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Abstract— To solve the problem of generating segmentations
of meaningful parts from scanned models with freeform surfaces,
we explore a compact shape prior based segmentation approach
in this paper. Our approach is inspired by an observation that
a variety of natural objects consist of meaningful components in
the form of compact shape and these components with compact
shape are usually separated with each other by salient features.
The segmentation for multi-regions is performed in two phases
in our framework. Firstly, the segmentation is taken in low-level
with the help of discrete Morse complex enhanced by anisotropic
filtering. Secondly, we extract components with compact shape
by using agglomerative clustering to optimize the normalized
cut metric, in which the affinities of boundary compatibility, 2D
shape compactness and 3D shape compactness are incorporated.
The practical functionality of our approach is proved by applying
it to the application of customized dental treatment.

Note to Practitioners—The research work presented in this
paper is to support the procedure of customized design and
manufacturing. As a very important preprocessing step for the
industrial design of many applications, the 3D shape of real
objects must be scanned and reconstructed in computer sys-
tems. To assign semantic information to the reconstructed mesh
surface, the surface are segmented into meaningful components
which however is not a well-defined problem. There is no general
segmentation approach that has good performance for scanned
models with freeform surfaces. According to the observation that
models in many industrial applications (e.g., customized dental
treatment) have meaningful components in the form of compact
shape (e.g., teeth) separating from other regions (e.g., gum), a
segmentation method is developed in this paper by using the
compact shape prior. The techniques developed here can speedup
the design and manufacturing of devices for customized dental
treatment (e.g., orthodontic braces).

Index Terms— mesh segmentation, compact shape prior, nor-
malized metric, discrete Morse theory, anisotropic filtering.

I. INTRODUCTION

SEGMENTING 3D models into meaningful parts is a very
important step for automating the procedure of product

design and analysis in a variety of applications. For example,
in digital orthodontics, the scanned dental cast model must be
separated into meaningful patches of individual teeth and the
gum before planning the expected movement on each tooth.
Usually, such dental models contain more than a dozen of
teeth, an automatic (or semi-automatic in abnormal cases)
method is needed. In other words, the existing interactive
segmentation techniques are not practical for the usage in den-
tal laboratories. Although there are a wide range of research
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methods focus on mesh segmentation, no existing approach fits
this scenario. As shown in Fig.1, the input 3D dental models
obtained from scanning devices are represented by triangular
mesh surfaces. The regions for teeth can be identified by the
salient feature curves, but it is not easy to use those feature
curve based methods (e.g., [1], [2]) to find out the regions
for every teeth as the extracted feature curves usually do not
completely surround the regions to be segmented (see Fig.1(b)
for an example). The model to be processed in these cases
usually has the following properties:

• Freeform: The surface of a natural object is reconstructed
from scanning and represented in a triangular mesh that
has a lot of visual salience (concave or convex). Unlike
those man-made objects (e.g., mechanical parts), the
visual salience does not always lie on the boundary of
meaningful regions. A meaningful component can be
identified with the help of salience regions although it
may not be completely surrounded by such regions.

• Compactness: The shape of a meaningful region on
natural objects is usually compact, which is interpreted
in a biology-inspired manner as the principles of least
action in physics [3]. The compactness of an object can be
measured by the volume-to-area ratio (detail formulation
will be give in Section III).

• Volumetric Similarity: The target models to be seg-
mented by our approach have another common property
- that is the meaningful regions have similar volumes.
The original definition of shape compactness is scale-
independent. In order to prevent small segments, we
introduce an affinity definition based on volume-weighted
3D compactness in Section III.

• Variant Number of Targets: The number of meaningful
regions to be segmented varies from case to case. For
example, on the dental models, the number of teeth to be
processed can be different as a patient may have some
teeth lost – such examples will be shown in Section IV.
This makes the problem of segmentation further difficult.

We develop an algorithm with two phases in this paper to
consider both the local shape cue (i.e., visual salience) and the
global shape cue (i.e., compact shape prior), where the feature
salience is preserved as much as possible in the low-level seg-
mentation phase (see Fig.1(c)) and the shape compactness is
maximized in the high-level segmentation phase (see Fig.1(d)).
As a result, natural objects having above inherent properties
can be successfully segmented into meaningful components.
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A. Related work

3D shape segmentation is an extensively studied topic in
the communities of compute vision and computer graphics.
However, none of existing methods is effective for all types of
models when aiming at accurate and functional segmentation.

Recent 3D shape segmentation researches fall into two
categories. The first category of methods involve multiple
shape samples. They either jointly segment a group of similar
shapes or learn from a database of manually segmented 3D
shapes. Huang et al. [4] jointly segment a set of shapes through
linear programming a function. Hu et al. [5] present a co-
segmentation method based on subspace clustering. However,
the similarity between shapes in a group is not obvious.
Specifically, the co-segmentation fails on the cases with
tooth absence – but this is a situation happens quite often.
Benhabiles et al. [6] learn boundary edges from manually
segmented 3D shapes. However, as noted in [6], existing
learning-based methods cannot well segment natural objects
(e.g., the dental models) having the aforementioned common
properties. Moreover, involving multiple shape samples pre-
vents its usage in practical dental applications. The second
category of methods involve more global shape attribute to
achieve high-level segmentation. Wang [7] develops a patch
segmentation approach for surface flattening based on the
prior of nearly developable surface. Zhang et al. [8] apply the
Mumford-Shah Model for image segmentation to 3D shapes.
They use the Laplacian eigenvector as the shape function and
optimize the segments and contours simultaneously. Asafi et
al. [9] design a weak shape convexity measure based on the
visibility conception. Despite existing various strategies, the
essential mechanism of finding high-level meaningful parts lies
on the rule of part salience [10] which combines the factors
of part size, cut strength and protrusiveness. Our work fall
into the second category. Its unique advantage is that it can
deal with shapes without obvious protrusiveness. Intuitively,
the protrusion amplify the difference between different parts.
When the protrusion is large a curve skeleton is formed. How-
ever, for models without obvious protrusiveness like dental
models, many prior approaches can hardly produce satisfactory
results. This situation motivate our work.

