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Fig. 1. Given a portrait image (top) with a double chin as input, our method can automatically generate a new portrait without a double chin (bottom). The
proposed approach is able to preserve facial identity thanks to the seamless integration of the new chin with the original face through editing the semantic
latent code in the StyleGAN latent space.

Facial structure editing of portrait images is challenging given the facial
variety, the lack of ground-truth, the necessity of jointly adjusting color and
shape, and the requirement of no visual artifacts. In this paper, we investigate
how to perform chin editing as a case study of editing facial structures. We
present a novel method that can automatically remove the double chin effect
in portrait images. Our core idea is to train a fine classification boundary
in the latent space of the portrait images. This can be used to edit the chin
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appearance by manipulating the latent code of the input portrait image while
preserving the original portrait features. To achieve such a fine separation
boundary, we employ a carefully designed training stage based on latent
codes of paired synthetic images with and without a double chin. In the
testing stage, our method can automatically handle portrait images with only
a refinement to subtle misalignment before and after double chin editing.
Our model enables alteration to the neck region of the input portrait image
while keeping other regions unchanged, and guarantees the rationality of
neck structure and the consistency of facial characteristics. To the best of our
knowledge, this presents the first effort towards an effective application for
editing double chins. We validate the efficacy and efficiency of our approach
through extensive experiments and user studies.
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1 INTRODUCTION
Portrait images, whichmainly represent human faces, are ubiquitous
due to the rapid advances of mobile computing and photographic
techniques. They are highly important for social media applications
(e.g., Facebook, Twitter) that play an increasingly significant role in
human social life. This motivates researchers to investigate computa-
tional methods for portrait image editing so that imperfections such
as shadows, noises, and distortions can be easily corrected [Arakawa
and Nomoto 2005; Scherbaum et al. 2011; Shih et al. 2019; Xiao et al.
2020].
Albeit successful, previous portrait image editing works mainly

concern adjusting image colors [Li et al. 2015; Liang et al. 2014;
Scherbaum et al. 2011] or globally warping the face region [Shih
et al. 2019; Xiao et al. 2020; Zhao et al. 2018]. How to effectively edit
facial structure in part or even remove a structural feature is largely
unexplored. This is a more challenging problem as both color and
shape of the facial structure need to be partially updated, and the
edits need to be compatible with the surrounding region to avoid
visual artifacts.

As an early exploration of facial structure editing of portrait
images, we investigate how to effectively and efficiently edit the
chin structure as an important case study. The main reason is that
the shape and color of the chin region can easily vary due to head
pose and/or lighting condition when taking portrait images, which
easily affects the facial structure with a common double chin effect
(see the top row in Fig. 1) or not. In this work, we perform chin
editing by removing the double chin effect, but our general approach
can also be exploited for the reverse process, i.e., adding double chin
effect (more discussion in Section 6).
In terms of double chin removal, although conventional image

editing tools such as PhotoShop can be used, the manual process
requires specific skills and is usually time-consuming [Kelby 2011].
This motivates us to investigate a computational approach that is in-
herently challenging. First, portrait faces usually have big variations
on gender, pose, color, shape, etc. These factors can easily affect the
problem setting and result in case-by-case parameter tuning. Also,
simply adjusting colors around the double chin to blur, lighten or
darken the “pseudo” chin is not satisfactory since the neck preserves
its shape and affects the quality of the overall portrait.

Inspired by the recent success of generative adversarial networks
(GANs) for high-quality portrait image synthesis [Brock et al. 2019;
Karras et al. 2018], especially controlled generation with disentan-
gled facial features (e.g., identity, pose, hairstyle, skin color, etc.) by
StyleGAN [Karras et al. 2019], we formulate chin editing as a portrait
image synthesis problem in the latent space of portrait images. Our
goal is to automatically synthesize a new portrait image without a
double chin while keeping the features of the original portrait image
beyond the double chin region unchanged. The main idea is to train
a fine separation boundary and edit the input portrait image’s latent
code towards a domain that contains faces without a double chin
while preserving original portrait features. This makes sense, as
moving latent code along the normal vector of the proposed fine
separation boundary can preserve features other than the double
chin during the editing process.

In this paper, we present a novel method that achieves the above
goal. As the latent codes in StyleGAN do not disentangle the double
chin feature, we first train a classifier to score latent codes accord-
ing to double chin prevalence. To avoid tedious data collection, we
directly use randomly sampled latent codes and their corresponding
portrait images for training. This yields a coarse separation bound-
ary that can be used to synthesize an intermediate portrait without a
double chin. However, other facial features, such as shape and pose,
cannot be well preserved. To resolve this, we introduce a diffusion
process to blend the original portrait and the intermediate portrait
with the help of a neck mask that can separate the double chin
feature from other features, resulting in paired portrait images with
and without a double chin and their corresponding latent codes.
Finally, we utilize the paired latent codes to train a fine double chin
separation boundary, allowing for chin editing while keeping other
facial features in the testing stage. The subtle misalignment of input
and output faces is further refined by image warping. We evaluate
our work by demonstrating high-quality chin editing results on por-
trait images with varying gender, ages, skin color, pose, etc. We also
conduct a user study to show that our results accord with human
preferences.

In summary, our work makes the following major contributions:
• We present the first automatic chin editing method for por-
trait images. It can generate a new facial structure without
double chin while consistently leaving other regions un-
changed.

• We introduce a novel facial editing approach at the structural
level based on coarse-to-fine separation boundary training,
which allows direct editing in the latent space of the por-
trait image with plausible semantic manipulation and facial
identity preservation.

• We create the first large-scale chin editing dataset to facilitate
future research. The dataset contains 13,990 pairs of realistic
portrait images with and without a double chin. 1

2 RELATED WORK

2.1 Face Manipulation for Portrait Images
There is an increasingly wide range of face manipulation applica-
tions, since people pay ever greater attention to their portrait images
on social networks. Editing the facial texture can cultivate a more
captivating portrait appearance. Style transfer methods [Chang et al.
2018; Shih et al. 2014] transfer the style of a given portrait photo
onto a new one. In addition to skin texture, lighting [Sun et al. 2019;
Zhou et al. 2019] and shadow [Zhang et al. 2020] can also be con-
trolled. While some works are adopted for manipulating a single
facial attribute [Li et al. 2016; Shen and Liu 2017], another group of
deep-learning-based methods exploit a wide variety of intermediate
representations. For example, MaskGAN [Lee et al. 2020] learns to
traverse on the mask manifold to manipulate the face, and provides
the freedom to edit images interactively. SEAN [Zhu et al. 2020a]
achieves localized facial editing with segmentation masks and style
reference image as input. SC-FEGAN [Jo and Park 2019] leverages
more flexible freeform user input to generate high-quality synthetic
images, such as face mask, sketch, and color. However, all of the
1https://github.com/oneThousand1000/coarse-to-fine-chin-editing
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Fig. 2. The pipeline of our model. In training, our goal is to train a fine separation boundary. Given a latent code 𝑤𝑑 and its corresponding portrait image
𝑥𝑑 with visible double chin, we first use a coarse separation boundary (Subsection 3.2) to edit 𝑤𝑑 and get �̃�+

