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Abstract
We present a biologically plausible dynamics model to simulate swarms of flying insects.

Our formulation, which is based on biological conclusions and experimental observations,

is designed to simulate large insect swarms of varying densities. We use a force-based

model that captures different interactions between the insects and the environment and

computes collision-free trajectories for each individual insect. Furthermore, we model the

noise as a constructive force at the collective level and present a technique to generate

noise-induced insect movements in a large swarm that are similar to those observed in real-

world trajectories. We use a data-driven formulation that is based on pre-recorded insect

trajectories. We also present a novel evaluation metric and a statistical validation approach

that takes into account various characteristics of insect motions. In practice, the combina-

tion of Curl noise function with our dynamics model is used to generate realistic swarm sim-

ulations and emergent behaviors. We highlight its performance for simulating large flying

swarms of midges, fruit fly, locusts and moths and demonstrate many collective behaviors,

including aggregation, migration, phase transition, and escape responses.

Introduction
Collective behaviors are widely observed in nature, such as in the coordinated behavior of large
groups of similar animals. Local interactions among the individuals in a group give rise to
emergent behaviors or patterns. In nature, emergent structures are common in various animal
groups, including piles of termites, colonies of ants, swarms of bees, flocks of birds, schools of
fish, packs of wolves, herds of mammals, and human crowds. Many scientists have observed
that self-organized behaviors are a simple, robust solution to a broad range of biological
problems.

Emergent behaviors are well studied in computer graphics and related areas, such as social
networks, artificial intelligence, sociology, and biology. Sociologists and ethologists have pro-
posed many models to understand collective animal behaviors. Insects are among the most
diverse groups of animals on the planet, and there are more than a million described species
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representing more than half of all known living organisms. Insect swarms exhibit many collec-
tive behaviors that are different from other animals, such as aggregation, phase transition, posi-
tive phototaxis, large migration, escape response, etc. [1, 2]. Insect swarms are also especially
useful in modeling collective behaviors, since recent biological research suggests that models
based on self-organization can give a better understanding of how complex behaviors emerges
from interactions among individual insects [3]. This has lead to the development of field of
Swarm Intelligence, which is based on collective intelligence of a social insect colony. Some of
the earlier work in this area includes development of optimization and control algorithms for
ant colony optimization and ant colony routing [4]. But the current set of modeling techniques
for multi-agent systems have so far been unable to simulate different collective behaviors of fly-
ing insects.

Research advances in imaging and capture technologies have resulted in new experimental
data on the trajectories and behaviors of flying insects [5–9]. In particular, various researchers
have claimed that individual insects interact via forces [10, 11]. It is generally thought that
these behaviors or patterns can be explained using simple interaction rules [10] and inherent
noise; the latter concept refers to the randommovements of the insects in a swarm [12–14],
which can help the insects maintain swarm alignment. Some continuum approaches (e.g. the
Vicsek model) assume that each insect in a group follows the trajectory of neighboring individ-
uals and that the deviations in their trajectories can be modeled as noise [15]. There are several
sources for this noise. At a broad level, they can be classified into intrinsic and extrinsic noises.
The intrinsic noise refers to the decision mechanism through which the insects update their
positions [12]. On the other hand, the extrinsic noise refers to the effects of the environment
[16]. It is important to model the underlying noise in order to develop good models for flying
insects.

Main Results: In this paper, we present a new model to simulate the trajectories and collec-
tive behaviors of swarms of flying insects. Our approach is governed by biological conclusions
and experimental observations. We describe a forced-based model that can capture different
interactions between the insects and computes a collision-free trajectory for each individual
insect. We also present a new data-driven method to model the noise function. The two novel
components of our model include:

1. Dynamics Model:Our dynamics model has three components: interaction forces, self-
propulsion forces and inherent noise forces. We use a concentric zonal model along with three
interaction rules: short-range repulsion, long-range attraction, and an intermediate-range
alignment motion. We perform local collision avoidance using reciprocal velocity obstacles
algorithm. The overall formulation is stable and can simulate large swarms with varying
densities.

2. Data-Driven Noise Model:We use a data-driven approach to model the induced-noise
force as Curl noise; our noise model is derived using our quantitative metric and real-world tra-
jectory datasets. We present a quantitative metric that can be used to evaluate the performance
of our multi-agent simulation algorithms with respect to captured real-world trajectory data-
sets. We use a statistical formulation that inherently accounts for noise in the dynamics model.
We use seven time-varying metrics to evaluate the collective behaviors of insects and compute
the optimal parameters for our dynamics model using a genetic algorithm. We also use the
metric to evaluate the performance of different simulation models.

We have implemented our model and have used it to simulate the trajectories and collective
behaviors of various insects including midges, fruit fly, locusts, moths as well as bats (non-
insects) over large indoor and outdoor environments. Our dynamics model can generate many
collective behaviors including aggregation at different scales, locust migration, competition for
mates, phase transition in terms of density passing a critical point, positive phototaxis, and
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escape responses to predator-like objects. Our approach can simulate very large swarms with
tens of thousands of insects and handle high swarm densities. We also validate our model
using two real-world datasets. We also validate our model using statistical techniques and per-
forming visual comparison with real-world recorded insect videos.

Results
In this section, we highlight the performance of our evaluation method for noise modeling and
multi-agent simulation algorithm comparison for insect swarms.

We have implemented our evaluation approach in MATLAB and insect swarm simulation
in C++, both on a PC with Intel Xeon CPU E3-1230 and 8GB memory.

Real-World Datasets
We use four insect trajectory datasets to compute the appropriate noise model and estimate the
parameters of insect swarm simulations. Both of these datasets were captured in an indoor set-
ting with state-of-the-art motion capture systems. The dataset-1 from [5] was captured in a
transparent 91cm cubical enclosure, and corresponds to time-resolved measurements of the
positions, velocities, and accelerations of individual insects in laboratory swarms of the midge
Chironomus riparius. The total number of midges vary from 12 to 111 per frame. The three
other datasets, dataset-2, dataset-3, and dataset-4 were captured in a cube of 2m edge length
with hundreds of Drosophila (fruit flies) [6]. We choose 500 frames from each of these four
datasets.

Parameter Estimation: Our dynamics model, described in Section 4, can be regarded as a
parameterized dynamics model. The computation of different forces is governed by 11 parame-
ters. 7 of them, including γ, χrep, rrep, χatt, ratt, scale and gain, are estimated based on the real-
world datasets. The other four parameters: χali, rali, χres and rres, cannot be estimated since our
real-world datasets do not exhibit significant alignment tendency [5] or there is no specific
external stimuli. As a result, we estimate them based on empirical observations, including
alignment information [17] and the flying speeds and the visual range of the insects.

Interior swarm of midge: This scenario shows a clustering midge swarm. We use the real
dataset from [5] for parameter estimation. All parameters are estimated automatically. The
side-by-side comparison between our simulation result and real trajectories of midges is shown
in Fig 1. Please refer to S1 Video in supporting information for visual results.

Interior swarm of fruit fly: Fig 2 shows a swarm of fruit flies. Their trajectories are also
optimized by real dataset provided by [6]. Please refer to S1 Video in supporting information
for visual results.

Generating Different Swarm Behaviors
As mentioned above, our model has 11 parameters. These parameters can be modified to gen-
erate different swarm behaviors. For example, Increase the value of rrep will make insects fly
apart away from each other so the swarm will result in a lower density. if we increase the value
of rali, insects will tend to follow its neighbors’ purposes (e.g., exhibiting the mating behavior).
Larger ratt will bring more dense swarms and results in mosquitoes-like aggregation (see the
video). Increasing rres will expand the visual range of all insects, and make them escape much
before the predator arrives close to them.

If we increase the weighting variables χ{rep,ali,att,res}, the corresponding forces applied on
insects will increase (and vice-versa). i.e., insects will accelerate faster to move away from (or
close to) others when χrep (or χatt) increases, or escape quickly when χres is large (the escape
behavior). Decreasing the noise parameter scale will result in more noisy trajectories (and
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vice-versa), we can use it to generate different insect swarms with different noise frequencies
(e.g. midge has a smaller scale while moth has a larger one). Increase in the gain value will
directly increase the noise speeds of the insects. If we decrease gain and increase χali, it will
result in phase transition behavior. Finally, the friction coefficient γ is usually decided by the
type of insects. The animals with large wings (moths, bats) will overcome more air drag, so
they will be assigned to a larger value of γ. In next section, we introduced seven collective
behaviors, and the simulation performance and parameter settings of our results is shown in
Table 1.

Fig 2. Interior swarm of fruit fly: 100 fruit flies swarming within a glass box (size: 20 × 20 × 20). (a) A snapshot of the simulated fruit fly;
(b) a frame of captured fruit flies rendered by the same scenario.

doi:10.1371/journal.pone.0155698.g002

Fig 1. Interior swarm of midges: We simulated 100midges swarming in a glass box (size: 20 × 20 × 20). (a) A snapshot of the midges
simulated by our model; (b) a frame of captured midges rendered by the same scenario; the data is appropriately scaled to the same size as
the simulated result.

doi:10.1371/journal.pone.0155698.g001
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Collective Behaviors
Aggregation:Midges and mosquitoes usually exhibit stationary swarming called aggregation.
These behaviors can be observed near water or shorelines in summer. Insect aggregation
behavior is commonly regarded as a protection mechanism against predators [18]. We gener-
ated aggregation behaviors of midges at different scales. Fig 3(a) contains 500 midges and Fig 3
(b) is simulated with 3,000 midges in the same environment. The swarm flies erratically (i.e.,
the swarm center hardly changes) with different densities, 9,469.7/m3 and 56,818.2/m3 (with
their body length set to 0.01m), respectively. And the visual results are shown in S2 Video.

Locust Migration:Many insect species travel long distances to another place during a spe-
cific season. For example, butterflies make large-scale migrations in advance of cold winter,
and desert locust migration occurs throughout Africa, Asia, Australia and New Zealand. Scien-
tists suggest that the most likely reason that insects migrate is to hedge their reproductive bets
[19]. Fig 4 shows migratory locusts passing through a village. The locusts formed in a cuboid
shape with 24.0m length, 5.0m width and 0.5m height. In this environment, we set a large

Table 1. Simulation performance and parameter settings of our results.