A very popular segmentation strategy exploited in many
prior approaches is to integrate local geometric cues. Com-
monly used local cues include feature points [11], feature
curves [2], point-wise distance [12], curvature [13], etc. Based
on these local cues, clustering algorithms like feature space
clustering in [12] and spectral clustering in [14] are used to
form parts. Although approaches based on local geometric
cues show remarkable performance in man-made objects, a
common deficiency is the problematic accuracy and robustness
when applying them to natural objects. For example, the
local approaches may treat features indiscriminately from
true boundaries, which is one of the major difficulty when
processing dental models since the surface of gum contains
superfluous salient feature curves.

Different from the approaches only using local geometric
cues, involving global shape prior such as volume metrics and
convexity can alleviate the accuracy and robustness problem

Fig. 1: Our segmentation method generates the final results in
two phases. After analyzing the visual salience on the given
model (a), the first phase of our approach conducts a discrete
Morse theory based method (with the help of surface structure
represented by Morse complex (b)) to segment the input mesh
into relatively small patches (c) while retaining the visual
salience as part of the small patches’ boundaries. In the second
phase, the small patches generated in the first phase are merged
into meaningful regions (i.e., teeth and gum shown in (d)) by
using the compact shape prior.

for specific types of objects. For example, Shapira et al.
[16] exploited the shape diameter function (SDF) to encode
the distances from surface points to the model’s skeleton as
metrics for segmentation. The SDF provides proper shape prior
to achieve consistent segmentation among a family of similar
objects; however, the SDF cannot deal with natural objects
considered in our work that do not have a clear skeleton to
be extracted. Liu et al. [17] proposed a part-aware metric
based on volumetric visibility which is more sensitive than
SDF at the boundary of parts to be segmented. However,
the part-aware metric is not effective to objects not having
significant skeletons (e.g., the dental models). Lien and Amato
[18] exploited approximate convex decomposition (ACD) to
extract main features while ignore insignificant features. The
ACD considers the prior of concavity to govern the shape
segmentation; however, the concavity is not powerful enough
to describe functional parts of natural objects as what we
considered in this paper.

As one of the most powerful topological modeling tools,
Morse-Smale Complex (MSC), which is good at finding struc-
tural salient features, is recently used in segmenting a given
model according to salient features. A thorough review of main
topological analyzing methods including MSC can be found
in [19]. Varady et al. [20] employed the classical MSC with
persistence based simplification to obtain feature-aware seg-
mentation of patches; however, the resultant segmentation is
not good enough to serve as functional parts. Sahner et al. [21]
proposed the first topological based feature curve extraction
method based on modified simplification criterion. Compared
to methods based on the detection of ridge and valley lines,
the topological method has obvious advantages including
the computational efficiency and the numerical robustness.
Weinkauf and Gunther [22] improved the topological method
for extracting feature curves by introducing the concept of
separatrix persistence, which is a smooth salience measure-
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Fig. 2: Our segmentation technique plays an important role in the application of designing customized orthodontic braces for a
patient’s misaligned teeth (a). As the first step, a dental impression (b) is made by placing elastic impression material into the
patient’s mouth. After that, plaster is used to create a dental model (c) from the impression, and the dental model is scanned
by a structure-light-based scanner (d) resulting in a digital dental model (e) that is represented by a surface mesh. With the
help of our approach, the surface mesh is segmented into the crowns of teeth and the gum (f). New arrangement of the teeth
(as the target shape of using a orthodontic brace) can be generated by a program according to the standard dental arc (g).
The shape of this new arrangement is then fabricated into a mould (h) by the Fused Deposition Modeling (FDM) machine
[15]. The invisible orthodontic brace (i) customized for this patient can finally be fabricated from this mould by the thermal
compression molding. Wearing this orthodontic brace, dentition of the patient is corrected as shown in (j).

ment along features. Both [21] and [22] focus on feature curve
extraction instead of segmentation. Our segmentation method
does not follow this. In contrast, the 2-cells of initial MSC (i.e.,
the small patches) are coarsened in our approach according to
global shape prior.

B. Our approach

To overcome the difficulty of segmenting natural objects
having inherent properties mentioned at the beginning of
this paper, we develop an algorithm to segment the input
model into meaningful components in two phases. Our method
explicitly takes two criteria into consideration:

1) The boundary of segmented regions should coincide
with salient feature curves.

2) The shape of finally segmented parts should be as
compact as possible.

Involving these two criteria into the segmentation algorithm
can overcome the ambiguity in decomposing components on
a natural object like dental models, which contain superfluous
and scatter salient features at the boundary of teeth and on the
surface of crowns and gum.