𝑜 , which is fed into the StyleGAN generator to
get a new portrait image �̃�𝑜 . 𝑤𝑑 is mapped to the𝑊 + latent space and get 𝑤+

𝑑
. Meanwhile, our 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 (Subsection 3.3) automatically extracts a

neck mask𝑚𝑛𝑒𝑐𝑘 from 𝑥𝑑 . Then, we get a synthetic image 𝑥𝑜 by using𝑚𝑛𝑒𝑐𝑘 to paste the neck region of �̃�𝑜 onto 𝑥𝑑 . After that, 𝑥𝑜 ,𝑚𝑛𝑒𝑐𝑘 and 𝑤+
𝑑
guide

our 𝐷𝑖𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 approach (Subsection 3.4) to generate an optimized latent code �̂�+
𝑜 and a portrait image 𝑥𝑜 . We finally leverage �̂�+

𝑜 and 𝑤+
𝑑
to train a fine

separation boundary (Subsection 3.5). Note that the coarse separation boundary has worse performance in facial preservation than the fine separation
boundary. In testing, we first use a projector to project the input real image to the latent code ¤𝑤+

𝑑
. Then we use the fine separation boundary to edit ¤𝑤+

𝑑
and

generate a new latent code �̌�+
𝑜 along with a new portrait image. Finally, we input the new portrait image to our𝑊𝑎𝑟𝑝𝑖𝑛𝑔 approach (Subsection 3.6) to correct

the misalignment and generate the final resulting image by pasting the new portrait’s neck region onto the original image. Input image is provided by FFHQ
and Flickr user Kevin Lee (CC BY-NC 2.0).

above methods do not work well in eliminating double chin since
generating a new chin requires further geometric considerations
than simply editing facial color and facial shape. Variational Au-
toencoders can also be used for high-level manipulation of facial
expressions [Yeh et al. 2016]. For 3D-based face manipulation, the
3D morphable model (3DMM) [Blanz and Vetter 1999] allows geo-
metrical face editing. Abundant 3D face information and constraints
lead to more effective results of portrait reshaping [Xiao et al. 2020].

2.2 Portrait Synthesis based on GANs
Since first introduced in [Goodfellow et al. 2014], generative adver-
sarial networks (GANs) have beenwidely used to synthesize realistic

images. Recently, researchers have explored a series of approaches
to increase the model capability and result quality of GANs [Brock
et al. 2019; Gulrajani et al. 2017; Karras et al. 2018; Mao et al. 2017;
Radford et al. 2016]. For the specific portrait synthesis problem, a
face completion algorithm based on a deep generative model [Li
et al. 2017] can directly generate contents from random noise for the
missing regions. Chen et al. [2020] generate high-quality face images
from freehand sketches(even rough and/or incomplete sketches),
which serve as soft constraints. StarGAN [Choi et al. 2018] achieves
image-to-image translations for multiple domains using a single
model. However, it is still challenging how semantic attributes are
determined by latent code in the latent space.
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2.3 Latent Code Manipulation
Our work is related to latent code manipulation. Adapting the image
prior learned by GANs to image statistics [Bau et al. 2019] allows
for semantic image editing while reconstructing the input image.
mGANprior [Gu et al. 2020] leverages multiple latent codes to gen-
erate and compose multiple feature maps at intermediate layers.
InterFaceGAN [Shen et al. 2020] explores how semantics are en-
coded in the latent space of GANs. GANSpace [Härkönen et al. 2020]
explores the linearity of the GAN space and its latent directions
based on Principal Component Analysis. Fader Networks [Lam-
ple et al. 2017] rely on an encoder-decoder architecture to learn a
disentangled latent space. StyleGAN [Karras et al. 2019] has state-of-
the-art performance in generating high-quality portrait images with
disentangled styles. StyleGAN2 [Karras et al. 2020] redesigns the
model architecture and training methods of StyleGAN and improves
distribution quality metrics and image quality. StyleGAN has an
intermediate latent space𝑊 , in which facial features can be disen-
tangled. The capability to embed the input latent code into the latent
space𝑊 makes StyleGAN applicable to face latent code manipula-
tion tasks. In-domain GAN inversion [Zhu et al. 2020b] proposes
an encoder that not only projects a given image to the latent space
of GANs, but also serves as a regularizer to fine-tune the latent
code. Image2StyleGAN [Abdal et al. 2019] embeds a given image
into the latent space of StyleGAN and applies attribute level feature
transfer to images. Although in-domain GAN and Image2StyleGAN
can transfer new semantic information to the target image, they
require a separate source image with feasible semantics while our
method can automatically edit the target image. GIF [Ghosh et al.
2020] applies StyleGAN2 to FLAME (a generated 3D face model)
to improve disentanglement and produces photo-realistic images
with explicit control. StyleRig [Tewari et al. 2020] achieves a face
rig-like control based on StyleGAN and a 3DMM, and it provides
explicit control over a set of semantic control parameters. However,
the above methods cannot be used in our scenario due to mainly
focusing on the face region.

3 METHODOLOGY
In this section, in order to discuss our chin editing method specifi-
cally, we first give an overview of the proposed method, then present
its major components, finally elaborate on the implementation de-
tails.

