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Abstract
We present a stable and efficient simulator for deformable objects with collisions and contacts. For stability, an
optimization derived from the implicit time integrator is solved in each timestep under the inequality constraints
coming from collisions. To achieve fast convergence, we extend the MPRGP based solver from handling box
constraints only to handling general linear constraints and prove its convergence. This generalization introduces a
cost of solving dense linear systems in each step, but these systems can be reduced into diagonal ones for efficiency
without affecting the general stability via pruning redundant collisions. Our solver is an order of magnitude faster,
especially for elastic objects under large deformation compared with iterative constraint anticipation method
(ICA), a typical method for stability. The efficiency, robustness and stability are further verified by our results.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Collision handling for deformable objects has been an active
area of research in computer graphics. For rigid objects, col-
lision response can be treated as a separate pass after time
integration. However, this does not apply for deformable
objects since their internal forces could be stiff, leading to
stability issues when a time-split solver is used. A widely
adopted solution here is to use the implicit penalty forces,
i.e., solving an unconstrained optimization with terms to pe-
nalize the penetration depth. However, they again lead to is-
sues of additional artificial parameters, inefficient time step-
ping or sticking.

A more stable, but usually less efficient strategy is to for-
mulate collisions as a set of inequality constraints. This for-
mulation when coupled with an implicit time-stepper leads
to a QP problem:

min
x

1
2

xT Ax− xT b s.t. Jx≥ c, (1)

which robustly reproduces non-sticky behaviour at the end
of each timestep. To solve such problem efficiently, active set
[JN06] and Projected Gauss-Seidel (PGS) [Cot09,OTSG09]
are two commonly used approaches for physics based mod-
elling. However, active set approaches use direct solvers to
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determine active constraints, and thus is limited to dynamic
systems with moderate degree of freedoms (DOFs). PGS
adopts iterative solver, but usually suffers from poor con-
vergence, especially for models with large number of DOFs.
Moreover, being based on the dual problem:

min
λ

1
2

λT JA−1JT λ−λT (c− JA−1b) s.t. λ≥ 0, (2)

a coupled PGS formulation is still costly because of the term
JA−1JT .

To address the stability and efficiency issues simultane-
ously, we propose a novel algorithm to solve the above spe-
cific QP problem arising from deformable body contacts
and collisions. Our method is enlightened by the recently
proposed “Modified Proportioning with Reduced Gradient
Projections” algorithm (MPRGP) [Dos09], an iterative QP
solver using gradient projection for box constraints. We gen-
eralize it in several aspects to handle general linear con-
straints. Unfortunately, the performance of this basic exten-
sion is limited by the gradient projection subproblem, which
involves solving dense linear systems. To tackle this issue,
we propose to diagonalize them by decoupling the con-
straints via discarding redundant collisions. By virtue of the
three key ingredients, implicit strategy, extended MPRGP
and constraints decoupling, our method is not only stable
and robust, but achieves an order of magnitude faster conver-
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gence over ICA, a typical implicit method [OTSG09] with
PGS solver, for models with hundreds of thousands of DOFs.

2. Related Works

Deformable Body Simulation In computer graphics, since
the pioneering work of [TPBF87], much effort has been de-
voted to the simulation of deformable objects. The related
techniques cover deformable objects modelling, collision
detection and contact handling etc.. While model reduction
are usually adopted to accelerate the simulation in real-time
applications [PW89,BJ05,CK05,AKJ08], dynamic systems
in full space are usually preferred for high quality anima-
tion, especially for simulating highly detailed deformation
caused by collisions and contacts [ZSTB10, MZS∗11]. This
work focuses on resolving collisions between large objects
with hundreds of thousands DOFs.

Collision Detection Collision detection for deformable
objects is widely studied in computer graphics. Readers
can refer to [TKZ∗04] for more details. Collision resolu-
tion techniques can be roughly divided into discrete methods
(DCD) and continuous methods (CCD) [BFA02, RKLM04,
ORC07, TCYM08, HVTG08]. While being much slower,
CCD methods are more robust than DCD methods because
all collisions are guaranteed to be resolved before next
timestep. In this work, we focus on efficient simulation of
volumetric deformable bodies with moderate timestep size,
where DCD method is an approximate choice.

Collision Handling For volumetric deformable bodies,
the most widely used DCD methods are based on penalty
force [BW98, CK02, HFL00, TMOT12] due to its simplic-
ity. [BW98, CK02] resolves each collision locally by apply-
ing an impulse, which requires small timestep size for sta-
bility. The continuous force model proposed in [TMOT12]
can alleviate the problem but the stability is not guaranteed.
on the other hand, [HFL00] introduces a spring energy for
each collision which can then be considered by a implicit
time integrator. Although this method is much more stable,
it results in sticky contacts. Similar problem also arises in
shell modelling [HVTG08]. Most recently, [TOK14] used
the idea of cubature [AKJ08] to accelerate the computation
of the penalty forces. A time consuming training process is
required in their approach, and more importantly, it is lim-
ited to skeleton driven objects.