Midge Aggreagtion Fruitfly Mating Escape Bats Locust Phase Phototaxis

#insect 100 500 3,000 100 100 100 500 2,000 200,000 20 * 200 20 * 80

γ 11.16 8.76 10.21 1.40 1.40 1.40

scale 2.20 2.75 2.20 1.72 0.72 0.42

gain 2.51 1.79 2.51 0.36 0.10 1.0

χrep 5.61 1.74 8.0 3.0 5.0 3.0

rrep 0.17 1.48 2.0 0.45 0.2 0.2

χatt 14.29 10.39 25.0 5.0 7.0 8.0

r�att 5.12 4.49 10.0 5.0 9.2 10.0

χali 0 5.0 0 3.0 3.0 20.0 5.0 10.0 0

r�ali 0 1.0 0 10.0 10.0 3.0 0 2.2 0

χres 0 0 0 10.0 20.0 10.0 60.0 0 1.0

rres 0 0 0 2.0 8.0 10.0 25.0 0 5.0

Simulation FPS 489.87 34.41 1.49 442.37 146.79 420.60 37.25 13.48 0.018 134.37 528.19

All our experiments were performed on an off-the-shelf computer with an Intel 2 Duo CPU E7500 and 4GB memory. In order to express the radii

conveniently, we use the radii differences r�att ¼ ratt � rali, r
�
ali ¼ rali � rrep instead.

doi:10.1371/journal.pone.0155698.t001

Fig 3. Aggregation. (a) and (b) simulated swarms of midges moving in the same space with 500 and 3,000 midges, respectively. Other
parameters are shown in Table 1; (c) a photo captured using a camera.

doi:10.1371/journal.pone.0155698.g003
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stimulus for locusts to pursue (e.g. crop). The locust swarm simulated has: (a) 2,000 locusts
with density 34.2/m3 (we set locusts’ body length to 0.04m); (b) 200,000 locusts with density
342/m3 in the same space. Please refer to the S3 Video for visual results.

Competition for mates:Male midges aggregate at resources where females can predictably
be found. When a female arrives, males use the movement of others to detect the female [19].
Fig 5 shows a swarm of male flies competing for a female (shown as glowing green). We gener-
ated this behavior by regarding the female fly as a pursuit stimulus. The collective behavior is
generated based on known behaviors of males and females [19]. The visual results are shown in
S4 Video.

Phase transition: This behavior happens when insect swarms change from a disordered
gas-like state to an ordered liquid-like state. Experimental observations reveal that these transi-
tions occur suddenly when swarm density passes a critical point [19]. This is confirmed by a
recent statistical study [20] that suggests that swarms formation appear to be always poised at a
critical point. This behavior occurs when the increasing density of a swarm passes through a
critical point. Viscek et al. [12] generate such behaviors by continuously manipulating the
parameters. We model it by decreasing the noise force and increasing the alignment compo-
nent, χali. Fig 6(a)–6(c) shows a swarm increasing its density until it reaches 50/m3 (i.e., the
critical point); Fig 6 highlights a sudden change in direction. The visual results are shown in S5
Video.

Positive phototaxis:Moths and mosquitoes fly towards light. They gather around a street
lamp or anything luminous [21]. The underlying mechanism of this behavior is still unclear,
though light interference and light orientation may cause such behaviors. In this scenario, a

Fig 4. Locust Migration. (a) and (b) simulated migratory locusts pass through a village. The number of locusts is 2,000 and 200,000,
respectively; (c) a photo captured from a video camera.

doi:10.1371/journal.pone.0155698.g004

Fig 5. Competition for mates. (a) at first, males fly freely in a swarm; (b) the males close to the female chase her; (c) other males detect the
female neighbor movements; and (d) after a period of time, most of the males found the female.

doi:10.1371/journal.pone.0155698.g005
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succession of moths gather around a street lamp (see Fig 7). We set the lamp holder as an exter-
nal stimulus to attract the moths towards it. We also mark the lamp as an obstacle to avoid col-
lisions with moths based on RVOs. Please refer to S6 Video for visual results.

Startle/escape response:When a predator from outside approaches a swarm, insects
escape/disperse by suddenly altering their flight [22]. For example, locusts’ nervous systems
give them a rapid cue on detecting a predator; it determines the direction of the predator’s
approach and helps the locust decide in which direction it should run. Fig 8 highlights the fly
swarm’s responses to a predator-like object. In this scenario, we use the sphere as an external
danger. When it approaches, each insect will choose a determined direction in which to escape.
Please refer to S7 Video for visual results.

Swarm of bats in a cave: Although bats are not insects, bat swarms often exhibit similar pat-
terns as insect swarms. Bats have the ability to respond rapidly due to echolocation. In Fig 9(b),
we show a real-world image of a bat swarm flying as a ring-shape in a dark cave. We simulate
echolocation behavior by setting a changing stimulus in front of each bat (Fig 9(a)). Please
refer to S8 Video for visual results.

Fig 6. Phase transition. (a)–(c) the swarmmoves erratically before the density passes the critical point; (d) when the density reaches 50/m3, the
phase transition occurs.

doi:10.1371/journal.pone.0155698.g006

Fig 7. Positive phototaxis. (a) a snapshot of simulated moths of our model. The number of moths increase from 20 to 80; (b) a picture of
real positive phototaxi behavior during the night.

doi:10.1371/journal.pone.0155698.g007
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Data-driven Noise Model
Our evaluation method can help dynamics models find the suitable noise to make the simula-
tion results more likely to more closely resemble the real biological system, and the form of
noise function is not limited. In this section, we use four noise functions as examples to choose
the most suitable noise for a certain dynamics model; additionally, the type of dynamics model
is not limited.

Noise Modeling. We compare four simulation models with four different noise functions
but with the same dynamics model (neglecting noise) based on evaluation algorithm. We
selected the parameters of the dynamics model (neglecting noise) as the common parameters
for the four models, along with intensity of the stochastic force for the white and Gaussian
noise, and scale and gain for Perlin noise and Curl noise. Fig 10 shows the comparison results
of the models based on the four different noise types with four different datasets. Curl noise
provides the most accurate results for our four datasets. All the detailed parameters used for
these results are given in the appendix. The weight in the evaluation model shown in Eq 6 with
each dataset, the normalization parameter p1ϕ, p2ϕ in Eq 8, and the results with each dataset are
also given in the supporting information(see S1 to S7 Tables). Please refer to the supplemental
demo video for the comparison results on different insects of the animation results. Snapshots

Fig 8. Startle/escape response.When a predator-like object (the sphere) approaches the swarm, insects escape and disperse quickly to
avoid it. They aggregate again after the danger disappears.

doi:10.1371/journal.pone.0155698.g008

Fig 9. Interior swarm of bats rapidly responding due to echolocation simulated using our dynamicsmodel. (a) a snapshot of the
simulated bats by our model; (b) a real photo of bats.

doi:10.1371/journal.pone.0155698.g009
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of the comparison results are shown in Fig 11. Please refer to S9 Video for the animation result
comparison.

Discrete PDF of the four models in different metrics are showed in Fig 12. We take the two
metrics: shortest distance and Cartesian Jerk as example. Fig 12 exhibits that the simulation
result of dynamics with noise is more similar to the real-world dataset.

Fig 10. The comparison results of the force-basedmodel with the four different noise functions. The
force-based model with Curl noise function is more accurate with respect to the real trajectory-datasets than
the other noise functions.

doi:10.1371/journal.pone.0155698.g010

Fig 11. Visual comparisons among different noise functions.

doi:10.1371/journal.pone.0155698.g011
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Evaluation and Comparison 1
We compare 3 parametrized multi-agent simulation models based on the evaluation algorithm,
dynamics with noise model, dynamics simulation only and using a noise model only. For each
model, we used our parameter estimation algorithm to compute the optimal parameters. Fig 13
shows the results comparing the three models with four different ground truth datasets. Please
refer to the S8 to S14 Tables for more details about the numerical results, and S10 Video for the
animation results.

Discrete PDF of the three models in different metrics are showed in Fig 14. We take the two
metrics: acceleration and Cartesian Jerk as example. The discrete PDF among these four

Fig 12. Discrete PDF of the four models in different metrics.

doi:10.1371/journal.pone.0155698.g012

Fig 13. Model Comparison 1.We compared the simulation results of dynamics with noise, dynamics only
and noise only with the real-world datasets, and we determined that our method can improve the accuracy of
dynamics.

doi:10.1371/journal.pone.0155698.g013
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models in the Cartesian Jerk is close, thus the corresponding weight of this metric is small.
Conversely, the weight of the acceleration is bigger.

Evaluation and Comparison 2
We have compared four parameterized multi-agent simulation models based on the evaluation
algorithm: RVO model [23], the Boids model [24], the Noise-aware model for simulating
insects [25], and a Brownian dynamics model [26]. For each model, we used our parameter
estimation algorithm to compute the optimal parameters. Fig 15 shows results comparing the
five models with four different ground truth datasets, and highlight the relative benefits of our

Fig 14. Discrete PDF of the three models in different metrics. The weights of these two metrics arewa = 0.194, andwμ = 0.140.

doi:10.1371/journal.pone.0155698.g014

Fig 15. Model Comparison 2.We compared different multi-agent simulation with the real-world datasets.
Our biologically-plausible dynamics model provides higher accuracy with respect to the real-datasets as
compared to other models.

doi:10.1371/journal.pone.0155698.g015
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approach. Please refer to S15 to S20 Tables for more details about the parameters used to gen-
erate these results. In addition, we have rendered a side-by-side visual comparison for these
models by estimating the optimized parameters according to the ground truth dataset 1. Snap-
shots of the comparison results are shown in Fig 16. And the animation results are shown in
S11 Video.

Trajectory Comparison
The trajectory comparison between real-world datasets and our simulation results is shown in
Fig 17, and we find those the trajectories of our model and those of real-world datasets look
similar globally. The simulation results (see Fig 17(b)) are generated by our dynamics model
with the parameters computed by our evaluation method. To compare trajectories quantita-
tively, we have evaluated the discrete probability density distribution functions of our simula-
tion results in conjunction with the real-world data (see Figs 12 and 14). Although the
trajectories of our simulation results are not exactly the same as the real-world trajectories, we
can conclude that they are statistically similar.

Sensitivity of the evaluation metrics
To explore the sensitivity of the seven evaluation metrics on the evaluation energy (see Eq 6),
we consider each metric weight independently. For each weight in Eq 6, the evaluation energy
values for four different datasets are shown in Fig 18. Results show that acceleration, angular
velocity, Cartesian Jerk, and shortest distance have a stronger impact on the evaluation results.
This means that the five models considered in Model Comparison 2 (see Fig 15) exhibit a larger
difference on these four metrics.