3.1 Overview
Fig. 2 shows an overview of our novel GANs-based method that
can automatically edit the double chin from an input portrait im-
age while preserving facial identity. Given a portrait image with a
visible double chin and its corresponding latent code (encoded by
the StyleGAN projector), our goal is to edit the latent code using a
fine separation boundary of chin structure (with or without double
chin), such that a new portrait image without double chin can be
generated while keeping the rest region of the portrait unchanged.
Our pipeline consists of two stages. In the training stage, we aim to
achieve coarse-to-fine separation boundary training. We first use
randomly sampled latent codes and their corresponding portrait
images to train a coarse separation boundary (Subsection 3.2), such

that the input latent code can be edited by moving along the nor-
mal vector of the coarse separation boundary to generate a portrait
image with a new chin. We map the latent codes to the𝑊 + latent
space and apply a 𝑆𝑡𝑦𝑙𝑒𝑀𝑖𝑥𝑖𝑛𝑔 approach to preserve skin character-
istics. To better preserve facial identity, the original portrait image is
fed into the 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 (Subsection 3.3) to extract a neck mask,
which is then employed to get an intermediate synthetic image
from the two portrait images, serving as a better facial prior. Since
the intermediate portrait image’s posture and shape of the face are
different from the original one, there exists a visible misalignment
in the intermediate image. We therefore apply a diffusion method to
eliminate the problem by putting the intermediate image, the neck
mask, and the latent code to the 𝐷𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 process (Subsection 3.4).
𝐷𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 outputs an optimized latent code along with the result-
ing portrait image. Finally, we leverage the optimized latent codes
to train a fine separation boundary (Subsection 3.5). In the testing
stage, the input portrait image is fed to a StyleGAN projector to
get its latent code. The fine separation boundary directly edits the
latent code and generates a new portrait image. Although the fine
separation boundary has better performance in preserving facial
identity, subtle misalignment still exists along the face’s edge in
the new portrait image. In𝑊𝑎𝑟𝑝𝑖𝑛𝑔 process (Subsection 3.6), we
perform a warping operation to eliminate such misalignment in
order to get the resulting image.

3.2 Coarse Double Chin Separation Boundary
This subsection proposes a coarse double chin separation boundary
to edit the input latent code. We aim to edit the original portrait
image 𝑥𝑑 ’s latent code𝑤𝑑 and generate a new portrait image with
the double chin eliminated. We employ the separation hyperplane
training approach by InterFaceGAN [Shen et al. 2020] to explore
the separation boundary in the latent space. Facial semantics can
be edited by moving along the normal vector of the separation
boundary. The latent space𝑊 of StyleGAN is “unwrapped” from the
latent space 𝑍 and is less entangled with more linearity, preventing
StyleGAN from generating mixed face styles. We therefore search
the double chin’s separation boundary on disentangled latent space
𝑊 and use this separation boundary to eliminate the double chin.

To do so, we need to bridge the space of the latent code and
the space of double chin. As the synthesis network 𝑔 in Style-
GAN can map the latent code to the image space 𝑋 , this can be
achieved at the higher dimensional image level. A classifier named
𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 is developed to score a portrait image that
is generated from latent code as:

𝑠 = 𝐶 (𝑔(𝑇 (𝑤,𝜓 ))), (1)

where 𝑠 denotes the score, 𝐶 denotes the 𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ,
𝑔(𝑇 (𝑤,𝜓 )) denotes the synthesized portrait image, 𝑇 denotes the
truncation trick and stack operation of StyleGAN (as shown in
Fig. 3), and𝜓 denotes the hyperparameter in truncation trick that
scales the deviation of the given𝑤 from the center �̄� . We suppose
that an image with double chin will be scored as 𝑠 = 1, otherwise
𝑠 = 0.

DoubleChinClassifier Training Data. We first collect dataset 𝑋𝑜 =

{𝑥𝑖𝑜 |𝑛𝑜
𝑖=0} (w/o double chin) and 𝑋𝑑 = {𝑥𝑖

𝑑
|𝑛𝑑
𝑖=0} (w/ double chin).

We select 1,100 portrait images from CelebAMask-HQ [Lee et al.
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Fig. 3. The pipeline of StyleGAN. The randomly sampled latent code 𝑧 with
the shape of [1, 512] is normalized and fed into Mapping Network. The
Mapping Network maps 𝑧 to the latent space𝑊 and outputs 𝑤, then the
truncation trick𝑇 is applied to 𝑤 before it is fed into each layer in Synthesis
Network 𝑔. A new stacked latent code 𝑤+ with the shape of [18, 512] can be
obtained by stacking each layer’s input of Synthesis Network 𝑔, the space
of 𝑤+ is noted as𝑊 +. We define the last 11 layers of 𝑤+ as 𝑤+’s fine styles.

2020] and 1,814 portrait images from FFHQ [Karras et al. 2019]
that have visible double chins. We also select 3,001 portrait images
without double chins from CelebAMask-HQ. The whole dataset can
be denoted as:

(𝑋, 𝑆) = {(𝑥𝑑 , 1) | 𝑥𝑑 ∈ 𝑋𝑑 } ∪ {(𝑥𝑜 , 0) | 𝑥𝑜 ∈ 𝑋𝑜 }. (2)
The portrait images with double chin scores are randomly split into
a training set of size 5,598 and a testing set of size 317.

We use 𝑅𝑒𝑠𝑁𝑒𝑋𝑡-50(32×4𝑑) architecture [Xie et al. 2017] to train
𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 . Specifically, we generate a rectangle mask
for each image and only feed the neck region into𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟
to avoid the interference of other redundant information (see Fig. 4).

Separation Boundary Training Data. We randomly sample 50,000
latent codes in the latent space𝑊 , and generate 50,000 portrait
images. Then we leverage 𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 to label all these
portrait images and build the separation boundary training dataset
as:

(𝑊,𝑆) = {(𝑤𝑖 , 𝑠𝑖 ) |50,000
𝑖=0 }, (3)

where 𝑤𝑖 denotes the latent code, and 𝑠𝑖 denotes the double chin
score. In (𝑊,𝑆), there are 7,766𝑤𝑖 ’s whose scores are set as 𝑠 = 1,
otherwise 𝑠 = 0.

For the separation boundary training, we randomly choose 7,523
latent codes with 𝑠 = 1 and 7,523 latent codes with 𝑠 = 0 from (𝑊,𝑆),
split them into a training set of size 13,540 and a validation set of size

Fig. 4. From left to right: 𝑥𝑑 , masked 𝑥𝑑 , 𝑥𝑜 , masked 𝑥𝑜 . The masked images
are the inputs of 𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 . Images are provided by FFHQ
and Flickr user lu_lu, Will Mendonça (CC BY-NC 2.0).

Fig. 5. The results of latent code editing in latent space𝑊 and in the latent
space 𝑍 . From left to right: the original image 𝑥𝑑 , the image 𝑥𝑜 edited by
the separation boundary in the latent space𝑊 , the image edited by the
separation boundary in the latent space 𝑍 , and the 𝑆𝑡𝑦𝑙𝑒𝑀𝑖𝑥𝑖𝑛𝑔 result �̃�𝑜 .

