO)
[8], we propose Contact GI to enhance the details of
diffuse GI without producing overshadowing by taking
into account incoming irradiance Ei (Equation 5):

Ei =

∫
ωi

Lw × (~nc · ω)dω ≈ Ci ×
∫
ωi

(~nc · ω)dω

≈ Ci ×
√
1− (~nc · ~ni)2 ×

∫
ωi

dω

≈ Ci ×
√
1− (~nc · ~ni)2

distance(Pc, Pi)2
Ai,

(5)

where Ei is the incoming irradiance contributed by
pixel i to pixel Pc. Ci is the color of pixel i, ~ni is its
normal vector, and Ai is its corresponding actual area.

We assume that all objects have a completely rough
surface, which means that its previously shaded screen
color can be regarded as its output radiance. When
searching for horizon angles in GTAO, we add the cur-
rent sampling pixel’s contribution to irradiance if it is
not occluded (see Figure 10). With such a method, we
can obtain an irradiance value when computing ambi-
ent occlusion.

Subsequently, as in GTAO, we apply spatial and
temporal denoising to the obtained Contact GI (AO

Efficient real-time dynamic diffuse global illumination using signed distance fields 9

(a) A naïve AO mask,
which incorrectly overshad-
ows some regions.

(b) Contact GI takes into ac-
count the effect of indirect il-
lumination.

Fig. 9: The corner formed by the wall and the floor is
overshadowed, since it does not take into account the
effect of multi-bounced indirect illumination.

𝑃𝑐
𝑃1

…… ……

ℎ

𝑛1

റ𝑣

𝐸𝐶 = 𝐸𝐶 + 𝐸1

𝐸1 = 𝐶1 ×
1 − (𝑛𝑐 ∙ 𝑛1)

2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑃𝑐 , 𝑃1)
2
× 𝐴1

𝐴1 =
𝐶𝑎𝑚𝑒𝑟𝑎 𝑃𝑖𝑥𝑒𝑙 𝐴𝑟𝑒𝑎

(റ𝑣 ∙ 𝑛1)

𝑛𝑐

𝐷𝑒𝑝𝑡ℎ 𝑏𝑢𝑓𝑓𝑒𝑟

𝑉𝑖𝑒𝑤 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

(a) Current pixel P1 is visible by pixel Pc, and thus we
calculate its contribution to incoming irradiance.

…… ……
𝑃𝑐

𝑃3

ℎ

𝑛𝑐
𝐸𝐶 = 𝐸𝐶 + 𝐸3

റ𝑣

(b) Current pixel P3 is
also visible by pixel Pc,
and thus we add its contri-
bution to incoming irradi-
ance.

…… ……

𝑃4

𝐸𝐶 = 𝐸𝐶 + 0
𝑃4 is invisible

𝑃𝑐

ℎ

𝑛𝑐റ𝑣

(c) Currently searched pixel
P4 is not visible by pixel
Pc, and thus it does not con-
tribute to incoming irradi-
ance.

Fig. 10: We take advantage of the sampling stage when
searching horizon angles to calculate incoming irradi-
ance’s contribution for contact GI. The bars represent
the depth buffer, ~ni is the normal of pixel i, and ~h is
current horizon vector. Visibility can be checked simply
by assuring that the angle between vectors ~PiPc and ~nc
is smaller than that of the current horizon vector.

and the screen space irradiance are packed in one vec-
tor4). Strong ambient occlusion means that the average
distance of light bounce is small, thus screen space infor-
mation is more complete for better quality GI. There-
fore, the AO value is used as a weight to interpolate
screen space irradiance and probe irradiance linearly to
compute the final result. When the AO value is low, i.e.,
those areas which receive more GI contributions from

near-by surfaces, Contact GI will have a higher weight.
Such a design allows us to take both large-scale GI and
rich detailed GI into account.

4 Results

We tested the performance and GI quality of our method
with different hardware and scenes. Most of the exper-
iments were performed in comparison to other state-of-
the-art real-time global illumination approaches.

4.1 Probe volume resolution

Since the positions of the probes are assigned at run
time according to the SDF gradient, this method does
not require any previous human intervention for a rea-
sonable distribution of the probes. We first observe the
effect of the resolution of the probe volume on the re-
sulting GI, and then we compare it to an offline path
tracer as the ground truth. In Figure 11, it can be seen
that when the resolution of probe volume is very low,
our method can still prevent the light leakage problem,
although the resulting GI will not be very accurate.