Fig 16. Visual comparisons among different models.

doi:10.1371/journal.pone.0155698.g016
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Model extension for temperature
The density of airborne insects is affected by weather conditions such as temperature, sunshine,
precipitation, wind speed, and day length [27]. The environment temperature is one of the
most important factors that affects the insect density. In particular, the density can change as a
second order polynomial function of the temperature [27]. This can be expressed as follows,
where N represents the number of insects per unit volume and T is the environment tempera-
ture:

N ¼ �0:1073T2 þ 4:7643T � 33:4556: ð1Þ

Fig 17. Trajectory comparison between real-world datasets (a) and our simulation results (b). The real-world
trajectories from dataset-4 contain more than 200 frames. For our simulation results, we randomly choose 6 trajectories
with 200 frames. We only show limited trajectories in Fig 17 for a clear illustration. We use different colors to represent
different trajectories.

doi:10.1371/journal.pone.0155698.g017

Fig 18. Weight Comparison of the evaluation metrics.We compared the weights of the seven evaluation metrics corresponding to
Model Comparison 2 (see Fig 15) with four different datasets.

doi:10.1371/journal.pone.0155698.g018

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 13 / 31



For temperature T, we compute the density N according to Eq 1. We take N as the reference
density for our dynamics model, and we adjust the interaction force parameters χrep, χali, χatt,
rrep, rali and ratt to ensure that the density of our simulated insects matches the reference den-
sity. Please see S12 Video for simulation results with different temperatures.

Discussion and Analysis
We have presented a new approach to model the trajectory and collective behaviors of flying
insects. It includes two main components: a dynamics formulation of various forces along with
the velocity obstacle based collision avoidance and a data-driven approach for noise modeling.
Furthermore, we also present a statistical evaluation method to analyze the similarity between
a simulation movement and a real dataset using entropy theory. We use our evaluation method
to select the best suitable data-driven noise function that can be combined with a force-based
simulation model.

Self-organization models contribute to a better understanding of how self-organization
behaviors emerge from interactions between the individual insects [3]. Our dynamics model
takes into account self-propulsion forces, which consist of all external forces that affect the
insect trajectories. Therefore, our model can simulate different collective behaviors, such as
competition for mates, positive phototaxis, startle/escape response, etc. Moreover, we take into
account the alignment in the interaction forces that enables generation of the following behav-
iors: competition for mates, phase transition, etc. Also, we use a Curl noise function which
models the instinct responses of the insects to the environment.

The RVOmethod for multi-agent navigation is basically designed for local collision avoid-
ance, but it can’t be used to directly simulate the swarm behaviors. The Boids algorithm is a
general method for multi-agent simulation, and it is able to simulate many emerging behaviors
of such systems. Therefore, the evaluation scores (see Fig 15) for Boids are higher than those
for RVOs. However, it cannot show the noise-induced insect movements, which are different
from other animal groups. The Brownian method and the noise-aware method can model the
motion of an insect in one swarm using forces and noise-functions, respectively. On the whole,
the noise-aware method is more suitable for simulating the movement of insect swarms
according to the evaluation results in Fig 15. Our dynamics model takes forces and motion
noise into consideration, and achieves the best results to simulate the motion of and to capture
the characteristics of insect swarms.

In addition, unlike the existing evaluation methods [17, 28–30], our evaluation method is
designed for insect swarms. We present an evaluation metric that takes into account various
characteristics of insect swarms based on real-world insect trajectories to model the appropri-
ate noise term for our dynamics model. As a result, the final generated trajectories are more
similar to the real-world insect motions than other simulators based on both visual and quanti-
tative evaluation. We use discrete probability density functions in our evaluation method, and
we ignore the influence of small amounts of abnormality or perturbations. Moreover, our eval-
uation framework can help users compute parameters for simulators automatically.

However, a simulation model for insects may generate different evaluation results with dif-
ferent datasets (see Figs 13 and 15). Because the datasets we use are samples of insect motion in
the real world, the distributions of the four datasets are varied. Therefore, the evaluation results
are not the same for one simulator with different datasets.

Limitation: Our dynamics model focuses on the adult flying insects, and we do not take
walking, swing and eusocial insects into consideration. We use genetic algorithms to estimate
the parameters in our current implementation. Because genetic algorithms are probabilistic,
they may not give optimal answers. Additionally, our implementation is not optimized and the
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running times can be considerably improved. Since our method is data dependent, over-fitting
may occur if the trajectory dataset is too sparse or insufficient. Ultimately, we would like to
evaluate its accuracy or performance on a large number of trajectory datasets.

Future work:We would like to collect more real trajectories of complex insect swarm
behaviors, such as escape responses and migration. This can further improve the accuracy of
our data-driven models and the overall simulation. In addition, we consider to use it for simu-
lation other collective behaviors or use on different insect species. Another important area of
research is the accurate modeling of different environmental factors. Although we find the rela-
tionship between the density of insects and temperature according to known models, we can-
not control the simulation results’ density automatically by giving a reference density because
our model is agent-based.

We have validated our model using visual and quantitative metrics. Results show that our
model can generate more accurate real-world flying insect behaviors as compared to prior
models. One important feature of our approach is that it provides a technique to learn the
parameters of our dynamics model from real-world datasets. This makes it possible to repro-
duce swarm behaviors quite similar to those observed in nature.

Materials and Methods
It is well known that insects exhibit noise-induced movements and sudden changes in direction
as a protection mechanism [12, 14]. Thus, it is important to develop a parametric noise model
that can simulate different insect behaviors [31–33]. In this section, we first introduce back-
ground, terminology and notation and give an overview of our dynamics model. Then we
express our dynamics model and evaluation method for noise modeling in details. Besides,
some of the preliminary results of the dynamics model have also appeared in [34].

Insects and Insect Behaviors
An insect is a small autonomous entity flying in three dimensions that can perceive other
insects and the obstacles in the environment. An insect swarm refers to a spatial aggregation of
insects of similar sizes with collective (but no cooperative) behaviors. In our paper, we mainly
deal with flying insects. There is considerable research on studying actual behaviors of insect
swarms nature [1, 3], which is aimed at understanding the biological rules at the lower scale
(i.e. the insect level) which engenders the collective phenomena at higher scale (i.e., the swarm)
[17]. Many researchers have analyzed experimental datasets to model or predict the behaviors
of insect swarms.

Our dynamics model takes into account the many known collective behaviors of insects that
are widely reported in the literature, including Aggregation,Migration, Competition for mates,
Phase transition, Positive phototaxis, Startle/escape response. During the past decade, many
researchers have argued that these behaviors or group patterns occur due to simple individual
rules; they agree that there are at least three interaction rules for each individual in a group: a
short-range repulsion, an intermediate-range tendency for an insect to align its motion with its
neighbors, and a long-range attraction [10].

Lukeman et al. [17] evaluated these interactions by using them as forces imparting accelera-
tion on swimming ducks in a flock, and proved that their model is consistent with real-world
observations as well as captured datasets. Recently, Puckett et al. [11] found evidence for short-
range repulsion force in midge swarms. Another important characteristic of insects is inherent
noise. This biological term refers to all the random movement made by insects in a swarm [12,
25]. It has been shown that noise-induced movements can help insects to maintain swarm
alignment [14]. The experimental results from [22] indicate that insects move randomly when
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escaping, since this is an advantageous strategy; they select their escape directions from a set of
possible trajectories at fixed angles away from the threat. In other words, when a predator-like
object approaches, a fly moves in the opposite direction, away from the object, with a random
perturbation angle to maximize unpredictability.

Many algorithms have been proposed to simulate the behavior or compute the trajectory of
each agent based on global path planning, local navigation, collision avoidance, and motion
synthesis. The Boids model [24] and other rule-based approaches [35] use simple rules to gov-
ern the movement and behavior of different agents. Other techniques are based on social forces
[36, 37], the cellular automata [38], velocity-based reasoning or optimization [23, 39], etc.
Flow-based approaches [40, 41] focus on the group level, or continuum, behaviors of large
number of agents. Most of these techniques have been used primarily for human-like crowd
simulation, though Reynolds’ Boids model has also been used to simulate movements of birds
and fishes. Some recent work on insect simulation includes a hybrid model based on noise
function and potential fields [25] and a data-driven model for visual simulation [42]. In con-
trast with these models, we propose an agent-based model to describe the dynamics of each
individual and simulate the collective behaviors of the entire group.

There is a large scientific literature on collective behaviors of animal groups and many spe-
cific agent-based models have been proposed [43]. At a broad level, prior techniques for model-
ing insects can be classified into discrete and continuum models [44]. Discrete models, also
regarded as Lagrangian models, can generate emergent global patterns by maneuvering local
rules; these include the Self-Propelled Particles (SPP) model [12] and its variants [45], force-
based models [46], and Brownian dynamics [26, 47]. Continuummodels, on the other hand,
describe swarm movement in terms of density and velocity fields, and govern the dynamics
using continuous mathematical models (e.g., the Navier-Stokes equations). Topaz and Bertozzi
[48] formulate a simple kinematic continuum model by decomposing biological group behav-
iors into incompressible motion and potential motion. Toner and Tu [49] present a quantita-
tive continuum theory which can predict the long-distance behaviors of flocks. Topaz et al.
[50] combine an integrodifferential Eulerian model with density-dependent diffusion to model
group patterns. Other techniques are based on Viscek model for collective motion [51], which
assumes that each individual in a group follows the trajectory of neighboring individuals and
that the deviations in their trajectories can be modeled as ‘noise’. Our dynamics model is differ-
ent from these methods and is able to generate many collective behaviors for different insects.

There is substantial scientific literature on aggregation behaviors of animal groups, and
many force-based multi-agent models have been proposed [34, 43]. These models can be
divided into two categories: continuum approach models and discrete approach models. Most
continuum approaches are based on partial differential equation [49, 52, 53]. Discrete
approach is more common than the continuum approach [11] and includes rule-based model
and mathematical model. In rule-based models, individual agents apply particular rules to
achieve global behaviors [24]. Mathematical models explore collective behavior in a more gen-
eral manner [54]. In these types of models, individuals interact with one another based on per-
ception forces [55], and these forces include short-range repulsion and long-range attraction
[56]. In addition, some models also consider medium-range orientation [10].

Notation
In our model, we regard insects as identical self-driven agents with mutual interactions. A
swarm consists of N agents with unit mass (i.e., the mass is 1). The position, preferred velocity,
actual velocity and acceleration of an insect are marked as bold vectors ri, vi,pref, vi and ai
(i = 1, . . . , N). The set of all preferred velocities and actual velocities of all insects is denoted as
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Vpref ¼ vi;pref and V ¼ vi, respectively. We also use a collision-avoidance algorithm within our

model and represent that algorithm as fR.
Our model is force-based and we use the symbol Fi to represent forces for a given insect i.