In the first phase of our algorithm, low-level segmentation
is taken to compute homogeneous regions with feature curves
as their boundaries. Using low-level segmentation as a pre-
processing step is not new, where it has been employed
to reduce the cost of computation in [5] and to provide
fine granularity partition for further region merging in [23].
Differently, our low-level segmentation stage is designed to
accurately capture the boundaries of parts coinciding with
feature curves and provide a basis for later shape compactness
evaluation. To achieve this goal, we discover the topological

structure of input surface by using discrete Morse theory (see
Fig.1(b) for an example). In addition, anisotropic filtering is
applied to further enhance the coherence of feature curves
embedded in the surface structure. By changing the underlying
feature functions, the attribute of segmenting boundaries can
be easily altered between convex/concave salience. The results
of segmentation in low-level phase can be induced from the
surface structure represented by Morse complex.

From the partition generated in the first phase, the compact
shape prior is employed to form meaningful components in
the second phase. The 3D shape compactness considered in
this approach is characterized by the ratio between the volume
and its bounding area which does not naturally lead to a
hierarchy – therefore, the top-down splitting strategy used
in [18] cannot be applied here. Differently, we propose an
agglomerative clustering procedure to optimize normalized cut
metric that incorporates the affinities of boundary, 2D shape
compactness and 3D shape compactness. The clustering result
gives meaningful components (as shown in Fig.1(d)).

Benefited from this segmentation technique, the design and
manufacturing of devices for customized dental treatment can
be significantly speedup. As shown in the example of Fig.2,
segmenting the scanned dental model into teeth is a key
step for designing the customized orthodontic braces. With
the segmentation and following collision-free hole-filling of
teeth surface [24], each virtual tooth is ready for orthodontic
simulation. The functionality of our approach has been proved
in this real application.

Rest of the paper are organized as follows. The feature-
aware low-level segmentation is introduced in Section II, and
the aggregation incorporating compact shape prior is presented
in Section III. Details of the experimental tests are given in
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Fig. 3: An illustration of the Morse-Smale Complex (MSC).
(a) The MSC of a terrain surface where the height value is
used as feature function f and mapped to colors, where the
black curves are 1-cells and the minimal, maximal and saddle
types of 0-cells are displayed as orange, blue and green dots
respectively. A MSC consists of two subsets: (b) a primary
forest embedding gradient paths from minimum points to
saddle points and (c) a dual forest formed by gradient paths
from saddle points to maximal points.

Section IV. Lastly, the paper ends with the conclusion section.

II. FEATURE-AWARE LOW-LEVEL SEGMENTATION

This section develops the method for low-level segmenta-
tion. We first brief the algorithm for computing discrete Morse
complex so that its 1-cells can accurately capture the salient
feature curves. After that, an anisotropic filter is presented to
further enhance directional features of the function used to
generate the Morse complex.

A. Computation of discrete Morse complex

Given a feature function, f : S 7→ ℜ, defined on a manifold
surface S, the Morse-Smale Complex (MSC) of f characterizes
its topological structure, which is composed of homogeneous
gradient regions, separatrix and critical points. MSC of f can
be described by following the definitions given in [22]. 0-cells
of MSC are the critical points of minimal, maximal or saddle
types. 1-cells are formed by tracing integration lines along
the gradient field of f starting and ending at critical points.
The union of all integration lines converging to a critical
point comprises a stable manifold and all integration lines
diverging from a critical point comprise an unstable manifold.
The 2-cells of MSC are the intersection of stable and unstable
manifolds. An example MSC of a terrain surface is shown in
Fig.3.

The primary forest of MSC is also called Morse-complex.
Morse-complex (MC) gives a very good initial segmentation
of the given model. When the magnitude of minimal prin-
cipal curvature is used as the feature function f (as shown
in Fig.4(a)), 1-cells of MC are often coincident with the
feature salience. Details about how to compute the MC on
a mesh surface can be found in [22]. Our study finds that
the complexity of generated MC could be very high when
the feature function has noises (see Fig.4(b) for an example).
Having too many small patches will make the later high-level
segmentation be more difficult to take since that the compact
shape prior does not perform well on very small patches. To
solve this problem, an anisotropic filter is designed in the
following section to remove the noises meanwhile enhancing
the directional features. After filtering, the complexity of

Fig. 4: Complexity of Morse-complex can be simplified by
applying the anisotropic filter on the feature functions: (a) the
raw feature function, (b) the MC constructed from the raw
feature function, (c) the filtered feature function, and (d) the
MC generated from (c) has simpler complexity.

Fig. 5: By the Morse-complex (a) generated on the input
model, the low-level segmentation (b) can be successfully
determined. Comparing to the result from mean-shift based
segmentation [25] (c), our result well preserves the feature
salience while mean-shift does not.

Morse complex can be simplified (see Fig.4(c) and (d) for
an example).

The result of low-level segmentation can be easily obtained
from the Morse-complex. Starting from each maximal 0-cell
(which is in fact a vertex on the input surface S), the region
on S belonging to a 2-cell around this maximal 0-cell is
determined by a flooding algorithm. Here, the boundaries of 2-
cells are formed by 1-cells of MC. Figure 5 shows an example
of how to generate a low-level segmentation from MC. It is
not difficult to find that the boundaries of segmented small
patches are coincident with feature salience on the dental
model. This is a good property that other region-merging based
segmentation algorithms (e.g., mean-shift [25]) do not have.
A comparison is given in Fig.5(c).