On the other hand, our approach is based on implicit
framework which is widely used for rigid bodies [ST96] and
thus avoids the stability problems even for large timestep
size. For rigid object animation, the dual formulation can
be solved via LCP solvers [Cot09], and has gained popu-
larity over the last decade [Bar94, RKC02, KEP05, Erl07].
It has also been adopted to solve collisions between de-
formable objects since [BW92]. However, solving LCP for
deformable bodies is excessively expensive because of the
large number of contacts, DOFs and non-trivial energy Hes-
sian. There has been works trying to simplify deformable
models by leveraging pre-computations [PPG04,DDKA06].

For the dynamic systems with small DOFs, active set meth-
ods [JN06] are exploited to solve the corresponding LCP
problem [KSJP08]. Most recently, [OTSG09] proposed an
iterative constraint anticipation method (ICA) for this prob-
lem. However, this method uses an approximate Hessian in
their dual formulation leading to slow convergence. Instead,
we model the collision handling problem as a QP problem
in its primal variables and propose a novel solver which con-
verges much faster than ICA as demonstrated in our results.

MPRGP Solver Our method is based on the MPRGP
method [Dos09] which provides the advantage of fast con-
vergence. It has previously been used for modelling fluid
flow [GB13, NGL10], but the MPRGP method has a limi-
tation that only box constraints can be applied. In this work,
we extend this method to efficiently handle a subset of gen-
eral linear constraints which is enough to handle collisions
between deformable objects.

3. Background

3.1. Motion Equation

The equation of motion for an elastic object with n vertices
is

Mẍ+ f (x, ẋ) = fext , (3)

where x∈R3n, M ∈R3n×3n, f (x, ẋ)∈R3n and fext ∈R3n rep-
resent the shape of the object, the mass matrix, the internal
(elastic and damping) forces, as well as the external forces
respectively. By using an implicit integrator with timestep
size h to discretize Eq. (3), we obtain

1
h2 M(xi+1−2xi + xi−1)+ f

(
xi+1,

1
h
(xi+1− xi)

)
= f i+1

ext ,

(4)
where xk represents the shape of the object at time tk = hk for
k = 0,1,2, · · · . Eq. (4) is usually a nonlinear system with re-
spect to xi+1, and can be solved by using Newton’s method.
In what follows, we use x instead of xi+1 for clarity. At each
iteration of Newton’s method, we need to solve a quadratic
system:

min
x

1
2

xT Ax−bT x, (5)

where A is usually a symmetric positive definite matrix

A =
1
h2 M+

∂ f
∂x

∣∣∣∣
x=xi

, (6)

and b is given by

b = f i+1
ext − f (xi)+

(
∂ f
∂x

∣∣∣∣
x=xi

)
xi +

1
h2 M(2xi− xi−1). (7)

It is a common strategy to limit the Newton’s iterations
within only a few iterations to reduce the simulation cost,
and the results are usually still stable and plausible.

3.2. Non-penetration Constraints

Considering the collisions and contacts, the vertex positions
x of a deformable object is limited to some complex feasi-
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ble domain Ω, which can be locally sampled as a set of linear
constraints using conventional collision detectors. Hereafter,
we assume that x are under a set of collision constraints {Ci},
where each constraint Ci asks the point xi penetrating trian-
gle (x j,xk,xl) with normal ni to be moved into a collision
free status:

nT
i (xi−w jx j−wkxk−wlxl)≥ 0, (8)

where w j, wk, wl are the barycentric coordinates of the con-
tact point on the triangle, which is returned by a collision de-
tector. After grouping all the constraints in a matrix format
as Jx ≥ c, at each Newton’s step, the following constrained
quadratic programming problem needs to be solved :

min
x

1
2

xT Ax−bT x s.t. Jx≥ c. (9)

Our work focuses on solving this problem efficiently and ro-
bustly.

3.3. MPRGP

Our solver is based on the MPRGP algorithm, which is pro-
posed for solving the following QP problem with box con-
straints:

min
x

1
2

xT Ax− xT b s.t. x ∈ΩB, (10)

where matrix A is symmetric positive definite, and ΩB = {x :
x ≥ L} defines the box constraints, where vector L is the
lower bound of x. There are several variants of the traditional
MPRGP algorithm as introduced in [Dos09]. We adopt the
monotonic MPRGP in our current implementation, but our
extension can be directly applied to other variants.