Interaction forces Fi,int represent the three forces that act on every insect in the swarm (i.e., an
individual interacts with other individuals via forces that affect its motion). In particular, Fi,int
includes repulsive force Fi,rep, alignment force Fi,ali, and attractive force Fi,att. Self-propulsion
forces Fi,pro represent all the forces that occur due to the environment or intrinsic factors,
including friction Fi,fric, inherent stochastic force Fi,ξ, and response force Fi,res. In terms of vali-
dation, we use ϕ to represent a time varying metric, F the collection of the metric, andQ� rep-

resents the probability density function of ϕ.

Insect Dynamics Model
We present a biologically-driven insect swarm model that is used to compute the behavior and
trajectories of each insect. Moreover, we present a parameter-estimation algorithm that com-
putes appropriate parameters, ensuring that the results of the simulation model match up to
real-world insect trajectories. The optimization function is formulated based on time-varying
metrics that are used to characterize different aspects of insect behaviors. Insect swarm simula-
tion can be regarded as a type of simulation for collective behaviors known asmulti-agent sim-
ulation. Multi-agent simulation techniques have been widely studied in computer graphics,
robotics, artificial intelligence, and related areas. To simulate swarming insects using these
multi-agent techniques, we treat each insect as one of the interacting intelligent agents within
an environment. The overview of our framework is shown in Fig 19.

Our dynamics formulation uses a force-based model to generate a preferred velocity for
each insect. This includes different type of forces. We also use reciprocal velocity obstacles to
compute each insect’s actual velocity based on local collision avoidance.

The equation to describe the dynamics of each insect in the swarm is given as:

_vi;pref ¼ ai ¼ Fi;int þ Fi;pro þ Fi;x: ð2Þ

Wemodel two types of forces for each insect. The first type of force in Eq 2 is the interaction
force Fi,int, which consists of a short-range repulsion, an intermediate-range tendency for an

Fig 19. Overview of our biologically-driven insect swarmmodel (illustrated in 2D view).We highlight different components of our
algorithm used to calculate the position of each insects at each time step, including two sets of forces: interaction forces and self-propulsion
forces. Interaction forces are represented by individual-based zones: insects follow forces that are represented in concentric zones of repulsion,
alignment, and attraction to their neighbors. We use these forces to compute the acceleration and preferred velocity for each insect, and use
velocity obstacles to perform collision avoidance and compute the actual velocity. The parameter estimation step is performed to compute the
optimal parameters for our model.

doi:10.1371/journal.pone.0155698.g019
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insect to align its motion with its neighbors, and a long-range attraction. Lumen et al. [17] sug-
gest that Fi,int can also be fitted into a concentric zonal model (i.e., individual-based concentric
zones of forces).

The second type of force is called self-propulsion force Fi,pro. This force represents all exter-
nal factors that contribute to the insect’s trajectory. Fi,pro is formulated as:

Fi;pro ¼ Fi;fric þ Fi;res; ð3Þ

where Fi,fric is the friction force corresponding to the drag on the movement of an insect, Fi,res
is the response forces that arises when an insect senses danger or things of interest in the
environment.

Insects also exhibit noise-induced behaviors and instinct responses to the environment. In
other words, these forces are exerted on each insect even if it is the only individual insect pres-
ent in a swarm. The force exerted by inherent noise, an important characteristic of insect
swarms, is represented here by the term, Fi,ξ.

In order to model the noise function, we consider different choices for the stochastic term,
including white noise, Gaussian white noise, Perlin noise, and curl noise. Our experimental
results, based on our evaluation metric (see Section 5), indicate that curl noise provides us the
best result. The noise term is represented as:

Fi;x ¼ CðriÞ; ð4Þ

where C(ri) denotes the curl noise function we used.
It is important to prevent collisions, both between insects in the swarm and with obstacles

in the environment. One key issue is to ensure that our approach can deal with large and dense
simulations of swarms. There are some widely-used collision avoidance algorithms used for
multi-agent simulation and human crowds, such as the ones based on social forces [36] and
reciprocal velocity obstacles (RVOs) [23]. However, algorithms based on social forces can have
stability problems in dense scenarios and the resulting simulation needs to take very small time
steps. Therefore, we use the geometric optimization algorithm based on RVOs to compute col-
lision free trajectories for each insect. The underlying collision avoidance algorithm fR is stable,
in terms of using large time steps, and also works well in dense situations. The preferred veloc-
ity Vpref ¼ fvi;pref ji ¼ 1 . . .Ng for each insect is generated by Eq (2), and is used as an input to

fR. We use RVOs to compute obtain the actual velocity V ¼ fviji ¼ 1 . . .Ng:
V ¼ fRðVpref Þ:

Finally, we use the actual velocities V to update insects’ positions at each time step: _r i ¼ vi:

Interaction Force. Interaction force depends on an insect’s neighbors and on the transi-
tion zones depicted by concentric circles (or the spheres in 3D). The borders of zones for repul-
sion, alignment, or attraction for a given insect are defined by the radii rrep, rali, and ratt with
the conditions ratt ⩾ rali ⩾ rrep ⩾ 0 [10], as shown in Fig 19. For a given insect i, if another insect
j is within its range ratt, then j is classified as a neighbor of i. The interaction force of i is com-
puted as an average of the influences exerted by neighbors:

Fi;int ¼
X
k

Fi;k; Fi;k ¼
wk

Nk

XNk

j¼1
ðgðrjiÞr̂ ji þ ð1� jgðrjiÞjÞv̂ jiÞ: ð5Þ

In this equation, repulsion force Fi,rep, alignment force Fi, ali, and attraction force Fi,att are
represented as Fi, k with k = {rep, ali,att}; χk ⩾ 0 stands for weighting parameters for each
force, respectively; Nk is the number of neighbors located in the corresponding zone for that
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function. Other notations are described as follows: rji = krj − rik2, r̂ ji ¼ ðrj � riÞ=rji,
v̂ ji ¼ ðvj � viÞ=kvj � vik2. The piecewise function g(x) is used to distinguish these zones:

gðxÞ ¼
�1; 0⩽ x < rrep;

0; rrep⩽ x < rali;

1; rali ⩽ x⩽ ratt:

8><
>:

Self-propulsion Force. The self-propulsion force Fi,pro, introduced in Eq (3), is based on
real observations. “Self-propulsion”means that the external forces arise from the insect’s reac-
tion to the environment or other factors, not from its neighbors. Fi,pro is composed by Fi,frac
and Fi,res.

The friction function is expressed as Fi,frac = −γvi vi, where γ is the friction coefficient. The
second term Fi,res denotes the response to environmental stimuli, such as predators approach-
ing or prey passing by. In general, there are two types of stimuli for insects: predator-like
objects, which create escape behaviors, and food/females, which create pursuit behaviors in
male insects. According to the experimental results presented in [22], insects usually escape
away from the threat with relatively high variability and a limited angular sector (mainly
90−180°). In other words, the pursuit behavior of insects is simple; they just directly fly towards
the target [17]. An illustration of escape and pursuit behaviors is shown in Fig 20. Since there is
little chance that insects will engage in escape and pursuit behaviors at the same time, we
assume that the insects are responding to only one type of stimulus at any given time. Let re
denotes the position of an environmental stimulus, rres denotes the visual range of all insects.
Fi,res is defined as:

Fi;res ¼ wresHðrres � rieÞðser̂ ieRðn; yÞ � ð1� seÞr̂ieÞ:

Here χres ⩾ 0 is the weighting parameter. H(x) is the Heaviside step function, which reflects

Fig 20. Escape and pursuit behaviors (2D view for illustration purposes). (a) When the predator comes from the
position of 0°, an insect tends to escape in the direction of 90° − 180°. (b) An insect pursues the stimuli by flying towards to
it.

doi:10.1371/journal.pone.0155698.g020
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whether an insect “sees” the stimuli. The rotation matrix R(n,θ) is adopted to generate an
escape direction, where n = (0, 1, 0) is a rotation axis and θ is a random angle perturbation that

obeys uniform distribution on � p
2
; 0

� �
. The symbol variable se reflects the type of stimuli. se =

1 denotes the predator-like object and se = 0 denotes food or female to be chased.
Inherent-noise force. Noise is a constructive force at the collective level in an insect

swarm [14]. In multi-agent models, noise mainly includes white noise and Gaussian white
noise, and its variants. White noise obeys a uniform distribution, and some self-propelled parti-
cle(SPP) models [12] adopt this kind of noise. Gaussian white noise is the noise that obeys a
Gaussian(or normal) distribution, this noise function is used in most of the Brownian dynam-
ics models [47, 57], Esciderp et al. [58] also use this noise. Meanwhile, the manner in which the
noise is introduced into the system will affect the simulation results [31]. Aldana et al. [32] con-
sider intrinsic noise and extrinsic noise based on Vicsek’s model [12, 59], but both types of
noise are white noise. Gönci et al. [33] use a scalar noise model that is chosen because it is uni-
formly distributed as a rotation tensor. In computer Graphics, there are two kind of noise that
can be applied to the simulation of collection motion: Perlin noise and Curl noise. Perlin noise
is a type of gradient noise that consists of a collection of lattics of random gradients in which
the values between lattices are obtained by interpolation [60]. Curl noise is incompressible
velocity fields which is based on Perlin noise and its amplitude can be modulated in space as
desired [61]. Chaté et al. [56] propose the notion of angular noise(a scalar) and vectorial noise
(a vector), both them are uniformly distributed.

One of the major challenges is to model the noise-induced movements as part of our
dynamics model. In order to address this problem, we consider four candidate noise functions
that have been used in computer graphics. Moreover, we use our novel evaluation metric and
parameter estimation algorithm to evaluate these functions and come up with a data-driven
model for inherent-noise. The four widely-known noise functions for the stochastic term are
described below.

White noise: A 1D white noiseW, which has a probability distribution with zero mean and
finite variance. A 3D white noiseW is composed of threeWs that are statistically independent.
This noise is used in the SPP model [12].

Gaussian white noise: An approximation of Gaussian white noise G is generated from two
white noisesW1 andW2, and expressed as:

G ¼ l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � logðW1Þ

p
� sinð2pW2Þ;

with λ is a strength coefficient. This noise function is used in most of the Brownian dynamics
models [47, 57].