B. Directional feature enhancement

The Morse structure generated on the raw feature function
f can suffer from the problems of noises and insignificant
feature salience. Several prior work tried to improve the Morse
structure. The simplification based methods (e.g., [21], [22],
[26]) can extract feature curves from MC by trimming off
cells. However, these approaches do not take the advantage of
Morse theory that the modification on feature functions can
help emphasize specific geometric attributes to be analyzed
(ref. [19]). The values of feature function f are processed in
our approach to enhance the coherence and saliency of feature
lines embedded in the Morse structure of an input surface S.
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Fig. 6: The coherence of principal directions can be improved
by applying the bilateral filter: (a) the curvatures determined
by tensor analysis [27] and (b) the filtered principal directions.

For segmenting freeform natural objects like dental models,
the most proper geometric attribute for characterizing possible
part boundaries is the minimal curvature whose magnitude is
used as the initial feature function f for computing Morse
structure. An anisotropic filter governed by an anisotropic
diffusion is formulated on S to further process the value of f .
Following the formulation in [27], the principal curvatures at
a vertex v ∈ S can be obtained by eigenvector decomposition.
Meanwhile, a tangent plane at v is also determined and a local
frame o(v) can be constructed.

The process of feature function on S is formulated as an
anisotropic diffusion on f . Time t is introduced to compute
f(t) with f(0) being the magnitude of minimal curvature. For
the purpose of enhancing feature salience, the anisotropic dif-
fusion conducted on this field should encourage the diffusion
of f along the direction of feature salience to filter out noises
while preventing the diffusion in the direction orthogonal to
feature salience. A tensor field needs to be constructed to gov-
ern the direction of diffusion. Since the initial feature function
is based on minimal principal curvature, a good candidate
tensor is formed by the vectors of minimal/maximal principal
curvatures (i.e., kmin and kmax). Although the computation of
curvature estimation by [27] is robust, the determined vectors
could be incoherent (see Fig.6 for an example). To improve
the coherence, a bilateral filter is applied on kmax at every
vertex vp as

knew
max(vp) =

∑
vq∈N(vp) kmax(vq)ϖ(vp, vq)φ(vp, vq)∑

vq∈N(vp) ϖ(vp, vq)φ(vp, vq)
(1)

where N(vp) is a set of vp’s one-ring neighbors, ϖ(vp, vq) is
the directional weight

ϖ(vp, vq) = |kmax(vp) · kmax(vq)|, (2)

φ(vp, vq) is the standard Gaussian filter

φ(vp, vq) = e−∥p−q∥2/2σ2
(3)

with σ being the average length of edges incident to vp and
p and q being the positions of vp and vq. After applying the
bilateral filter for 5 to 6 iterations, the smoothed kmax at a
vertex v can be normalized and then projected onto the local
frame o(v) to obtain its corresponding components in o(v) as
(kx, ky). As a result, a tensor field for specifying the directions
of anisotropic diffusion can be constructed as

G =
[

kx

ky

] [
kx ky

]
=

[
k2

x kxky

kxky k2
y

]
. (4)

Fig. 7: Robustness of low-level segmentation based on Morse
theory can be improved by the anisotropic filter: (a) the
unprocessed feature function and its corresponding MC, (b)
the MC obtained by isotropically filtering the feature function
(letting A = GT G), and (c) the result of anisotropic filtering
and its corresponding MC. The weak salience (inside red
circle) can be significantly enhanced to improve the robustness
of Morse theory based segmentation, and the number of 2-cells
is reduced by the anisotropic filtering.

Starting from the initial feature function f , the anisotropic
diffusion of f on the surface S is governed by the equation
below.

∂

∂t
f −∇ · (A∇f) = 0, (5)

where
A = GT

[
α

g(v)

]
G (6)

is the tensor to describe an anisotropic behavior in diffusion.
α = min{0.01, g(v)} is used in our implementation to remove
noises in the direction orthogonal to feature salience. g(v) is
a nonlinear term for enhancing features, which is defined as

g(v) =
1√

1 + ∥∇f(v)∥2
. (7)

Note that the tensor field A in Eq.(6) has the same eigenvec-
tors as G in Eq. (4) which encodes the coherent local structure
of the initial feature function. With the nonlinear term g(v)
as the small eigenvalue for A, the diffusion is steered along
flow-like structure. In addition to remove noise and enhance
feature saliency, our filter connects interrupted feature lines,
which is very important for the success of segmentation. Eq.(5)
is solved by using the Voronoi supports at vertices and the
implicit integration [28]. The computation for each integration
step can be converted into solving a sparse linear equation
system.

The functionality of this anisotropic filtering is demon-
strated in Fig.7, where the weak salience near the boundary
of bear’s legs (inside the red circle) can be enhanced by
our approach. For the comparison purpose, an isotropic filter
(by letting A = GT G) is also tested. Feature salience is
damaged by the isotropic filter, and it is hard to be recovered
by the Morse theory based topology analysis. The effect on
the following high-level segmentation is also shown in Fig. 8,
where our anisotropic filter connects interrupted weak feature
boundaries.