1,506, and then use SVMs to train the coarse separation boundary 𝑏𝑐 .
We describe the boundary as “coarse” since the separation boundary
has worse performance in facial identity preservation than a fine
separation boundary which will be addressed later. The output of
latent code manipulation is illustrated in Fig. 5. To show the latent
space𝑊 is less entangled, we also train the separation boundary in
the latent space 𝑍 for comparison. The separation boundary edits
latent code as:

�̄�𝑜 = 𝑤𝑑 + 𝛼 × 𝑛𝑐 , (4)
where �̄�𝑜 denotes the edited latent code, 𝑛𝑐 is the normal vector of
separation boundary 𝑏𝑐 , and 𝛼 is a hyperparameter controlling the
weight of 𝑛𝑐 .

As shown in Fig. 5, after editing latent code𝑤𝑑 , we get the latent
code �̄�𝑜 and a portrait image 𝑥𝑜 without double chin. However, the
skin characteristics of 𝑥𝑜 is different from that of 𝑥𝑑 . Therefore, we
use the 𝑆𝑡𝑦𝑙𝑒𝑀𝑖𝑥𝑖𝑛𝑔 approach to preserve the skin characteristics
as follows. First, we apply the truncation trick and stack operation
to �̄�𝑜 and𝑤𝑑 (as shown in Fig. 3), then we get �̄�+

𝑜 = 𝑇 (�̄�𝑜 ,𝜓 ) ∈𝑊 +
and𝑤+

𝑑
= 𝑇 (𝑤𝑑 ,𝜓 ) ∈𝑊 +. Second, we replace the fine styles of �̄�+

𝑜

with those of𝑤+
𝑑
(see the definition of fine styles in Fig. 3), and get

the mixed latent code �̃�+
𝑜 as:

�̃�+
𝑜 = 𝜎 (�̄�+

𝑜 ,𝑤
+
𝑑
), (5)

where 𝜎 denotes the 𝑆𝑡𝑦𝑙𝑒𝑀𝑖𝑥𝑖𝑛𝑔 operation. Finally, we generate a
new portrait image 𝑥𝑜 which preserves the geometric features of
𝑥𝑜 and the skin characteristics of 𝑥𝑑 (see Fig. 5).

3.3 Mask Generation
After portrait editing by coarse separation boundary 𝑏𝑐 , we get a
new portrait image 𝑥𝑜 . Although 𝑥𝑜 contains the geometric features
we need, facial identity is not well preserved, especially in the region
above the chin. To better preserve facial identity, we further propose
𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 to generate a neckmask in order to allow other facial
regions to be directly copied from the original image 𝑥𝑑 .

Lee et al. [2020] contribute the CelebAMask-HQ dataset that pro-
vides a hand-annotated mask dataset, and such a dataset is leveraged
to train a 𝐹𝑎𝑐𝑒𝑝𝑎𝑟𝑠𝑖𝑛𝑔 model that generates masks of all facial com-
ponents and accessories. We try to exploit this approach, but it turns
out that 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔 cannot accurately predict a neck mask that
suits our needs, and some of the hand-annotated neck masks in
CelebAMask-HQ are not precise. One example is shown in Fig. 6,
where the neck mask generated by 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔 cannot fully cover
the chin region, causing problematic chin editing results. We thus
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Fig. 6. The comparison between the results of two neck mask generating
methods. From left to right: the original image provided by FFHQ and Flickr
user USAID Asia (CC BY-NC 2.0), the mask generated by 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔, and
the mask generated by our method 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 .

propose using the landmarks of the chin to refine the 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔
prediction, and attempt several face landmark detection methods,
such as 3DDFA [Guo et al. 2020; Zhu et al. 2019], face alignment [Bu-
lat and Tzimiropoulos 2017], and PRNet [Feng et al. 2018], to extract
chin landmarks. Our experiments (Section 4) show that the face
alignment method provides the most stable results.
The process of 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 is illustrated in Fig. 7. The neck

mask𝑚𝑛𝑒𝑐𝑘 is obtained from the 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔 outputs while being
constrained using the chin polyline 𝑙𝑐ℎ𝑖𝑛 as follows:

𝑚𝑛𝑒𝑐𝑘 = 𝑙𝑐ℎ𝑖𝑛 ⊖ (𝑚𝑓 𝑎𝑐𝑒 ∪ ¤𝑚𝑛𝑒𝑐𝑘 ), (6)

where 𝑙𝑐ℎ𝑖𝑛 denotes the polyline composed by chin landmarks,
𝑚𝑓 𝑎𝑐𝑒 and ¤𝑚𝑛𝑒𝑐𝑘 denote the face mask and neck mask predicted by
𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔, ∪ is the union operation, and ⊖ is the cut operation
that only retains part of the mask below 𝑙𝑐ℎ𝑖𝑛 . We also perform anti-
aliasing at the mask boundary to achieve smooth editing results.

3.4 Diffusion
After extracting the mask𝑚𝑛𝑒𝑐𝑘 from 𝑥𝑑 using 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 (see
subsection 3.3), we copy and paste the neck region of 𝑥𝑜 onto 𝑥𝑑 as:

𝑥𝑜 =𝑚𝑛𝑒𝑐𝑘 ⊙ 𝑥𝑜 + (1 −𝑚𝑛𝑒𝑐𝑘 ) ⊙ 𝑥𝑑 , (7)

where ⊙ denotes the element-wise multiplication, and 𝑥𝑜 denotes
the synthetic image. Note that the neck region of 𝑥𝑑 is always larger
than 𝑥𝑜 , thus the neck of 𝑥𝑜 can be cut completely. Fig. 8 shows an
example of 𝑥𝑑 and 𝑥𝑜 .

landmarks

FaceParsing

face alignment ︙
︙

cut

Fig. 7. Neck mask generation pipeline and the construction of
𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 .

Fig. 8. Neck region handling. From left to right: 𝑥𝑑 , 𝑥𝑜 , 𝑥𝑜 .

It can be seen that there is non-negligible inconsistency in 𝑥𝑜 (as
highlighted by the green box in Fig. 8 ). Our goal in this section is to
optimize 𝑥𝑜 and get an image 𝑥𝑜 without such artifacts. Given that
𝑚𝑛𝑒𝑐𝑘 ⊙ 𝑥𝑜 provides geometric features and skin characteristics of
the new chin, and (1 −𝑚𝑛𝑒𝑐𝑘 ) ⊙ 𝑥𝑑 provides the face features of 𝑥𝑑 ,
𝑥𝑜 can be utilized as priors to guide the optimization.