Perlin noise: Perlin noise correlates to position ri. Assume P is a 1D Perlin noise, a 3D Per-
lin noise field P is generated by:

PðriÞ ¼ P1ð
ri

scale
Þ; P2ð

ri
scale
Þ; P3ð

ri
scale
Þ

� �
� gain;

where scale and gain are two noise parameters: scale is used to control the smoothness of noise
indirectly and gain is used to adjust the magnitude of the noise.

Curl noise: Introduced by Bridson et al. [61], Curl noise is used to simulate continuous
noise trajectories. Inspired by Wang et al. [25], Curl noise Ci can be described as a force field
related to the positions:

CðriÞ ¼ r �PðriÞ:

In results, we evaluate the accuracy of each of these noise functions into our dynamics model
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by plugging Fi,ξ = {W, G, P, C}. We observed that the Curl noise function can provide us the
most accurate results both in simulation experiments and evaluation results.

Collision avoidance. Berg et al. [23] proposed a geometric optimization algorithm for
local collision avoidance called RVOs. It takes as input the preferred velocities of the agent Vpref

and returns an optimal collision-free velocity V that minimizes the chosen penalty metric,
which corresponds to the 2-norm of the difference between the preferred velocity and the
actual velocity. The underlying formulation is conservative and in some very dense swarm sce-
narios there maybe no feasible velocity for an insect. In that case, we assign a zero velocity to
that insect for that frame or repeat the computation with a smaller time step. The next position
ri for each insect agent i after Δt is calculated by the Algorithm 1.

Algorithm 1: Position update for each insects at each time step using our dynamics model
Data: the current position r0i and velocity v0i of each agent
Result: the next position ri and velocity vi of each agent
for i 1 to N do

for j 1 to N, j 6¼ i do
if rji ⩽ ratt then

mark j as a neighbor of i;
for i 1 to N do

calculate Fi, int by Eq 5;
calculate Fi, fric, Fi, res, Fi, ξ;
Fi, pro = Fi, fric + Fi, res + Fi, ξ;
vi, pref v0i + (Fi, int + Fi, pro)Δt;

V fRðVpref Þ;
for i 1 to N do

ri r0i + viΔt;

Model Evaluation
Many techniques are proposed to evaluate the results or improve the accuracy of multi-agent
and crowd simulation algorithms; most do this by comparing the algorithms’ output with real-
world sensor data. Pettré et al. [62] use experimental pedestrian data to compute appropriate
parameters for a collision-avoidance algorithm based on Maximum Likelihood Estimation.

Lerner et al. [63] annotate pedestrian agent trajectories with action-tags to enhance their
natural appearance or realism. In order to learn accurate parameters from real-world datasets,
learning techniques have also been used [64, 65]. Wolinski et al. [29] and Berseth et al. [30]
present parameter optimization-approaches that automatically compute the simulation param-
eters so that the simulated trajectories match real-world datasets. Guy et al. [28] propose an
entropy-based evaluation approach to quantify the similarity between real-world and simu-
lated trajectories. But most of these techniques have been designed for and applied to pedestri-
ans or human crowds. In contrast, our evaluation approach is designed for insect swarm
trajectory datasets, and robustly handle the inherent noise to be found both in the trajectory
data and in our model.

Dynamic multi-agent models can produce behavior qualitatively similar to real biological
systems. Lukeman et al. [17] validate their results by overlaying them on original images. How-
ever, it cannot be used to accurately evaluate the dynamics of a swarm. Other techniques have
been proposed in evaluating the accuracy of human crowds, including parameter optimization
approaches [29, 30] that use real-world crowd trajectories. Guy et al. [28] propose an entropy-
based evaluation approach to quantify the similarity between real-world and simulated trajec-
tories. However, these approaches are unable to model the inherent noise.

The simplest technique for evaluating a model is to render the trajectories and observe the
insect movements. However, basing an evaluation of whether a given dynamics model can
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capture all aspects of insects’ emergent behaviors on visual rendering alone is not sufficient
[11]. We present a novel quantitative approach to evaluate insect dynamics models by using
real-world trajectory datasets. Our approach accounts for some key aspects of insect behaviors
and trajectories based on seven time-varying metrics.

It is possible that two different swarms with noisy trajectories may exhibit similar swarm
behaviors even when their trajectory positions are quite different. Our approach uses discrete
probability density distribution functions (PDF) that are generated from the time-varying met-
rics and reflects the global characteristics of insect swarms. The influence of a small amount of
data abnormality or noise can be ignored.

Our evaluation model is represented by the following equation, which contains seven energy
terms:

E ¼ 1�
X
�2F

w�E�; ð6Þ

where F = {v, a, ω, α, μ, d, η}, which consists of seven time-varying metrics: v the velocity, a the
acceleration, ω the angular velocity, α the angular acceleration, μ the Cartesian jerk, d the short-
est distance, and η the velocity difference. These seven metrics are inspired from the biological
literature. Eϕ denotes the energy term about the metric ϕ, and wϕ denotes the weight of Eϕ.

For a metric ϕ in F, Eϕ is the energy term that represents the difference in discrete PDF
between the real-world data and the simulation data. We formulate Eϕ as

E� ¼ kQreal
� �Qsim

� k1; ð7Þ

whereQreal
� denotes the discrete PDF of an insect swarm’s metrics from real-world captured

data andQsim
� represents the discrete PDF of an insect swarm’s metrics from our swarm simula-

tion model. We compute Eϕ in four steps as follows:
Step 1: Sample the real data and the simulation data for the metric ϕ. For one set of real

data or simulation data, compute the metric ϕ for all insects in all frames;
Step 2: Normalize the samples with the z-score method which refers to a mean shift fol-

lowed by a standard deviation scaling. Because the real-world data and the simulator’s output
have different quantity scales, we must normalize the samples before comparing. We simply
apply the z-score normalization method to the time-varying metric ϕ;

Step 3: Compute the discrete PDFs of the real-world data and the simulator’s data with nor-
malized samples from Step 2. For example, we can consider the real-world data: let S be the num-
ber of samples, and let [u1, u2] be the interval of a given metric ϕ. We divide the interval [u1, u2]

intoM equal sub-intervals. When we consider the ith subinterval u1 þ u2�u1
M
ði� 1Þ; u1 þ u2�u1

M
i

� �

with Si samples, the probability density in the ith interval is given asQreal
�;i ¼ SiM

Sðu2�u1Þ. The probabil-

ity density of the simulation data in the ith intervalQsim
�;i can be calculated similarly;

Step 4: Compute the energy term Eϕ: the difference of the discrete PDFs between the real

data and the simulation data, and E� ¼
XM

i¼1kQreal
�;i �Qsim

�;ik1.
We normalize the energy terms in Eq 7:

E� ¼
kQreal

� �Qsim
� k1 � p1�

p2�
; ð8Þ

where p1ϕ and p2ϕ are normalization parameters. The computation ofkQreal
� �Qsim

� k1 is the
same as in Eq (7).
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Time-varying metrics
We present seven time-varying metrics which contain the main characters of both individual
insects and insect swarms, and it makes our evaluation model more comprehensive. As a result,
the insect swarm simulator with higher evaluation value exhibit higher quality of results.

Velocity: Velocity is a basic metric used to evaluate the motion of an agent. We measure the
magnitude of velocity v.

Acceleration:We can consider the acceleration as an effective net force on an insect [5]. We
use the magnitude of acceleration a.

Angular velocity & acceleration: Angular rotations of an insect’s body result in Coriolis
forces, and the trajectory of an insect is affected by that force [66]. Therefore, we account for
angular velocity and angular acceleration. The angular velocity is defined as the rate of change
of angular displacement:

o ¼
arccos v1v2

jv1jjv2 j
Dt

;

where v1 and v2 represent the velocity of one insect in neighboring time points. The angular
acceleration is defined as:

a ¼ Do
Dt

:

Cartesian jerk: Insect behavior tends to include some inherent noise [14], whereas humans
and large animals typically move in a trajectory with gradual changes. The Cartesian jerk is
used to represent the noise of insects’motion. Cartesian jerk is mathematically defined as the
rate of change of acceleration [67] and reflects the smoothness of velocity:

m ¼ kDv1 � Dv2

ðDtÞ2 k2
;

where μ is the magnitude of the second order differential of velocity, Δv1 and Δv2 are the veloc-
ity changes of one insect in neighboring time points.

Shortest distance: The density of an insect swarm reflects the group’s degree of order [13]
and the number of insects per unit volume. But the number of samples for density is limited,
which affects discrete PDF computation. And the distance to the nearest neighbor for each
insect is a reflection of the density of an insect swarm. Therefore, we choose the distance to
nearest neighbor [68] as our metric, and term it the shortest distance d. We formulate the
shortest distance as follows:

d ¼ min
k2f1;2;...;Ngnfmg

k~pk �~pmk2;

wherem denotes the ID of current insects, k denotes the ID of other insects, N is the number of
insects in the swarm, and~p denotes the position of the insects.

Velocity difference: Unlike bird flocks and fish schools, a single insect in a swarm has little
tendency to align with its neighbors [5]. Therefore, it is important to study the difference in
velocity between neighboring insects to distinguish insect swarms from groups. If the shortest
distance has a large magnitude, the influence of the difference in velocity to the corresponding
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metric should be relatively weak. As a result, we formulate the velocity difference as

Z ¼ jvnei � vj
d

;

where vnei denotes the magnitude of velocity of the nearest neighbor.

Model Evaluation with Entropy Weight
In this section, we describe our evaluation algorithm. The overall evaluation has two compo-
nents: optimizing the dynamics model parameters and optimizing the weights of seven energy
terms.

We evaluate dynamics models for insect swarms with estimated optimal parameters (see Fig
21). The performance of a dynamics model for insect swarms is sensitive to the choice of
underlying parameters. Therefore, we use a genetic algorithm to compute the optimal parame-
ters by maximizing the evaluation function in Eq 6.

However, when we use the evaluation model to assess the different simulation techniques
for insect swarms, it may require assigning different weights to each energy term. Instead, we
compute the weights of all the energy terms automatically and then compute the final weighted
score to evaluate different insect simulation models for fair comparisons. We use the entropy-
based evaluation method described in [69] to compute the weights of the evaluation model in
Eq 6 to provide reliable results.