4.2 Effect of Contact GI

Our Contact GI compensates for the loss of detail of
diffuse GI produced by the sampling of the irradiance
function. In Figure 12, we can observe the difference
of using Contact GI on a basic lighted room and the
Sponza scene.

Contact GI brings about significant improvements
to the effect of minor traits of the scene to the diffuse
global illumination. It solves some of the loss of detail
resultant from the disparity of the position of the probes
and the real position taken into account for shading.

4.3 GI comparison to other methods

We first compare our method to the offline path tracer,
as shown in Figure 1. We then compare our method to
other real-time GI techniques using the Sponza scene.
This scene has 250,000 triangles, 26 different materials,
and 48 different resolution textures. We employ 43 SDF
primitives for the dynamic representation of the struc-
ture of the scene, and cluster them into 8 clusters. The
probe volume of SDFDDGI, as well as RTXGI, has a
resolution of 22× 14× 32 probes. The VXGI voxel res-
olution is 64× 64× 64.

It can be seen from Figure 8 that with the same
probe volume, our approach fits the subtleties of the

10 Jinkai Hu et al.

(a) 2× 1 (b) 2× 2 (c) 6× 6

(d) 4× 4 (e) 6× 6 (f) Ground Truth

Fig. 11: SDFDDGI results with different probe volume resolutions. We take path tracing as the ground truth for
reference. With too few probes, as shown in the room with 2×1 probes (a), we may not be able to produce satisfactory
global illumination but light leakage is still absent. In addition, with a denser but still relatively rough probe volume
grid (c), we can obtain similar global illumination as in a path tracing reference (f).

scene better. In comparison to Ray Tracing GI, our
method is able to support multiple-bounce illumina-
tion and does not require a denoiser, which could blur
some details. VXGI with a higher resolution is not able
to achieve the same level of detail while costing more
computation time.

As shown in Figure 13, our approach generates no
light leakage even for a low-resolution probe volume.
Light leakage will arise in RTXGI, however, especially
for thin objects such as the curtains. Instead, our method
correctly manages the occlusion of curtains.

4.4 Performance

We test the performance of our method with the Sponza
scene as the test scene under the same configuration as
in the previous section, and analyze the time consumed
for every stage of the algorithm. We also perform com-
parisons to other aforementioned methods with differ-
ent graphics cards.

As shown in Table 1, our method achieves the best
performance while retaining the same or better quality.
Time per frame is only shorter for Screen Space GI,
which makes substantial quality compromises in order
to achieve this performance.

Consumed time

Method Total Per stage

Probe Update: 0.18 ms
SDFDDGI 1.30 ms Contact GI : 0.57 ms

Shading: 0.54 ms

Depth Mipmap: 0.06 ms
SSGI (diffuse only) 1.17 ms HiZ trace: 0.69 ms

Denoise: 0.42 ms

RTXGI 3.98 ms Probe Update: 3.28 ms
Shading: 0.70 ms

Ray Tracing GI 4.13 ms Trace ray: 2.23 ms
Denoising: 1.90 ms

VXGI (diffuse only) 5.24 ms Voxelize: 3.31 ms
Cone trace: 1.93 ms

Table 1: Stage by stage performance comparison of state
of the art real-time GI approaches to our method. All
comparisons are run on RTX 2080Ti and i7 9700k, with
a render resolution of 1920×1080 on the Sponza scene.

4.5 Effect of SDF representation on GI

Since diffuse global illumination is based on the under-
lying SDF representation of the scene, different SDF for
the same scene will necessarily have an impact on GI.
Figure 14 shows the effect on GI of different SDF for

Efficient real-time dynamic diffuse global illumination using signed distance fields 11

(a) Contact GI on (b) Contact GI off

(c) Contact GI on (d) Contact GI off

Fig. 12: Examples of the effect of Contact GI on a sim-
ple lighted room (a) (b) and the Sponza Palace (c) (d).
Contact GI greatly compensates for the loss of detail
resultant from discretization of the irradiance and en-
hances the realism of details.