Inspired by the in-domain GAN inversion method [Zhu et al.
2020b], we employ a 𝐷𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 process to perform optimization
on the latent code 𝑤+

𝑑
under the guidance of 𝑥𝑜 . This achieves a

smooth transition between the original face and the new chin.
Let �̂�+

𝑜 denote the optimized latent code. To preserve facial iden-
tity, we use a reconstruction loss to penalize the pixel difference
between 𝑔(�̂�+

𝑜 ) and 𝑥𝑜 except the neck region:

𝐿𝑟 = ∥(1 −𝑚𝑛𝑒𝑐𝑘 ) ⊙ 𝑔(�̂�+
𝑜 ) − (1 −𝑚𝑛𝑒𝑐𝑘 ) ⊙ 𝑥𝑜 ∥2 . (8)

We also adopt a pre-trained VGG16 model for the perceptual loss
to penalize the high-level (geometric) feature difference between
𝑔(�̂�+

𝑜 ) and 𝑥𝑜 :
𝐿𝑝 = ∥𝜙 (𝑔(�̂�+

𝑜 )) − 𝜙 (𝑥𝑜 )∥2, (9)
where 𝜙 denotes the pre-trained VGG16 model.

Our overall diffusion objective function is as follows:

𝐿 = 𝜆𝑟𝐿𝑟 + 𝜆𝑝𝐿𝑝 , (10)

where 𝜆𝑟 and 𝜆𝑝 are hyperparameters to weigh different losses.
We use𝑤+

𝑑
as the initial value of �̂�+

𝑜 , and optimize the latent code
by minimizing the full loss 𝐿, which forces 𝑥𝑜 = 𝑔(�̂�+

𝑜 ) to maintain
geometric features of 𝑥𝑜 and preserve the facial identity of 𝑥𝑑 .

map to
W+ 

wd wo
_

wo
+wd wo

_+^+wo

bc bf

wd

Fig. 9. An illustrative example of how to obtain a fine separation boundary.
Each image from left to right: Training the coarse separation boundary (the
gray dotted line) from randomly sampled 𝑤𝑑 and 𝑤𝑜 (red points and blue
points). Using a coarse separation boundary to edit 𝑤𝑑 (red points) and get
�̄�𝑜 (purple points). Mapping 𝑤𝑑 and �̄�𝑜 to the𝑊 + latent space, getting
𝑤+
𝑑
(pink points) and �̄�+

𝑜 (orange points). Using images generated from 𝑤+
𝑑

and �̄�+
𝑜 as prior information to seek �̂�+

𝑜 (green points). Training the fine
separation boundary in the𝑊 + latent space (the yellow solid line) from 𝑤+

𝑑

(pink points) and �̂�+
𝑜 (green points).
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Fig. 10. The comparison between coarse separation boundary and fine
separation boundary. From left to right: the original image generated from
𝑤+
𝑑
, image generated from 𝜎 (𝑤+

𝑑
+ 𝛼 × 𝑛𝑐 , 𝑤

+
𝑑
) , and image generated from

𝜎 (𝑤+
𝑑
+ 𝛼 × 𝑛𝑓 , 𝑤

+
𝑑
) . Notice that we set the same hyper-parameter 𝛼 .

3.5 Fine Double Chin Separation Boundary
In Section 3.2, we described how to use SVMs to train a separation
boundary 𝑏𝑐 that coarsely separates latent codes causing double
chin or not. The training data presents various synthesized portraits
that are scored by classifier𝐶 . The disadvantages of using𝑏𝑐 are two-
fold. First, it is obvious that an individual’s double chin is difficult to
be detected when looking down. As such, 𝐶 is more likely to label
portraits looking down as 𝑠 = 0. Therefore, the portrait image 𝑥𝑜
always tends to have a downward posture, which is different from
the original image 𝑥𝑑 that comparatively appears looking ahead
(see Fig.10). We also use 3DDFA [Guo et al. 2020; Zhu et al. 2019] to
evaluate pose score and build a new separation boundary training
dataset to train a pose separation boundary as we did in Subsection
3.2, then use the Conditional Manipulation approach proposed by
InterFaceGAN [Shen et al. 2020] to get a new normal vector. We
hope the new vector can eliminate double chin without affecting
posture, but the attribute of double chin and the attribute of posture
are difficult to disentangle. Second, 𝑏𝑐 has poor performance in
preserving facial identity. This is because we use randomly sampled
latent code𝑤𝑑 and𝑤𝑜 (corresponding to synthesized images with
and without double chin) to train coarse separation boundary 𝑏𝑐 ,
and this cannot preserve facial identity as𝑤𝑑 and𝑤𝑜 have no paired
information with each other.
On the other hand, after diffusion, we get latent code pairs �̂�+

𝑜

and 𝑤+
𝑑
. Also, �̂�+

𝑜 is close to the latent code edited by an “ideal”
separation boundary that can remove double chin while preserving
facial identity. Considering the linearity of latent space, we assume
that𝑤+

𝑑
can be converted to �̂�+

𝑜 by linear transformation instead of
using diffusion. Therefore, we leverage 𝑤+

𝑑
and �̂�+

𝑜 to train a fine
separation boundary 𝑏 𝑓 in the latent space𝑊 + (see Fig. 9).

To achieve coarse-to-fine separation boundary training, we first
build a new separation boundary training dataset:

(𝑊 +, 𝑆)′ = {(𝑤+
𝑑
, 1)} ∪ {(�̂�+

𝑜 , 0)}. (11)

We then train the fine separation boundary on the new dataset and
apply it to real image processing. Given a real image as input, we first
use the projector provided by StyleGAN to get the corresponding
latent code ¤𝑤+

𝑑
, then we use the normal vector of 𝑏 𝑓 to edit ¤𝑤+

𝑑
similar to what we did with 𝑏𝑐 as:

�̌�+
𝑜 = 𝜎 ( ¤𝑤+

𝑑
+ 𝛼 × 𝑛𝑓 , ¤𝑤+

𝑑
), (12)

Fig. 11. The warping strategy on a real image provided by FFHQ and Flickr
user Moodycamera Photography (CC BY-NC 2.0). Images in the first row
(from left to right): The synthetic image without warping, the synthetic
image with warping (the green box highlights misalignment). Images in
the second row (from left to right): the original image with selected points,
the edited image with selected points, the original image with Delaunay
triangulation, and the edited image with Delaunay triangulation.

where 𝛼 denotes a hyperparameter controlling the weight of 𝑏 𝑓 ’s
normal vector 𝑛𝑓 , and 𝜎 denotes the 𝑆𝑡𝑦𝑙𝑒𝑀𝑖𝑥𝑖𝑛𝑔 operation men-
tioned in Subsection 3.2. As shown in Fig. 10, 𝑏 𝑓 can not only elimi-
nate double chin but also preserve facial posture and identity. More
results can be found in Section 4.