III. AGGREGATION WITH COMPACT SHAPE PRIOR

In this section, the high-level segmentation is determined by
an aggregation algorithm incorporating compact shape prior.
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Fig. 8: The impact of the filtering step to final segmentation:
(a) result with original feature scalar function, (b) result with
feature function modified by isotropic filtering, and (c) result
with feature function modified by anisotropic filtering.

Fig. 9: Compactness, C(H) (C(H) ∈ (0, 1]), of a set of
ellipsoids that vary from a sphere along two axes – the values
are evaluated by the classic definition reviewed in [30].

A. Metrics for affinity

The shape compactness is an intrinsic shape description
which relates the high dimensional metric with the low di-
mensional metric. Many natural objects are grown in a form
as compact as possible for economical biology reasons [3].
2D shape compactness has been used as priors in image
segmentation [29]. As reviewed in [30], the classic definition
of shape compactness is expressed as dimensionless area-to-
diameter ratio for 2D shapes and dimensionless volume-to-
area ratio for 3D shapes. The 3D dimensionless compactness
is formulated by the ratio between the volume of a shape and
the volume of a sphere having the same surface area, which is
the most compact shape. For example in Fig.9, we illustrate
the classic shape compactness with a set of ellipsoids that
vary from a sphere along two axes. Other definitions of shape
compactness exist such as [30] for discrete objects and [31]
based on moment of inertia.

For two segments, Pi and Pj , in addition to affinity metrics
are formulated in our approach for measuring 3D shape com-
pactness, 2D shape compactness and boundary compatibility
between them.

3D shape compactness
To evaluate the metric for 3D shape compactness, the

Fig. 10: The volume belonging to each patch segment can
be obtained with the help of Voronoi diagram computed in
the voxel space. The volumes belong to different patches are
displayed in different colors.

volume corresponding to a patch segment Pi needs to be
obtained. While it is simple to evaluate the area of a region
and the length of a curve on mesh surfaces, evaluating the 3D
volume belonging to a segment is not a trivial task. Moreover,
the 3D shape compactness is sensitive to noise or inaccurate
approximation as shown in [30]. To be computational efficient
and low memory footprint, we solve this problem by trans-
forming the mesh surface into a voxel-representation with the
help of graphics hardware. First of all, the given mesh surface
is sampled into Layered Depth Image (LDI) [32] from three
orthogonal directions. As mentioned in [33], combining these
three LDIs results in a voxel representation. With the help
of discrete distance transformation [34], the Voronoi diagram
of each boundary voxel can be efficiently formed. Therefore,
a voxel-representation of the volume, ν(Pi), according to
each patch segment Pi can be obtained. Specifically, ν(Pi)
is defined as the union of Voronoi cells for all voxels on Pi

(see Fig.10 for an example). In our implementation, voxels
with resolution 5123 are employed. Note that the low memory
footprint is due to LDI’s sparse solid representation.

Since we have transformed the volume corresponding to
each segment into discrete representations, we adopt the
discrete method of [30] to evaluate the 3D shape compactness.
However, this dimensionless measure does not fit our problem
as we want to promote the shape compactness only when the
regions are large. As a result, a scale-dependent metric for 3D
shape compactness affinity between two patch segments, Pi

and Pj , is introduced as follows(named as volume-weighted
compactness):

V(Pi, Pj) = Cd(ν(Pij)) · ws(ν(Pij)), (8)

where Cd is the reciprocal of the discrete 3D shape compact-
ness defined in [30]:

Cd(ν(Pij)) =
n − ( 3

√
n)2

n − m/6
(9)

with n and m being the number of voxels and the number of
enclosing quadrangles of the discrete solid respectively. ws is
the volume weight which can be easily counted from the voxel-
representation. Note that, the voronoi region ν(Pij) according
to a patch Pij merged from Pi and Pj can be obtained by

ν(Pij) = ν(Pi) ∪ ν(Pj). (10)
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Fig. 11: Comparison of segmentation results with the non-
scale-dependent vs. scale-dependent metric for 3D shape
compactness affinity: (a) the result with non-scale-dependent
metric (b) the result with scale-dependent metric. Both the
results are obtained by 40 patches as the terminal condition.

As shown in Fig.11, the non-scale-dependent metric for
3D shape compactness affinity results in small components
which are compact and bounded with feature lines. In contrast,
by using scale-dependent metric for 3D shape compactness
affinity, small components are merged through optimizing the
Normalized cut energy.

2D shape compactness
The evaluation of above metric relies on the resolution of

voxel-representation. The compactness on some small seg-
ments could be missed when the resolution is low. To com-
pensate this inaccuracy, the metric for 2D shape compactness
affinity, P(Pi, Pj), is used.

P(Pi, Pj) =
L2(Pij)

A(Pi) + A(Pj)
(11)

with L(Pij) denoting the length of ∂Pij – boundary curve of
the merged patch, Pij .

Boundary compatibility
The above two matrices consider the constraint for shape

compactness. The boundary compatibility metric defined be-
low is introduced to preserve the feature lines with high
salience which is embedded in the boundaries between seg-
mented patches. As a result, the aggregation is only encour-
aged between boundaries with insignificant feature salience.