(a) SDFDDGI (b) RTXGI

Fig. 13: Comparison of light leakage artifacts on SDFD-
DGI and RTXGI. Our method (a) is able to eradicate
light leakage. However, on thin objects, such as the cur-
tain in the Sponza scene, RTXGI may encounter light
leakage issues (b).

the same underlying geometry. Even for such a coarse
SDF, we can see that its visual impact is much less rec-
ognizable due to the low-frequency nature of the diffuse
GI. Low detail is partially compensated with Contact
GI as well. Table 3 gives a performance comparison of
different amount of primitives representing the Sponza
Scene.

5 Conclusions

We have proposed a novel approach to calculate real-
time diffuse global illumination using SDF. Our method
supports fully dynamic lighting and geometry for a
scene while requiring no baking. It also provides su-
perior quality global illumination and achieves higher

(a) Coarse SDF (b) Fine SDF

Fig. 14: Comparison of the GI produced by a coarser
and a finer SDF representation of the Stanford dragon
model, computed with a probe resolution of 6 × 5 × 3.
SDF in both cases are formed by the union of a set of
boxes, represented as squares in the picture.

performance than other prior real-time approaches, and
thus has manifold potential applications with dynamic
scenes.

Our method still has room for improvement. First,
instead of using a fixed density of probe volume, we
could sample the irradiance space with more probes for
regions near the camera and less probes for regions far
from the camera. This would make the algorithm feasi-
ble for scenes with different scales. It would also offer a
better balance between small indoor scenes, mid-ranged
building scenes, and large open worlds as well. We could
also use importance sampling for probe ray generation
according to the relative placement of the camera and
the probes in order to further stabilize global illumi-
nation since only polygons whose normals point to the
camera are visible.

Consumed time by graphics card

Graphics card Total Per stage

Probe Update: 0.18 ms
GeForce RTX 2080 Ti 1.30 ms Contact GI : 0.57 ms

Shading: 0.54 ms

Probe Update: 0.48 ms
GeForce GTX 1070 3.52 ms Contact GI : 1.24 ms

Shading: 1.80 ms

Probe Update: 1.45 ms
GeForce GTX 970M 9.05 ms Contact GI : 3.46 ms

Shading: 4.14 ms

Table 2: Stage by stage performance comparison of our
method running on different graphics cards. The shad-
ing stage costs more time in low-end graphics cards
because we only adjusted optimization parameters for
high-end graphics cards.

12 Jinkai Hu et al.

Consumed time

Amount Total Per stage

Probe Update: 0.18 ms
43 prims 1.30 ms Contact GI : 0.57 ms

Shading: 0.54 ms

Probe Update: 0.30 ms
92 prims 1.61 ms Contact GI : 0.57 ms

Shading: 0.74 ms

Probe Update: 0.43 ms
130 prims 1.92 ms Contact GI : 0.57 ms

Shading: 0.92 ms

Table 3: Performance comparison for different amount
of primitives.

Second, our research focuses on the dynamic diffuse
GI. For specular GI, we still have to rely on a mixed
approach using other methods such as SSR [21] or Ray
Tracing. The L(D*)SE path can be handled with zero
extra cost when using SSR together with SDFDDGI.
Finally, our approach uses simplified SDF primitives
to represent the scene. Our current implementation re-
lies on a partially manual approach to create a sim-
plified SDF representation, which might be more labor
intensive for large and complex scenes. Determination
of how to approximate a model with simplified SDF
primitives automatically [25] constitutes a worthwhile
direction for future research.

Acknowledgements We thank the anonymous reviewers
for their constructive comments. Xiaogang Jin was supported
by the National Key R&D Program of China (Grant No.
2017YFB1002600), the National Natural Science Foundation
of China (Grant Nos. 62036010, 61732015), the Ningbo Ma-
jor Special Projects of the “Science and Technology Inno-
vation 2025” (Grant No. 2020Z007), and the Key Research
and Development Program of Zhejiang Province (Grant No.
2020C03096).