Letm be the number of insect swarm simulation models evaluated, and n the number of dif-
ferent energy terms defined in Eq 6. The resulting energy terms matrix (before normalization)

Fig 21. Parameter-estimation algorithm (Par-Est algorithm). For the given real-world trajectory data of an insect swarm, we compute the
discrete PDFs of the seven time-varying metrics using that data. Meanwhile, we use the parameterized dynamics model to simulate the
insects and compute the discrete PDFs of the seven time-varying metrics with the simulation data. Next, we evaluate the function given in
Eq (6) and use that as an objective function for the genetic algorithm to compute the optimal parameters.

doi:10.1371/journal.pone.0155698.g021

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 24 / 31



is X = (xij)m × n:

X ¼
x11 � � � x1n

..

. . .
. ..

.

xm1 � � � xmn

0
BB@

1
CCA:

We normalize matrix X as follows:

xij ¼
xij � p1j

p2j
;

where p1j = mini xij, p2j = maxi xij −mini xij are the normalization parameters described in Eq
8. Let R = (rij)m × n, rij = 1 − xij, and the entropy of an energy term is defined as

ej ¼ �
1

lnm

Xm
i¼1

gij ln gij; j ¼ 1; 2; :::; n;

where gij ¼ rijPm

i¼1 rij
, and gij ln gij = 0 when gij = 0. The weight of the ith energy term is calculated

by

wj ¼
1� ejPn

j¼1ð1� ejÞ
: ð9Þ

We use this evaluation scheme to compare the performance of prior multi-agent and insect
swarm simulation models. The resulting evaluation algorithm that can compare the perfor-
mance of different models insect swarms is summarized as follows:

Step 1: Initialize the weights in Eq 6 and normalization parameters in Eq 8; then, set the
value ranges of the parameters in the dynamics models;

Step 2: Compute the energy terms with optimal parameters of each model to be evaluated
using the Par-Est method shown in Fig 21;

Step 3: Compute the weights and normalization parameters with the energy terms matrix
generated from Step 2;

Step 4: If the weights of our evaluation model are close to the weights computed in prior
iterations, or the current number of iterations reaches the maximum number of iterations, go
to Step 5; otherwise go to Step 2;

Step 5: Return the results.

Supporting Information
S1 Table. The values of the seven energy terms of each noise in the evaluation results with
data set 1. The weights of our evaluation model with data set 1 are: wv = 0.1219, wa = 0.1397,
wω = 0.1649, wα = 0.1527, wμ = 0.1269, wd = 0.1739, wη = 0.1200.
(PDF)

S2 Table. The values of the seven energy terms of each noise in the evaluation results with
data set 2. The weights of our evaluation model with data set 2 are: wv = 0.1270, wa = 0.1381,
wω = 0.1541, wα = 0.1739, wμ = 0.1405, wd = 0.1396, wη = 0.1268.
(PDF)

S3 Table. The values of the seven energy terms of each noise in the evaluation results with
data set 3. The weights of our evaluation model with data set 3 are: wv = 0.1467, wa = 0.1562,

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 25 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s003


wω = 0.1256, wα = 0.1433, wμ = 0.1799, wd = 0.1260, wη = 0.1223.
(PDF)

S4 Table. The values of the seven energy terms of each noise in the evaluation results with
data set 4. The weights of our evaluation model with data set 4 are: wv = 0.1288, wa = 0.1499,
wω = 0.1544, wα = 0.1503, wμ = 0.1561, wd = 0.1293, wη = 0.1312.
(PDF)

S5 Table. Weights with data sets for noise comparison.
(PDF)

S6 Table. Normalization parameter p1ϕ with data sets for noise comparison.
(PDF)

S7 Table. Normalization parameter p2ϕ with data sets for noise comparison.
(PDF)

S8 Table. Weights with data sets for model comparison 1.
(PDF)

S9 Table. Normalization parameter p1ϕ with data sets for model comparison 1.
(PDF)

S10 Table. Normalization parameter p2ϕ with data sets for model comparison 1.
(PDF)

S11 Table. The values of the seven energy terms of each model for comparison 1 in the eval-
uation results with data set 1. The weights of our evaluation model with data set 1 are: wv =
0.1328, wa = 0.1345, wω = 0.1346, wα = 0.1327, wμ = 0.1543, wd = 0.1346, wη = 0.1765.
(PDF)

S12 Table. The values of the seven energy terms of each model for comparison 1 in the eval-
uation results with data set 2. The weights of our evaluation model with data set 2 are: wv =
0.1285, wa = 0.1640, wω = 0.1330, wα = 0.1404, wμ = 0.1432, wd = 0.1527, wη = 0.1382.
(PDF)

S13 Table. The values of the seven energy terms of each model for comparison 1 in the eval-
uation results with data set 3. The weights of our evaluation model with data set 3 are: wv =
0.1305, wa = 0.1939, wω = 0.1313, wα = 0.1339, wμ = 0.1401, wd = 0.1307, wη = 0.1396.
(PDF)

S14 Table. The values of the seven energy terms of each model for comparison 1 in the eval-
uation results with data set 4. The weights of our evaluation model with data set 4 are: wv =
0.1328, wa = 0.1341, wω = 0.1327, wα = 0.1669, wμ = 0.1400, wd = 0.1447, wη = 0.1487.
(PDF)

S15 Table. Normalization parameter p1ϕ with datasets for model comparison 2.
(PDF)

S16 Table. Normalization parameter p2ϕ with datasets for model comparison 2.
(PDF)

S17 Table. The values of the seven energy terms of each model evaluated for comparison 2
in the evaluation results with dataset 1. In the evaluation results, the parameters of our
approach are: r1 = 6.2125, scale = 3.5093, gain = 3.9280, χrep = 4.4773, χatt = 12.0471, rrep =
5.9951, ratt = 11.8224. The parameters for noise-aware model are: scale = 2.1368, gain = 1.2394.

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 26 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s015
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s016
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s017


The parameters for RVO model are: Neighb.Dist = 0.4022,maxNeighb. = 10.6452,
radius = 0.0718,maxSpeed = 0.2309. The parameters for Boids are: speed = 7.5007,
radius = 0.2615. The parameters for the Brownian model are: r1 = 0.2156, r2 = 3.8959,
D = 0.9585, Cr = 0.0368. The weights of our evaluation model with data set 1 are: wv = 0.1184,
wa = 0.1219, wω = 0.1700, wα = 0.1524, wμ = 0.1348, wd = 0.1670, wη = 0.1354.
(PDF)

S18 Table. The values of the seven energy terms of each model evaluated for comparison 2
in the evaluation results with dataset 2. In the evaluation results, the parameters of our
approach are: r1 = 1.0360, scale = 2.8835, gain = 1.3600, χrep = 16.8519, χatt = 25.1986, rrep =
4.1642, ratt = 17.0014. The parameters for noise-aware model are: scale = 2.3748, gain = 1.2711.
The parameters for RVO model are: Neighb.Dist = 0.2462,maxNeighb. = 19.5161,
radius = 0.0783,maxSpeed = 0.2153. The parameters for Boids are: speed = 6.9041,
radius = 0.0220. The parameters for the Brownian model are: r1 = 0.3542, r2 = 1.0877,
D = 3.1650, Cr = 0.0576. The weights of our evaluation model with data set 2 are: wv = 0.1345,
wa = 0.1669, wω = 0.1319, wα = 0.1261, wμ = 0.1405, wd = 0.1547, wη = 0.1454.
(PDF)

S19 Table. The values of the seven energy terms of each model evaluated for comparison 2
in the evaluation results with dataset 3. In the evaluation results, the parameters of our
approach are: r1 = 13.0152, scale = 1.4847, gain = 4.7013, χrep = 1.5184, χatt = 4.6778, rrep =
5.7613, ratt = 2.6783. The parameters for noise-aware model are: scale = 2.3962, gain = 1.6770.
The parameters for RVO model are: Neighb.Dist = 0.5670,maxNeighb. = 27.5806,
radius = 0.0703,maxSpeed = 0.3262. The parameters for Boids are: speed = 7.1087,
radius = 0.0718. The parameters for the Brownian model are: r1 = 0.2262, r2 = 2.8262,
D = 2.6353, Cr = 0.0580. The weights of our evaluation model with data set 3 are: wv = 0.1278,
wa = 0.1649, wω = 0.1222, wα = 0.1207, wμ = 0.1741, wd = 0.1444, wη = 0.1459.
(PDF)

S20 Table. The values of the seven energy terms of each model evaluated for comparison 2
in the evaluation results with dataset 4. In the evaluation results, the parameters of our
approach are: r1 = 4.5815, scale = 2.3260, gain = 5.2064, χrep = 13.8801, χatt = 21.0282, rrep =
5.1398, ratt = 0.0205. The parameters for noise-aware model are: scale = 2.3889, gain = 1.4328.
The parameters for RVO model are: Neighb.Dist = 0.2846,maxNeighb. = 15.4839,
radius = 0.0632,maxSpeed = 0.2903. The parameters for Boids are: speed = 0.8803,
radius = 0.1938. The parameters for the Brownian model are: r1 = 0.4925, r2 = 0.9870,
D = 0.9208, Cr = 0.0096. The weights of our evaluation model with data set 4 are: wv = 0.1257,
wa = 0.1461, wω = 0.1246, wα = 0.1311, wμ = 0.1577, wd = 0.1565, wη = 0.1583.
(PDF)

S1 Video. The visual results of parameter estimation for midges and fruit flies.
(MP4)

S2 Video. The visual results for the aggregation of moths swarm and mosquitoes swarm.
(MP4)

S3 Video. The visual results for the Locust migration with different density of the group.
(MP4)
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S8 Video. The visual results for swirling bats.
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S9 Video. The visual comparisons among different noise functions.
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S12 Video. The visual results with temperature changing.
(MP4)

Acknowledgments
Xiaogang Jin was supported by the National Natural Science Foundation of China (Grant nos.
61272298, 61328204). Dinesh Manocha is supported in part by ARO Contract W911NF-10-1-
0506 and the National Thousand Talents Program of China.

Author Contributions
Conceived and designed the experiments: JR XW. Performed the experiments: JR XW. Ana-
lyzed the data: JR XW. Contributed reagents/materials/analysis tools: JR XW. Wrote the paper:
JR XW DM XJ.

References
1. Rauch EM, Millonas MM, Chialvo DR. Pattern formation and functionality in swarmmodels. Physics

Letters A. 1995; 207(3):185–193. doi: 10.1016/0375-9601(95)00624-C

2. Rogers SM, Matheson T, Despland E, Dodgson T, Burrows M, Simpson SJ. Mechanosensory-induced
behavioural gregarization in the desert locust Schistocerca gregaria. Journal of Experimental Biology.
2003; 206(22):3991–4002. doi: 10.1242/jeb.00648 PMID: 14555739

3. Morse RA. Swarm Orientation in Honeybees. Science. 1963; 141(3578):357–358. doi: 10.1126/
science.141.3578.357 PMID: 17815993

4. Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature.
2000; 406(6791):39–42.