B(Pi, Pj) =
1

∥∂Pi ∩ ∂Pj∥

∫
∂Pi∩∂Pj

f(s)δ(s)ds, (12)

where f(·) is the feature function, ∂Pi ∩ ∂Pj represents the
boundary curve between two patches Pi and Pj , and ∥ · · · ∥
denotes length of the boundary curve. δ(s) is a function to
evaluate how likely the boundary curve c(s) is perpendicular
to ∇f , which is defined as

δ(s) =
∣∣∣∣ c′(s)
∥c′(s)∥

· ∇f

∥∇f∥

∣∣∣∣ . (13)

B. Agglomerative clustering

The methodology of other mesh segmentation algorithm
based on graph partition (e.g., [14], [35]) cannot be applied
here as the metrics used in our approach cannot be accurately
evaluated in the small scale of patches. The metrics are data
dependent. Moreover, for three patches Pi, Pj and Pk are

Fig. 12: The segmentation results of spectral clustering for
optimizing Ncut energy:(a) a hand model with 2,494 triangles
and (b) a decimated dental model with 9,021 triangles.

linked to each other and the metric w(·, ·) measures the weight
of merging two patches, we have

w(Pij , Pk) ̸= w(Pi, Pk) + w(Pj , Pk) (14)

where Pij denotes the patch obtained by merging Pi and Pj .
There are two additional reasons preventing the adoption of
the spectral graph clustering. As shown in Fig.12, although
the spectral method separates fingers from the hand model,
it produces unsatisfactory result for the dental model since
salient features in the gum surface mislead the clustering
process. The most vital issue is that computing eigen vectors of
the affinity matrix has very high cost in memory consumption.
This prevents its usage in practical applications with large
meshes. For example, we have to decimate the original mesh
from 403,674 faces into 9,021 faces. Instead of using the
original spectral clustering to optimize normalized cut metric,
we adopt a modified agglomerative clustering algorithm to
compute the segmentation on models with large number of
triangles.

Following the problem formulated in [36], a segmentation
of the input mesh surface can be defined as a graph G =
(V,E, W (E)), where the set of nodes, V , is the patch seg-
ments, and the set of edges, E, is the neighborhood between
segments. W (E) defines the weights on the edges of G. The
high-level segmentation is formulated as finding an optimal
partition on the graph.

For a fixed number of clusters, n, the quality of partition
C = {C1, C2, · · · , Cn} on G can be evaluated by the normal-
ized cut metric as

NCut(C) =
n∑

i=1

∑
j ̸=i w(Ci, Cj)∑n
k=1 w(Ci, Ck)

. (15)

The smaller value is returned by NCut(C) on a partition C,
the better quality of the partition is. Alternatively, finding
a minimal NCut(C) can be achieved by maximizing the
normalized association as

NAssoc(C) =
n∑

i=1

w(Ci, Ci)∑n
k=1 w(Ci, Ck)

. (16)

This is because that NCut(C) + NAssoc(C) ≡ n.
Suppose two segments, Ci and Cj are neighboring to each

other, the improvement of NAssoc(C) after merging them can
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be evaluated by

△(Ci, Cj) =
2w(Ci, Cj)∑n

k=1 w(Ci, Ck) +
∑n

k=1 w(Cj , Ck)
. (17)

An agglomerative clustering procedure iteratively merges
neighboring segments in a greedy way: a pair of two segments
with the maximal score in △(·, ·) have the highest priority to
be merged. The clustering stops when either of the following
terminal conditions is satisfied:

1) The target number of segments has been formed – a
global optimum has been achieved.

2) All the remained pairs segments have negative values re-
turned by △(·, ·) (Eq.17). This indicates that any further
merging operator will reduce the value of NAssoc(C),
which is supposed to be maximized. In other words, the
computation is stuck at a local optimum.

The affinity weight, w(Ci, Cj), determines the behavior of
the clustering procedure, we formulate it by integrating three
affinity metrics defined in the section above.

w(Ci, Cj) =
exp(−αB(Ci, Cj) − βP(Ci, Cj) − γV(Ci, Cj))

min(A(Ci), A(Cj))
(18)

with α + β + γ ≡ 1. The smaller area is chosen by
min(A(Ci), A(Cj)) to normalized the weight, which encour-
ages the merging of tiny segments during the clustering. Note
that, after merging two segments, the affinity weight between
the new patch and its neighbors must be re-evaluated. This is
different from the prior approach [36], in which the weights
are simply updated through accumulation (i.e., w(Cij , Ck) =
w(Ci, Ck) + w(Cj , Ck) is employed). A comparison is given
in Fig.13, which shows that our modification outperforms the
original method.

Weighting for Different Affinity Metrics
The weights, α and β, are used to control the balance
among different affinity metrics1. Theoretically, when using
a relatively large value for α, the feature salience can be
well-preserved but the compactness of segmented shape drops.
On the other hand, when decreasing the value of α, the
affinity for feature salience dominates the merging procedure
so that the resultant segments may not be compact. The shape
compactness in 3D model segmentation can be controlled
better by the metric for 3D shape compactness rather than
2D. Therefore, a bigger value is used for γ and a smaller
β is applied to compensate the accuracy problem caused by
voxel-representation for evaluating V(·, ·).

Experimental tests also proves the above analysis. In the first
test, we only employ the metric of boundary compatibility by
letting α = 1.0 and β = γ = 0.0 (see Fig.14). Although
for simple models like the bear shown in Fig.14(a), only
using B(·, ·) can still get good result as Fig.14(b). But it
fails on complex natural objects as the dental model shown
in Fig.14(c). The second test is conducted to verify the
metric for 2D shape compactness (Fig.15). It is found that
the sliver patches are avoided in the merging procedure when
the metric of 2D shape compactness is introduced. In the third

1The value of γ can be determined by α and β.