3.6 Warping
As shown in Fig. 11, although 𝑏 𝑓 can help to generate 𝑥𝑏𝑓

= 𝑔(�̌�+
𝑜 )

with facial identity preservation, there still exists subtle misalign-
ment along the face edge (as highlighted by the green box in Fig. 11)
in the image 𝑥 =𝑚𝑛𝑒𝑐𝑘 ⊙𝑥𝑏𝑓

+ (1−𝑚𝑛𝑒𝑐𝑘 ) ⊙𝑥𝑑 . Thus we introduce
𝑊𝑎𝑟𝑝𝑖𝑛𝑔 to diminish the misalignment in this process.

𝑊𝑎𝑟𝑝𝑖𝑛𝑔 operates as follows. First, we use 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔 to extract
the face skin mask and the neck skin mask from 𝑥𝑏𝑓

and 𝑥𝑑 , and
select points as:

𝑃𝑛𝑒𝑐𝑘 = {(𝑝𝑥𝑛𝑒𝑐𝑘𝑖 , 𝑝𝑦𝑛𝑒𝑐𝑘𝑖 ) |10
𝑖=0}, (13)

𝑃 𝑓 𝑎𝑐𝑒1 = {(𝑝𝑥 𝑓 𝑎𝑐𝑒1
𝑖

, 𝑝𝑦𝑖 ) |10
𝑖=0} ∪ 𝑃0 ∪ 𝑃𝑛𝑒𝑐𝑘 , (14)

𝑃 𝑓 𝑎𝑐𝑒2 = {(𝑝𝑥 𝑓 𝑎𝑐𝑒2
𝑖

, 𝑝𝑦𝑖 ) |10
𝑖=0} ∪ 𝑃0 ∪ 𝑃𝑛𝑒𝑐𝑘 , (15)

where (𝑝𝑥 𝑓 𝑎𝑐𝑒1
𝑖

, 𝑝𝑦𝑖 ) denotes the points on the face’s edge from
𝑥𝑑 , (𝑝𝑥

𝑓 𝑎𝑐𝑒2
𝑖

, 𝑝𝑦𝑖 ) denotes the points on the face’s edge from 𝑥𝑏𝑓
,

and 𝑃0 denotes a fixed points set. Note that (𝑝𝑥 𝑓 𝑎𝑐𝑒1
𝑖

, 𝑝𝑦𝑖 ) and
(𝑝𝑥 𝑓 𝑎𝑐𝑒2

𝑖
, 𝑝𝑦𝑖 ) have the same y coordinate. (𝑝𝑥𝑛𝑒𝑐𝑘

𝑖
, 𝑝𝑦𝑛𝑒𝑐𝑘

𝑖
) denotes

the points on the neck’s edge from 𝑥𝑏𝑓
. In order to keep the shape

of neck unchanged, we use the same neck points set 𝑃𝑛𝑒𝑐𝑘 to build
𝑃 𝑓 𝑎𝑐𝑒1 and 𝑃 𝑓 𝑎𝑐𝑒2 .
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We use point set 𝑃 𝑓 𝑎𝑐𝑒1 to construct a Delaunay triangulation 𝐷 ,
then we leverage 𝐷 to warp 𝑥𝑏𝑓

. Namely, we pull 𝑃 𝑓 𝑎𝑐𝑒2 to 𝑃 𝑓 𝑎𝑐𝑒1

so that the face edge of 𝑥𝑏𝑓
is forced to align with the face edge of

𝑥𝑑 . Then we get the resulting portrait image as:

𝑥 =𝑚𝑛𝑒𝑐𝑘 ⊙𝑤𝑎𝑟𝑝 (𝑥𝑏𝑓
) + (1 −𝑚𝑛𝑒𝑐𝑘 ) ⊙ 𝑥𝑑 , (16)

where𝑤𝑎𝑟𝑝 denotes the warp operation in𝑊𝑎𝑟𝑝𝑖𝑛𝑔.
Based on the above analysis, we obtain a fine separation boundary

that can directly manipulate semantics in the latent space while
preserving facial identity. The misalignment along the face edge
in our results can be efficiently addressed by a simple warping
operation. In Eqn.16 we use the original image to perfectly preserve
the input image contexts, even the difference between the non-neck
region of the original image 𝑥𝑑 and the synthesized images 𝑥𝑏𝑓

is
subtle. By now, we achieve the double chin removal result.

3.7 Implementation Details
Our implementation is based on StyleGAN2 as it further improves
the distribution quality metrics and image quality. Our system re-
quires the latent code of the input portrait image. Therefore when
we apply our method to a real image, we use the projector provided
by StyleGAN2 to encode the real image and get its corresponding
latent code.
For the neck mask generated from NeckMaskNet, we perform

anti-aliasing to make the transition more smooth at the edge of the
mask. More specifically, we first dilate the neck mask using a 15×15
kernel, then blur the mask using a 25 × 25 kernel, finally adding the
blurred mask to the original mask.
For Diffusion, we use 𝑤+

𝑑
as the initial value of �̂�+

𝑜 . We use the
Adam solver as the optimizer by setting 𝜆𝑟 = 1.0 and 𝜆𝑝 = 5𝑒−5.
The latent code is optimized with a learning rate of 0.01, and we
train each image for 100 iterations.
For Separation Boundary Training, we use SVMs to train separa-

tion boundaries. For the training of 𝑏 𝑓 , we define each latent code
𝑤+ as:

𝑤+ = [𝑤0,𝑤1, · · · ,𝑤16,𝑤17], (17)

where each𝑤𝑖 (0 ≤ 𝑖 ≤ 17) is a 1× 512 vector. We define the dataset
(𝑊 +, 𝑆)′ as the combination of 18 datasets:

(𝑊 +, 𝑆)′𝑖 = {(𝑤𝑖
𝑑
, 1)} ∪ {(�̂�𝑖

𝑜 , 0)}(0 ≤ 𝑖 ≤ 17), (18)

where 𝑤𝑖
𝑑
and �̂�𝑖

𝑜 denote the vector in 𝑤+
𝑑
and �̂�+

𝑜 . Then we train
18 normal vectors separately using those 18 datasets with the same
strategy similar to the one we use in the latent space𝑊 . The normal
vector 𝑛𝑓 of size 18 × 512 is the stack of the 18 normal vectors:

𝑛𝑓 = [𝑛0, 𝑛1, · · · , 𝑛16, 𝑛17] . (19)

4 EVALUATION
In this section, we show the results of the extensive evaluation
of our method. We first present some of the achieved results and
their computational performance, then show ablation studies to
verify our methodology. Finally, our method is compared with prior
works that have to be adapted to remove the double chin, in order
to demonstrate its advantages.