5. Kelley DH, Ouellette NT. Emergent dynamics of laboratory insect swarms. Sci Rep. 2013; 3 (1073). doi:
10.1038/srep01073 PMID: 23323215

6. WuHS, Zhao Q, Zou D, Chen YQ. Automated 3D trajectory measuring of large numbers of moving par-
ticles. Optics express. 2011; 19(8):7646–7663. doi: 10.1364/OE.19.007646 PMID: 21503074

7. Attanasi A, Cavagna A, Del Castello L, Giardina I, Jelic A, Melillo S, et al. GReTA—a novel Global and
Recursive Tracking Algorithm in three dimensions. Pattern Analysis and Machine Intelligence, IEEE
Transactions on. 2015; PP(99):1–1.

8. Qian ZM, Cheng XE, Chen YQ. Automatically Detect and Track Multiple Fish Swimming in Shallow
Water with Frequent Occlusion. PloS one. 2014; 9(9):e106506. doi: 10.1371/journal.pone.0106506
PMID: 25207811

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 28 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s025
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s027
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s028
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s029
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s030
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s031
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155698.s032
http://dx.doi.org/10.1016/0375-9601(95)00624-C
http://dx.doi.org/10.1242/jeb.00648
http://www.ncbi.nlm.nih.gov/pubmed/14555739
http://dx.doi.org/10.1126/science.141.3578.357
http://dx.doi.org/10.1126/science.141.3578.357
http://www.ncbi.nlm.nih.gov/pubmed/17815993
http://dx.doi.org/10.1038/srep01073
http://www.ncbi.nlm.nih.gov/pubmed/23323215
http://dx.doi.org/10.1364/OE.19.007646
http://www.ncbi.nlm.nih.gov/pubmed/21503074
http://dx.doi.org/10.1371/journal.pone.0106506
http://www.ncbi.nlm.nih.gov/pubmed/25207811


9. Cheng XE, Qian ZM, Wang SH, Jiang N, Guo A, Chen YQ. A Novel Method for Tracking Individuals of
Fruit Fly Swarms Flying in a Laboratory Flight Arena. PloS one. 2015; 10(6):e0129657. doi: 10.1371/
journal.pone.0129657 PMID: 26083385

10. Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective Memory and Spatial Sorting in Ani-
mal Groups. Journal of Theoretical Biology. 2002; 218(1):1–11. doi: 10.1006/jtbi.2002.3065 PMID:
12297066

11. Puckett JG, Kelley DH, Ouellette NT. Searching for effective forces in laboratory insect swarms. Scien-
tific reports. 2014; 4 (4766). doi: 10.1038/srep04766 PMID: 24755944

12. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel Type of Phase Transition in a System of
Self-Driven Particles. Phys Rev Lett. 1995; 75(6):1226–1229. doi: 10.1103/PhysRevLett.75.1226
PMID: 10060237

13. Buhl J, Sumpter DJT, Couzin ID, Hale JJ, Despland E, Miller ER, et al. From Disorder to Order in March-
ing Locusts. Science. 2006; 312(5778):1402–1406. doi: 10.1126/science.1125142 PMID: 16741126

14. Yates CA, Erban R, Escudero C, Couzin ID, Buhl J, Kevrekidis IG, et al. Inherent noise can facilitate
coherence in collective swarmmotion. Proceedings of the National Academy of Sciences. 2009; 106
(14):5464–5469. doi: 10.1073/pnas.0811195106

15. Vicsek T. Universal Patterns of Collective Motion fromMinimal Models of Flocking. In: Self-Adaptive
and Self-Organizing Systems, 2008. SASO’08. Second IEEE International Conference on; 2008. p. 3–
11.

16. Grégoire G, Chaté H. Onset of collective and cohesive motion. Physical review letters. 2004; 92
(2):025702. doi: 10.1103/PhysRevLett.92.025702 PMID: 14753946

17. Lukeman R, Li YX, Edelstein-Keshet L. Inferring individual rules from collective behavior. Proceedings
of the National Academy of Sciences. 2010; 107(28):12576–12580. doi: 10.1073/pnas.1001763107

18. Vulinec K. Collective security: aggregation by insects as a defense. In: Evans DL, Schmidt JO, editors.
Insect defenses: adaptive mechanisms and strategies of prey and predators. SUNY series in animal
behavior. New York, USA: State University of New York Press; 1990. p. 251–288.

19. Dublon IAN, Sumpter DJT. Flying insect swarms. Current Biology. 2014; 24(18):R828–R830. doi: 10.
1016/j.cub.2014.07.009 PMID: 25247351

20. Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S, Parisi L, et al. Finite-Size Scaling as a Way
to Probe Near-Criticality in Natural Swarms. Phys Rev Lett. 2014; 113:238102. doi: 10.1103/
PhysRevLett.113.238102 PMID: 25526161

21. Moise ERD, Henry HAL. Like moths to a street lamp: exaggerated animal densities in plot-level global
change field experiments. Oikos. 2010; 119(5):791–795. doi: 10.1111/j.1600-0706.2009.18343.x

22. Domenici P, Blagburn JM, Bacon JP. Animal escapology II: escape trajectory case studies. The Journal
of experimental biology. 2011; 214(15):2474–2494. doi: 10.1242/jeb.053801 PMID: 21753040

23. van den Berg J, Guy S, Lin M, Manocha D. Reciprocal n-Body Collision Avoidance. In: Pradalier Cd,
Siegwart R, Hirzinger G, editors. Robotics Research. vol. 70 of Springer Tracts in Advanced Robotics.
Springer Berlin Heidelberg; 2011. p. 3–19.

24. Reynolds CW. Flocks, Herds and Schools: A Distributed Behavioral Model. SIGGRAPH Comput
Graph. 1987; 21(4):25–34. doi: 10.1145/37402.37406

25. Wang X, Jin X, Deng Z, Zhou L. Inherent Noise-Aware Insect Swarm Simulation. Computer Graphics
Forum. 2014; 33(6):51–62. doi: 10.1111/cgf.12277

26. Schweitzer F, EbelingW, Tilch B. Complex Motion of Brownian Particles with Energy Depots. Phys
Rev Lett. 1998; 80(23):5044–5047. doi: 10.1103/PhysRevLett.80.5044

27. Grüebler MU, Morand M, Naef-Daenzer B. A predictive model of the density of airborne insects in agri-
cultural environments. Agriculture, ecosystems & environment. 2008; 123(1):75–80.

28. Guy SJ, van den Berg J, Liu W, Lau R, Lin MC, Manocha D. A Statistical Similarity Measure for Aggre-
gate Crowd Dynamics. ACM Trans Graph. 2012; 31(6):190:1–190:11. doi: 10.1145/2366145.2366209

29. Wolinski D, Guy SJ, Olivier AH, Lin M, Manocha D, Pettré J. Parameter estimation and comparative
evaluation of crowd simulations. In: Computer Graphics Forum. vol. 33. Wiley Online Library; 2014. p.
303–312.

30. Berseth G, Kapadia M, Haworth B, Faloutsos P. SteerFit: Automated parameter fitting for steering algo-
rithms. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA’14. ACM. New
York, NY, USA: ACM; 2014. p. 113–122.

31. Aldana M, Dossetti V, Huepe C, Kenkre V, Larralde H. Phase transitions in systems of self-propelled
agents and related network models. Physical review letters. 2007; 98(9):095702. doi: 10.1103/
PhysRevLett.98.095702 PMID: 17359171

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 29 / 31

http://dx.doi.org/10.1371/journal.pone.0129657
http://dx.doi.org/10.1371/journal.pone.0129657
http://www.ncbi.nlm.nih.gov/pubmed/26083385
http://dx.doi.org/10.1006/jtbi.2002.3065
http://www.ncbi.nlm.nih.gov/pubmed/12297066
http://dx.doi.org/10.1038/srep04766
http://www.ncbi.nlm.nih.gov/pubmed/24755944
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://www.ncbi.nlm.nih.gov/pubmed/10060237
http://dx.doi.org/10.1126/science.1125142
http://www.ncbi.nlm.nih.gov/pubmed/16741126
http://dx.doi.org/10.1073/pnas.0811195106
http://dx.doi.org/10.1103/PhysRevLett.92.025702
http://www.ncbi.nlm.nih.gov/pubmed/14753946
http://dx.doi.org/10.1073/pnas.1001763107
http://dx.doi.org/10.1016/j.cub.2014.07.009
http://dx.doi.org/10.1016/j.cub.2014.07.009
http://www.ncbi.nlm.nih.gov/pubmed/25247351
http://dx.doi.org/10.1103/PhysRevLett.113.238102
http://dx.doi.org/10.1103/PhysRevLett.113.238102
http://www.ncbi.nlm.nih.gov/pubmed/25526161
http://dx.doi.org/10.1111/j.1600-0706.2009.18343.x
http://dx.doi.org/10.1242/jeb.053801
http://www.ncbi.nlm.nih.gov/pubmed/21753040
http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1111/cgf.12277
http://dx.doi.org/10.1103/PhysRevLett.80.5044
http://dx.doi.org/10.1145/2366145.2366209
http://dx.doi.org/10.1103/PhysRevLett.98.095702
http://dx.doi.org/10.1103/PhysRevLett.98.095702
http://www.ncbi.nlm.nih.gov/pubmed/17359171


32. Aldana M, Larralde H, Vázquez B. On the emergence of collective order in swarming systems: a recent
debate. International Journal of Modern Physics B. 2009; 23(18):3661–3685. doi: 10.1142/
S0217979209053552

33. Gönci B, Nagy M, Vicsek T. Phase transition in the scalar noise model of collective motion in three
dimensions. The European Physical Journal Special Topics. 2008; 157(1):53–59. doi: 10.1140/epjst/
e2008-00630-2

34. Wang X, Ren J, Jin X, Manocha D. BSwarm: Biologically-plausible Dynamics Model of Insect Swarms.
In: Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer Animation.
SCA’15. New York, NY, USA: ACM; 2015. p. 111–118.