Fig. 14: Experimental tests on different model when only the
metric of boundary compatibility is used in the graph weight
(i.e., letting α = 1.0 and β = γ = 0.0). (a) A given bear model
has 58 patches generated by the low-level segmentation. (b)
A satisfactory result can be obtained on this simple model.
However, when applying to a complex object like the dental
model (c), it fails to separate all teeth from the dental model
by only testing the metric of boundary compatibility.

Fig. 15: Comparison for the merging results without vs. with
the metric of 2D shape compactness: (a) α = 1.0 and β = 0.0
and (b) α = β = 0.5. The numbers of segments in (a) and (b)
are both 200 – i.e., the intermediate results.

test (Fig.16), the functionality of 3D compact shape prior is
demonstrated. Without the metric of 3D shape compactness
(even when 2D shape compactness has been considered),
the meaningful segmentation still cannot be obtained (see
Fig.16(a)). After introducing V(·, ·) with a weight similar to
B(·, ·), the satisfactory result is generated – the dental model
is segmented into 14 teeth plus a gum in Fig.16(b).

C. Fine-Tuning

Our agglomerative clustering algorithm can successfully
generate meaningful segments with the help of compact shape
prior. However, the boundary curves between two segments

Fig. 16: Aggregation without vs. with the metric of 3D shape
compactness: (a) α = 0.6 and β = 0.4 (V(·, ·) is neglected)
and (b) α = 0.45 and β = 0.15. Both the results are obtained
by 15 patches as the terminal condition.
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Fig. 13: In our modified agglomerative clustering algorithm, the relevant weights of a newly formed patch are re-evaluated.
This is different from the original algorithm presented in [36], in which the weights are updated by accumulation. (Top row)
The original clustering algorithm is stuck at a local optimum with 153 segments. (Bottom row) The modified algorithm can
successfully generate the final result with 15 segments when reaching the terminal condition of our segmentation algorithm.

Fig. 17: Fine-tuning of boundaries: (Left) After the segmen-
tation, the boundaries between segments are formed by the
edges of input mesh surfaces (in a zig-zag shape). (Middle)
Bounded by the joint-points (in red), the initial boundary
curves are ready to be stretched one by one. (Right) The
optimized boundary curves can go inside triangles to improve
the smoothness by [37].

could be in a zig-zag shape due to the limited resolution of
mesh representation. In order to further improve the quality of
segmentation, we relax the boundaries in a region around their
current position – i.e., the region formed by the triangles which
are adjacent to the boundaries of segments. Specifically, on
the results of segmentation, a vertex is defined as a joint point
when it is located at the boundary of segments and is adjacent
to more than two different segments. We fix all the joint points
in the fine-tuning step. The boundary curves between two joint
points are ‘stretched’ one by one (see Fig.17 for an example).
The local Geodesic optimization method in [37] is employed
in this stretching step as it can be easily modified to be aware
of feature salience and to prevent the intersection with other
boundaries of segments. After stretching, the final segments
are obtained by trimming triangles along the new boundaries.

IV. RESULTS AND DISCUSSION

We have implemented the proposed approach in a prototype
dental CAD/CAM system by using Visual C++. All the tests
presented in this paper are conducted on a PC with Intel Core
i5 CPU + 2GB memory running Windows XP OS. For models

Fig. 18: A variety of dental models can be successfully
segmented into meaningful regions (teeth and gum) by our
approach presented in this paper.

with around 500K triangles, the computation can be completed
in less than one minute and the memory usage is less than
500MB. As shown in Fig.18, this approach can automatically
extract meaningful regions for the teeth on different dental
models which are scanned from different patients. Note that,
in some of these examples, the patients have teeth lost.
Our algorithm can still successfully extract the regions of
remaining teeth.

We mainly test this algorithm on the dental models, which
are natural objects with many salient features and the mean-
ingful parts are in compact shape. Such kinds of objects are
difficult to be segmented by prior algorithms that are designed
for man-made objects. We choose the famous watershed [23]
and random walk [38], [39] algorithms to compare as both of
them claimed to be able to deal with small feature variations.
The comparison is also conducted on the dental model that
has superfluous feature lines on the crowns of teeth and the
gum tissue. The watershed algorithm [23] tends to capture
regions of similar curvature. Its merging decision depends on
the ‘depth difference’ defined in the feature space such that the
‘shallower’ regions are merged with its neighbors earlier. As
shown in Fig.19(a), the segmentation fails to extract teeth from
the dental model – we stop the aggregation at 19 segments
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Fig. 19: Compared with the results generated by (a) the
watershed algorithm [23] and (b) the random walk algorithm
[39], our approach generates a much better result as shown in
Fig.16 (b).

since some teeth has already been merged into the region
of gum. The random walk algorithm [38] depends on seed
points and the probability that a random walk can first reach a
particular seed point. In [39], the algorithm is extended to work
on mesh surface and to automate the procedure for specifying
seed points. Nevertheless, the quality of mesh segmentation
still relies on seed points. Therefore, in this comparison, we
specify 16 ‘good’ seed points on every teeth and the gum (see
the dots shown in Fig.19(b)). However, the result generated
by random walk is still not able to be used in the dental
CAD/CAM applications. Poorer results are generated by these
methods as they are not robust to deal with the superfluous
salient features presented on the dental models. Differently,
our method captures the salient boundary contours with the
help of topology analysis at the low-level segmentation phase,
and discriminates the boundaries of teeth from other feature
lines by taking compact shape priors into consideration at the
high-level segmentation phase.