4.1 Results
We test our method on a vast number of portrait images with varia-
tions on gender, pose, face size, skin color, etc. Fig. 17 shows a gallery
of results automatically generated from our method. It can be seen
that the double chin is successfully removed and other features
of the original portrait image are well preserved (We empirically
set the default value of hyper-parameter 𝛼 in Eqn. 12 as -6 and
fine tune the value of 𝛼 for some extreme cases). As our method is
based on latent code manipulation, for images in the wild, we first
encode the image into the𝑊 + latent space using the projector pro-
vided by StyleGAN2. Note that by changing hyper-parameter 𝛼 in
Eqn. 12, we can further quantify the degree of double chin removal.
This provides extra freedom for the user to control the result (see
supplemental video for results with continuously adjusted 𝛼).

4.1.1 Computational Performance. The running time statistics of
individual steps in our method are described as follows. On average,
projecting a real image to latent code takes 232.15 seconds per image.
Using the separation boundary to edit the input latent code and
generating the output image takes 0.42 seconds. Generating the neck
mask takes 0.75 seconds. For the 𝐷𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 process, it takes 23.55
seconds per image for 100 iterations. The image warping takes 1.45
seconds. In the testing stage, regardless of the projection operation,
the core steps of our method take less than 3 seconds. All the other
steps take negligible time. Our experiments are based on a desktop
PC with i7-9700 3.0GHz CPU, 16 GB memory, and GeForce RTX
2060 GPU of 13.9 GB memory.

4.1.2 Chin Editing Dataset. As it is not feasible to collect real-world
paired images with and without double chin, to facilitate future
research on this topic, we also build up a dataset with paired images,
where the double chin removal is based on our method. We first
generate 13,990 portrait images, which have visible double chins.
Then we use our proposed method to remove the double chin in
those images and get a double chin dataset 𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛:

𝐷𝑜𝑢𝑏𝑙𝑒𝐶ℎ𝑖𝑛 = {[(𝑥𝑖
𝑑
,𝑤+

𝑑

𝑖 ), (𝑥𝑖𝑜 ,𝑤+
𝑜
𝑖 )] |𝑛=13,990

𝑖=0 }, (20)

where 𝑥𝑖
𝑑
and 𝑤+

𝑑

𝑖 denote the original portrait image and its cor-
responding latent code, and 𝑥𝑖𝑜 and𝑤+

𝑜
𝑖 denote the corresponding

outputs.

Fig. 12. Comparison between the landmarks and postures of the results
edited by coarse separation boundary and fine separation boundary. The
first image is the original image, the second image is the one edited by
the fine separation boundary, and the third image is the one edited by the
coarse separation boundary. We set the same hyper-parameter 𝛼 in Eqn. 12
for the two separation boundaries.
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4.2 Ablation Studies
4.2.1 Coarse Separation Boundary vs. Fine Separation Boundary. As
described in Section 3.5, the fine separation boundary 𝑏 𝑓 does not
only eliminate the double chin but also preserves facial identity, as
shown in Fig. 12. We directly edit the latent codes of 50 randomly
selected real images and 50 randomly sampled synthetic images
using 𝑏𝑐 and 𝑏 𝑓 respectively and set the hyper-parameter 𝛼 as
the same value, then generate images from the edited latent codes.
Then we use 3DDFA [Guo et al. 2020; Zhu et al. 2019] to detect the
landmarks and posture of those images generated from the edited
latent codes (see Fig.12). Since no ground-truth portrait without a
double chin is available, we conduct quantitative comparisons on
the average Euclidean distance of landmarks and postures between
the original portrait images and edited portrait images, as shown
in Tab. 1. This shows that the results generated based on the fine
separation boundary can well preserve facial pose and identity,
allowing a simple warping approach to resolve the misalignment
rather than the time-consuming diffusion method.

Table 1. Quantitative comparisons on the average Euclidean distance of
landmarks and posture.

real image synthetic image
𝑏 𝑓 𝑏𝑐 𝑏 𝑓 𝑏𝑐

posture 0.0546 0.3153 0.0945 0.5005

landmarks 183.1285 680.8092 279.6109 978.7780

4.2.2 Face Landmarks Detection Method. In Section 3.3, we pro-
pose to use the landmarks of the chin to refine the prediction of
𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔. Preserving facial identity requires that landmarks of
the chin align with the face edge. Face alignment predicts landmarks
that roughly align with the face edge, while 3DDFA and PRNet of-
ten predict some erroneous points. As shown in Fig. 13, there is
non-negligible inconsistency in the results of 3DDFA and PRNet (as
highlighted by the green box), which deviates from the face shape,
while face alignment provides the most stable results in our case.

Fig. 13. The comparison between several face landmark detection methods.
From left to right: the landmarks of the chin detected by face alignment,
3DDFA, and PRNet, respectively.

4.3 Comparisons
Although we make the first effort towards automatic double chin
removal, we still compare our method with existing face editing

methods that require adaptation, and even manual efforts to achieve
similar effects, including MaskGAN [Lee et al. 2020], SC-FEGAN
[Jo and Park 2019], and inpainting [Yu et al. 2018, 2019] (see Fig. 14).
For MaskGAN, we use 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔 to extract the neck mask and
face mask, then manually edit the output mask to reduce the redun-
dant chin region. For SC-FEGAN, we use the official SC-FEGAN
demo to add a mask on the double chin then manually draw chin
sketches to generate a new chin. For inpainting, we leverage our
neck mask generation method and the ChinEditing dataset to train
an inpainting model by setting the images with double chin and the
corresponding neck masks as the training dataset. We input the test
image and its neck mask to the inpainting model and get the result.

Fig. 14. Comparisons with different methods. Images in the first row (from
left to right): the original image, the masks predicted by 𝐹𝑎𝑐𝑒𝑃𝑎𝑟𝑠𝑖𝑛𝑔, the
masks editedmanually (face region is reduced), and the output ofMaskGAN.
Images in the second row (from left to right): the input of SC-FEGAN (masks
and sketches are added manually), the output of SC-FEGAN, the input of
inpainting (neck mask is predicted by our 𝑁𝑒𝑐𝑘𝑀𝑎𝑠𝑘𝑁𝑒𝑡 ), and the output
of inpainting.