35. Musse SR, Thalmann D. Hierarchical model for real time simulation of virtual human crowds. Visualiza-
tion and Computer Graphics, IEEE Transactions on. 2001; 7(2):152–164. doi: 10.1109/2945.928167

36. Helbing D, Molnár P. Social force model for pedestrian dynamics. Phys Rev E. 1995; 51(5):4282–4286.
doi: 10.1103/PhysRevE.51.4282

37. Pelechano N, Allbeck JM, Badler NI. Controlling Individual Agents in High-density Crowd Simulation.
In: Proceedings of the 2007 ACMSIGGRAPH/Eurographics Symposium on Computer Animation.
SCA’07. Eurographics Association. Aire-la-Ville, Switzerland: Eurographics Association; 2007. p. 99–
108.

38. Burstedde C, Klauck K, Schadschneider A, Zittartz J. Simulation of pedestrian dynamics using a two-
dimensional cellular automaton. Physica A: Statistical Mechanics and its Applications. 2001; 295
(3):507–525. doi: 10.1016/S0378-4371(01)00141-8

39. Ondrej J, Pettre J, Olivier A, Donikan S. A synthetic-vision based steering approach for crowd simula-
tion. ACM Trans on Graphics. 2010; 29(4):123:1–123:9. doi: 10.1145/1778765.1778860

40. Treuille A, Cooper S, Popović Z. ContinuumCrowds. ACM Trans Graph. 2006; 25(3):1160–1168. doi:
10.1145/1141911.1142008

41. Narain R, Golas A, Curtis S, Lin MC. Aggregate Dynamics for Dense Crowd Simulation. ACM Trans
Graph. 2009; 28(5):122:1–122:8. doi: 10.1145/1618452.1618468

42. Li W, Wolinski D, Pettré J, Lin MC. Biologically-Inspired Visual Simulation of Insect Swarms. Computer
Graphics Forum. 2015; 34(2):425–434. doi: 10.1111/cgf.12572

43. Couzin ID, Krause J. Self-organization and collective behavior in vertebrates. Advances in the Study of
Behavior. 2003; 32(1). doi: 10.1016/S0065-3454(03)01001-5

44. Czirók A, Vicsek T. Collective behavior of interacting self-propelled particles. Physica A: Statistical
Mechanics and its Applications. 2000; 281(1):17–29.

45. D’Orsogna M, Chuang Y, Bertozzi A, Chayes L. Self-Propelled Particles with Soft-Core Interactions:
Patterns, Stability, and Collapse. Phys Rev Lett. 2006; 96(10):104302. doi: 10.1103/PhysRevLett.96.
104302 PMID: 16605738

46. Flierl G, GrünbaumD, Levins S, Olson D. From Individuals to Aggregations: the Interplay between
Behavior and Physics. Journal of Theoretical Biology. 1999; 196(4):397–454. doi: 10.1006/jtbi.1998.
0842 PMID: 10036198

47. Romanczuk P, Couzin ID, Schimansky-Geier L. Collective Motion due to Individual Escape and Pursuit
Response. Phys Rev Lett. 2009; 102(1):010602. doi: 10.1103/PhysRevLett.102.010602 PMID:
19257176

48. Topaz CM, Bertozzi AL. Swarming patterns in a two-dimensional kinematic model for biological groups.
SIAM Journal on Applied Mathematics. 2004; 65(1):152–174. doi: 10.1137/S0036139903437424

49. Toner J, Tu Y. Flocks, herds, and schools: A quantitative theory of flocking. Phys Rev E. 1998; 58
(4):4828–4858. doi: 10.1103/PhysRevE.58.4828

50. Topaz C, Bertozzi A, Lewis M. A Nonlocal ContinuumModel for Biological Aggregation. Bulletin of
Mathematical Biology. 2006; 68(7):1601–1623. doi: 10.1007/s11538-006-9088-6 PMID: 16858662

51. Romenskyy M, Lobaskin V. Statistical properties of swarms of self-propelled particles with repulsions
across the order-disorder transition. The European Physical Journal B. 2013; 86(3). doi: 10.1140/epjb/
e2013-30821-1

52. Topaz CM, Bertozzi AL, Lewis MA. A nonlocal continuummodel for biological aggregation. Bulletin of
mathematical biology. 2006; 68(7):1601–1623. doi: 10.1007/s11538-006-9088-6 PMID: 16858662

53. Carrillo JA, DiFrancesco M, Figalli A, Laurent T, Slepčev D, et al. Global-in-time weak measure solu-
tions and finite-time aggregation for nonlocal interaction equations. Duke Mathematical Journal. 2011;
156(2):229–271. doi: 10.1215/00127094-2010-211

54. Schellinck J, White T. A review of attraction and repulsion models of aggregation: Methods, findings
and a discussion of model validation. Ecological Modelling. 2011; 222(11):1897–1911. doi: 10.1016/j.
ecolmodel.2011.03.013

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 30 / 31

http://dx.doi.org/10.1142/S0217979209053552
http://dx.doi.org/10.1142/S0217979209053552
http://dx.doi.org/10.1140/epjst/e2008-00630-2
http://dx.doi.org/10.1140/epjst/e2008-00630-2
http://dx.doi.org/10.1109/2945.928167
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1016/S0378-4371(01)00141-8
http://dx.doi.org/10.1145/1778765.1778860
http://dx.doi.org/10.1145/1141911.1142008
http://dx.doi.org/10.1145/1618452.1618468
http://dx.doi.org/10.1111/cgf.12572
http://dx.doi.org/10.1016/S0065-3454(03)01001-5
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://www.ncbi.nlm.nih.gov/pubmed/16605738
http://dx.doi.org/10.1006/jtbi.1998.0842
http://dx.doi.org/10.1006/jtbi.1998.0842
http://www.ncbi.nlm.nih.gov/pubmed/10036198
http://dx.doi.org/10.1103/PhysRevLett.102.010602
http://www.ncbi.nlm.nih.gov/pubmed/19257176
http://dx.doi.org/10.1137/S0036139903437424
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1007/s11538-006-9088-6
http://www.ncbi.nlm.nih.gov/pubmed/16858662
http://dx.doi.org/10.1140/epjb/e2013-30821-1
http://dx.doi.org/10.1140/epjb/e2013-30821-1
http://dx.doi.org/10.1007/s11538-006-9088-6
http://www.ncbi.nlm.nih.gov/pubmed/16858662
http://dx.doi.org/10.1215/00127094-2010-211
http://dx.doi.org/10.1016/j.ecolmodel.2011.03.013
http://dx.doi.org/10.1016/j.ecolmodel.2011.03.013


55. Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S, Parisi L, et al. Collective behaviour without
collective order in wild swarms of midges. PLoS computational biology. 2014; 10(7):e1003697. doi: 10.
1371/journal.pcbi.1003697 PMID: 25057853

56. Chaté H, Ginelli F, Grégoire G, Raynaud F. Collective motion of self-propelled particles interacting with-
out cohesion. Physical Review E. 2008; 77(4):046113. doi: 10.1103/PhysRevE.77.046113

57. Strefler J, Erdmann U, Schimansky-Geier L. Swarming in three dimensions. Phys Rev E. 2008; 78
(3):031927. doi: 10.1103/PhysRevE.78.031927

58. Escudero C, Yates CA, Buhl J, Couzin ID, Erban R, Kevrekidis IG, et al. Ergodic directional switching in
mobile insect groups. Physical Review E. 2010; 82(1):011926. doi: 10.1103/PhysRevE.82.011926

59. Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F. Modeling collective motion: variations on the Vic-
sek model. The European Physical Journal B. 2008; 64(3-4):451–456. doi: 10.1140/epjb/e2008-00275-
9

60. Perlin K. Improving Noise. ACM Trans Graph. 2002; 21(3):681–682. doi: 10.1145/566654.566636

61. Bridson R, Houriham J, NordenstamM. Curl-noise for Procedural Fluid Flow. ACM Trans Graph. 2007;
26(3):1–4. doi: 10.1145/1276377.1276435

62. Pettré J, Ondřej J, Olivier AH, Cretual A, Donikian S. Experiment-based modeling, simulation and vali-
dation of interactions between virtual walkers. In: Proceedings of the 2009 ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation. ACM; 2009. p. 189–198.

63. Lerner A, Fitusi E, Chrysanthou Y, Cohen-Or D. Fitting behaviors to pedestrian simulations. In: Pro-
ceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM;
2009. p. 199–208.

64. Ju E, Choi MG, Park M, Lee J, Lee KH, Takahashi S. Morphable Crowds. ACM Trans Graph. 2010; 29
(6):140:1–140:10. doi: 10.1145/1882261.1866162

65. Charalambous P, Chrysanthou Y. Learning crowd steering behaviors from examples. In: Motion in
Games. Springer; 2010. p. 35–35.

66. ChanWP, Prete F, Dickinson MH. Visual input to the efferent control system of a fly’s “gyroscope”. Sci-
ence. 1998; 280(5361):289–292.

67. Flash T, Hogan N. The coordination of arm movements: an experimentally confirmed mathematical
model. The journal of Neuroscience. 1985; 5(7):1688–1703. PMID: 4020415

68. Kapadia M, Singh S, Allen B, Reinman G, Faloutsos P. SteerBug: An Interactive Framework for Speci-
fying and Detecting Steering Behaviors. In: Proceedings of the 2009 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation. SCA’09. New York, NY, USA: ACM; 2009. p. 209–216.

69. Zou ZH, Yun Y, Sun JN. Entropy method for determination of weight of evaluating indicators in fuzzy
synthetic evaluation for water quality assessment. Journal of Environmental Sciences. 2006; 18
(5):1020–1023. doi: 10.1016/S1001-0742(06)60032-6

Simulating Flying Insects Using Dynamics and Data-Driven Noise Modeling

PLOS ONE | DOI:10.1371/journal.pone.0155698 May 17, 2016 31 / 31

http://dx.doi.org/10.1371/journal.pcbi.1003697
http://dx.doi.org/10.1371/journal.pcbi.1003697
http://www.ncbi.nlm.nih.gov/pubmed/25057853
http://dx.doi.org/10.1103/PhysRevE.77.046113
http://dx.doi.org/10.1103/PhysRevE.78.031927
http://dx.doi.org/10.1103/PhysRevE.82.011926
http://dx.doi.org/10.1140/epjb/e2008-00275-9
http://dx.doi.org/10.1140/epjb/e2008-00275-9
http://dx.doi.org/10.1145/566654.566636
http://dx.doi.org/10.1145/1276377.1276435
http://dx.doi.org/10.1145/1882261.1866162
http://www.ncbi.nlm.nih.gov/pubmed/4020415
http://dx.doi.org/10.1016/S1001-0742(06)60032-6