References

1. Aaltonen, S.: Gpu-based clay simulation and ray-tracing
tech in claybook. In: Game Developers Conference (2018)

2. Bálint, C., Valasek, G.: Accelerating sphere tracing. In:
Eurographics (Short Papers), pp. 29–32 (2018)

3. Cigolle, Z.H., Donow, S., Evangelakos, D., Mara, M.,
McGuire, M., Meyer, Q.: Survey of efficient representa-
tions for independent unit vectors. Journal of Computer
Graphics Techniques 3(2), 1–30 (2014)

4. Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann,
E.: Interactive indirect illumination using voxel cone trac-
ing. Comput. Graph. Forum 30(7), 1921–1930 (2011)

5. Dachsbacher, C., Stamminger, M.: Reflective shadow
maps. In: I3D, pp. 203–231 (2005)

6. Di Benedetto, M., Ganovelli, F., Balsa Rodriguez, M.,
Jaspe Villanueva, A., Scopigno, R., Gobbetti, E.: Ex-
ploremaps: Efficient construction and ubiquitous explo-

ration of panoramic view graphs of complex 3d environ-
ments. Comput. Graph. Forum 33(2), 459–468 (2014)

7. Donnelly, W., Lauritzen, A.: Variance shadow maps. In:
I3D, pp. 161–165 (2006)

8. Jiménez, J., Wu, X., Pesce, A., Jarabo, A.: Practical real-
time strategies for accurate indirect occlusion. In: SIG-
GRAPH 2016 Courses (2016)

9. Kajiya, J.T.: The rendering equation. In: ACM SIG-
GRAPH, pp. 143–150 (1986)

10. Kaplanyan, A., Dachsbacher, C.: Cascaded light propa-
gation volumes for real-time indirect illumination. In:
I3D, pp. 99–107 (2010)

11. Koskela, M., Immonen, K., Mäkitalo, M.J., Foi, A., Viita-
nen, T., Jääskeläinen, P., Kultala, H., Takala, J.: Block-
wise multi-order feature regression for real-time path-
tracing reconstruction. ACM Trans. Graph. 38(5), 138
(2019)

12. Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J.,
Aila, T.: Incremental instant radiosity for real-time indi-
rect illumination. In: EGSR, pp. 277–286 (2007)

13. Majercik, Z., Guertin, J.P., Nowrouzezahrai, D.,
McGuire, M.: Dynamic diffuse global illumination with
ray-traced irradiance fields. Journal of Computer Graph-
ics Techniques 8(2), 1–30 (2019)

14. McAuley, S.: Rendering the world of far cry 4. In: Game
Developers Conference, pp. 143–146 (2015)

15. Ritschel, T., Grosch, T., Seidel, H.: Approximating dy-
namic global illumination in image space. In: I3D, pp.
75–82 (2009)

16. Schied, C., Kaplanyan, A., Wyman, C., Patney, A.,
Chaitanya, C.R.A., Burgess, J., Liu, S., Dachsbacher,
C., Lefohn, A.E., Salvi, M.: Spatiotemporal variance-
guided filtering: real-time reconstruction for path-traced
global illumination. In: Proceedings of High Performance
Graphics, pp. 2:1–2:12 (2017)

17. Seyb, D., Sloan, P., Silvennoinen, A., Iwanicki, M.,
Jarosz, W.: The design and evolution of the uberbake
light baking system. ACM Trans. Graph. 39(4), 150
(2020)

18. Shyshkovtsov, O., Karmalsky, S., Archard, B., Zhdan, D.:
Exploring raytraced future in metro exodus. In: Game
Developer’s Conference (2019)

19. Silvennoinen, A., Timonen, V.: Multi-Scale Global Illu-
mination in Quantum Break. In: ACM SIGGRAPH Ad-
vances in Real-Time Rendering Course. ACM (2015)

20. Sloan, P.J., Kautz, J., Snyder, J.: Precomputed radi-
ance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph.
21(3), 527–536 (2002)

21. Sousa, T., Kasyan, N., Schulz, N.: Secrets of cryengine 3
graphics technology. In: SIGGRAPH Courses (2011)

22. Thomas, M.M., Forbes, A.G.: Deep illumination: Ap-
proximating dynamic global illumination with generative
adversarial network. CoRR abs/1710.09834 (2017)

23. Veach, E.: Robust Monte Carlo methods for light trans-
port simulation. Stanford University PhD thesis (1997)

24. Wald, I., Boulos, S., Shirley, P.: Ray tracing deformable
scenes using dynamic bounding volume hierarchies. ACM
Trans. Graph. 26(1), 6 (2007)

25. Wu, J., Kobbelt, L.: Structure recovery via hybrid vari-
ational surface approximation. Comput. Graph. Forum
24(3), 277–284 (2005)