Some prior dental CAD/CAM systems directly search the
boundaries of teeth based on the observation that such bound-
aries are usually formed by salient feature lines. However,
without considering the compactness of teeth, the procedure
is not robust. For example, Kronfeld et al. [40] first locate
the initial contour on the dental model by a slicing plane fit
from the feature points (as shown in Fig.20(a)). The initial
contour is then optimized by the snake movement [41] to align
with feature lines on the gum as shown in Fig.20(b). However,
the contour can be stuck by salient features on the surface of
gum (see Fig.20(c)). In addition, such snake-based method can
only extract one region during each procedure; as a result, the
routine must be taken k times to extract k teeth on a dental
model.

Although the segmentation method presented in this paper
is motivated by the dental applications, this approach actually
can be applied to many other objects including man-made
ones. As shown in Fig.21, the freeform head models and
the monkey model can be segmented into compact pieces;
the relief structures of the unclosed cup model can be seg-
mented naturally with only boundary affinity and 2D shape
compactness affinity. To further verify the functionality of our
approach, we test this approach on another man-made but
scanned model – a keyboard with its shape captured by a
RGBD-camera. The segmentation result is shown in Fig.22. It
is easy to find that the keys on the keyboard are successfully

Fig. 20: The result of the snake-based segmentation [40] on
a dental model: (a) the initial contour, (b) contour optimized
after a few iteration steps of snake movements, and (c) a zoom-
view of contours stuck at some salient features on the surface
of gum.

Fig. 21: The segmentation result of our approach on man-made
models.

extracted by this segmentation method.
Table I lists the parameters in the high-level segmentation

used in testing examples. Table II lists the execution time
of each step in our algorithm. The filtering step is the most
time-consuming step and the time depend on the complexity
of the model. The time of MSC extraction is negligible. For
the dental model example, the whole process takes dozens of
seconds. This indicates that our algorithm is fast enough for
invisible orthodontics applications.

Specifying weights in high-level segmentation is somewhat
cumbersome. However, for models in the same category,
the weights are the same. As a result, the efficiency for
dental applications is not affected. Another disadvantage of

Fig. 22: The progressive results of applying our approach on
a keyboard model scanned from a real one by the RGBD-
camera: (top row) the feature function f enhanced by the
anisotropic filter, (middle row) the Morse-complex constructed
on the keyboard model, and (bottom row) the final segmenta-
tion result governed by compact shape prior.
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TABLE I. Parameters used in high-level segmentation for
models tested in this paper.

Model(Fig.) α β γ
Dental(1) 0.5 0.1 0.4
Head(21) 0.6 0.2 0.2
Monkey(21) 0.6 0.2 0.2
egea(21) 0.6 0.1 0.3
cup(21) 0.8 0.2 0.0
Keyboard(22) 0.4 0.2 0.4

TABLE II. Timing statistics of testing examples of each
computation stages for models tested in this paper. All timings
are given in milliseconds. From left to right: number of
triangles, time for anisotropic filtering, MSC computation,
agglomerative clustering, fine tuning, and time in total.

Model(Fig.) tri.# seg.# Time(Millisecond)
filter. MSC. clust. tuning

Dental(1) 412,534 15 35,467 0 4,064 745
Head(21) 40,896 14 3,194 0 201 134
Monkey(21) 873,747 8 95,123 0 2,221 541
egea(21) 16,532 9 189 0 59 97
cup(21) 291,358 30 1,102 0 879 143
Keyboard(22) 116,499 105 2,602 0 654 227

this approach comes from that the number of target regions
must be specified as the terminal condition for the merging
procedure that minimizes the normalized cut metric. This
can be considered as another prior to be specified by users.
Actually, such prior is not difficult to be given in many
applications. For example, when segmenting a dental model,
we start from selecting 15 regions as target no matter whether
the patient has teeth lost. For those patients have teeth lost,
we can incrementally reduce the number of target regions. Or
we can directly find the number of lost teeth and accurately
specify the number of resultant segments.

V. CONCLUSION

In this paper, we present a novel method to automatically
segment natural objects which are difficult to be segmented
into meaningful parts by prior methods – no matter those
approaches based on local geometric cues or those global
optimization based approaches. Based on the idea of incor-
porating global shape prior to achieve a robust and accurate
segmentation, we investigate compact shape prior in the frame-
work of normalized cut and propose improvements. Since
accuracy and robustness are two important factors for making
a segmentation algorithm into practical usage, we have tried
to separate high-level recognition of meaningful parts from
low-level geometry-based segmentation. In the phase of low-
level segmentation, the contours of small patches coincident
to the salient feature curves are extracted from a field of
feature function which has been enhanced by an anisotropic
filtering. The meaningful components on an input model are
extracted through a region merging procedure by taking 1)
feature-preservation, 2) 2D shape compactness and 3) 3D
shape compactness into consideration. The functionality of our
approach has been demonstrated in the practical application
of designing customized orthodontic braces for a patient’s

misaligned teeth. The robustness of this method has been
verified on a variety of dental models which are scanned from
individual patients.
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