Fig. 15 shows some typical results generated from different meth-
ods, including three synthetic images and three real images that
have different postures. It can be seen that MaskGAN significantly
changes facial identity during editing, SC-FEGAN generates non-
smooth chin edges, and inpainting generates fuzzy results with
obvious artifacts on the chin and neck. In contrast, our model gen-
erates more stable and plausible results.

5 USER STUDY
We further evaluate whether our results meet human expectations
by conducting a user study. This consists of two participant-based
experiments: (1) Given mixed untouched images and edited (double
chin removed) images, we measure whether participants can differ-
entiate these images in-between. (2) Verify user preferences on our
results over results generated by other methods in Section 4.3.

For the first study, we used 10 resultant images with double chin
removed and another 10 untouched images without a double chin,
all the images are randomly sampled. We recruited 27 participants
for this task. All 20 images were presented to each participant in a
random order, and each participant was asked to score each image
(0 for edited, and 1 for untouched). Results show that 50.4% of the
untouched images were labeled as untouched, while 55.9% of the
edited images were also labeled as untouched. The difference in the
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input 
images

MaskGAN

SC-FEGAN

generative
inpainting

ours

Fig. 15. Comparisons to MaskGAN, SC-FEGAN, and generative-inpainting. In the first row (input images), the three portraits on the left are real images
provided by FFHQ, Flickr user Ville Pohjanheimo, USAID Asia, and Jamwhy (CC BY-NC 2.0), and the three portraits on the right are synthetic images. From
top to bottom, original portraits, MaskGAN, SC-FEGAN, generative-inpainting results, and ours, respectively.

scores between edited images and untouched images is negligible,
demonstrating the quality of our result.

For the second study, we compared our method to MaskGAN [Lee
et al. 2020], SC-FEGAN [Jo and Park 2019], and inpainting [Yu et al.
2018, 2019]. We presented 10 groups of images in a random order to
22 participants. Each image group consisted of 5 images, including
the randomly sampled input image with double chin followed by
the results generated by different methods in a random order. The
participants were asked to select the best result in their opinion
for eliminating the double chin. Statistics show that 66.36% of sub-
jects chose our result, 7.27% of subjects chose MaskGAN, 12.27% of
subjects chose SC-FEGAN, and 14.10% of subjects chose inpainting,
indicating that our method outperformed others.

6 DISCUSSION
While we have demonstrated highly realistic chin editing results, our
method has a few limitations (see Fig. 16). First, removing a double
chin usually causes the reduction of the neck region along with
vacancies in the background, which will be filled by the edited latent
code. The more accurate the input latent code is, the more effectively
the missing region is reconstructed. Note that portrait images in the
wild need to be encoded first to get the input latent code, but the
precision depends on the generality of the StyleGAN encoder, which
might affect the resulting quality. Using inpainting to complete the
vacancies of background could be a solution. The fine separation
boundary also changes the shape of clothes near the neck, leading to
misalignment along the edge of clothes (see the collar highlighted by
the green box in Fig. 16). Second, as StyleGAN cannot generalize well
to objects attached to the face, such as earrings andmicrophones, the
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Fig. 16. Limitations. In the first row (from left to right): the first image dis-
plays inconsistency in the background, the second image has misalignment
along the collar’s edge, and part of the microphone disappears, the third
image’s chin is shortened. In the second row, our method cannot process
the extreme case. The three images in the first row and the first image in
the second row are provided by FFHQ and Flickr user Philip McMaster,
Fotografia UFC, Rutgers Nursing, Ian (CC BY-NC 2.0).

neck mask sometimes covers those objects, causing visible artifacts
in the results. In some extreme cases, the neck mask covers parts
of the face region, leading to chin shortening. Using a more precise
neck mask could eliminating such a limitation. Finally, we notice
that our approach cannot remove the double chin of some faces
with extreme postures. We attribute this to the training data. In our
randomly sampled training data, most of the faces have postures
close to neutral. Therefore our double chin separation boundary
may not perform well for extreme cases. This limitation can be
overcome by adding more faces with different poses in our dataset.
In the future, we would like to exploit our approach for the re-

verse chin editing process, i.e., adding the chin structure. In this
case, the latent code of the input portrait can be updated along the
opposite direction of 𝑛𝑓 w.r.t. the separation boundary by setting
the hyperparameter 𝛼 as a positive value (in contrast to the negative
value as in Fig. 17 for chin structure removal). Other image editing
possibilities at the structural level are also worth exploration based
on our approach, including but not limited to hair manipulation,
face makeup design, object style editing, etc.

Further, although not being a technical limitation, the high-quality
facial adjustment results provided by the present work may raise
ethical concerns. Special considerations such as the watermarking
technique may be taken into account to verify the authenticity of
the image content. In our work, the real test images for facial struc-
ture editing are all from the FFHQ dataset with Creative Commons
license - CC BY-NC 2.0., and with the owner of the image source

being credited for each paper figure (except for synthetic portraits).
The real images from CelebAMask-HQ are only used for training the
chin separation boundary but not manipulated. Moreover, we would
like to call for extra attention to the possible ethics concerns of fa-
cial structure editing. The usage of our method (so as many other
methods) for manipulating a portrait image should have consent
from the corresponding owner.

7 CONCLUSION
In this paper, we propose a novel face structure editing method
and introduce the first automatic chin editing method for portrait
images as a case study. The key idea is to train a fine separation
boundary and generate an image containing a new chin that best
matches the original portrait by editing the latent code of the original
portrait. In the training stage, we propose coarse-to-fine separation
boundary training. We first leverage a coarse double chin separation
boundary in the latent space and edit the original latent code to
eliminate the double chin. To only locally alter the neck region while
keeping other regions unchanged, we employ a neck mask and use
a diffusion approach to integrate the new chin into the original
image, generating paired images with and without a double chin.
The latent codes of the paired images are used to refine the double
chin separation boundary, leading to plausible results on portrait
images in the testing stage. We consider our work as an interesting
step towards facial structure editing in the latent space and hope it
can inspire more works in the future.
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Fig. 17. Diverse results generated by our method. The first, the second, and the fifth rows are real images provided by FFHQ and Flickr user Alvin Smith,
minjungkim, Lori Thantos, Marcel B. and Jane Cantral (CC BY-NC 2.0). Other rows are synthetic images. For the first four rows, images are edited by 𝑏𝑓 with
decreasing hyperparameter 𝛼 (overlayed in the bottom right corner).
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