The outline of the traditional monotonic MPRGP is shown
in Algorithm 1. The constants ᾱ∈ (0,2‖A‖−1

2 ] and Γ> 0 are
adjustable parameters. We always choose ᾱ = 2‖A‖−1

2 , and
Γ = 1. At each iteration, MPRGP computes the free gradient
φ(x), the chopped gradient β(x), and the reduced free gradi-
ent φ̃ᾱ(x):

φi(x) =
{

gi(x) for i ∈ F(x)
0 for i ∈ A(x), (11)

βi(x) =
{

0 for i ∈ F(x)
min(gi(x),0) for i ∈ A(x), (12)

φ̃ᾱ(x) =
1
ᾱ
(x−PΩB(x− ᾱφ(x))). (13)

Here, g(x) = Ax−b is the gradient of the objective function,
F(x) = {i : xi > Li}, A(x) = {i : xi = Li} are the free and
active set respectively, and PΩB(·) is a projection operator
with the entries defined by

[PΩB(x)]i = max(xi,Li), (14)

which projects any vector into the feasible domain ΩB.
Fig. 1 gives an illustration of the free and chopped gradient.
The free gradient is responsible for functional value min-
imization, keeping the active set fixed, while the chopped
gradient is responsible for active set change.

Figure 1: Illustration of the two types of modified gradients
used in MPRGP algorithm on a 2D toy example. Here, the
gray region is ΩB, the dotted lines are iso-lines of objective
function. The black dot is our current solution. To derive a
better solution, we can either keep the active set fixed and go
along the inverse free gradient (blue). Or we can leave the
active face and go along the inverse chopped gradient (red).

Now with a definition of free and chopped gradient, we
can present the MPRGP algorithm. It works by choosing be-
tween several types of steps: the CG step ( Algorithm 2)
keeps the active set fixed and always goes along the free
gradient. This is just the conventional conjugate gradient
method [JN06] projected into the active set. While the pro-
portioning step is responsible for active set change by going
along the chopped gradient. MPRGP algorithm determines
the type of next step according to the expected function value
decrease. However, if a CG step is chosen, it also runs the
risk of leaving the feasible domain. In that case, MPRGP
uses a third type of step, the expansion step, where a steep-
est descendant direction is taken with fixed step size and the
solution is then pulled back to a closest feasible point in ΩB
by the projection operator. Finally, after a non-CG step is
performed, the conjugate property of the previous CG se-
ries becomes violated, so the entire CG iterations need to be
restarted.

4. MPRGP Extension

The traditional MPRGP solver introduced above only sup-
ports QP problems with box constraints, and can not be ap-
plied to solve the QP problem Eq. (1) that appears in col-
lision handling. Although the dual formulation of Eq. (1),
i.e. Eq. (2), can be solved by traditional MPRGP solver, it
involves the term JA−1JT and definitely leads to low perfor-
mance for deformable bodies with large DOFs even without
explicitly expressing it as a matrix.

In this section, we will extend the MPRGP solver to sup-
port the primal formulation of Eq. (1) with more general lin-
ear constraints. We found that there are three key operations
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Algorithm 1: Monotonic MPRGP outline
Given a SPD matrix A, vectors b, L and initial value
x0 ≥ L, choose Γ > 0, ᾱ ∈ (0,2‖A‖−1

2 ],
set k = 0, p = φ(x0);
while not convergent do

Step 1. {compute g(xk), φ(xk), β(xk), φ̃ᾱ(xk)};
if ‖β(xk)‖2 ≤ Γ

2
φ̃ᾱ(xk)T

φ(xk) then
Step 2. {CG steps};
compute p,xk+1,y using Algorithm 2;
if not convergent and y 6∈ΩB then

Step 3. {expansion step};
y = PΩB(x

k),xk+1 = PΩB(y− ᾱφ(y)),
g = Axk+1−b, p = φ(xk+1),k = k+1

end
else

Step 4. {proportioning step};
αp = β

T (xk)g(xk)/β
T (xk)Aβ(xk),

xk+1 = xk−αpβ(xk), g = g−αpAβ(xk),
p = φ(xk+1), k = k+1;

end
end
return xk;

Algorithm 2: CG steps

αcg = gT p/pT Ap,y = xk−αcg p;
while not convergent and f (PΩB(y))≤ f (PΩB(x

k)) and
‖β(xk)‖2 ≤ Γ

2
φ̃ᾱ(xk)T

φ(xk) do
xk+1 = y,g = g−αcgAp,
s = φ(y)T Ap/pT Ap, p = φ(y)− sp,k = k+1,
αcg = gT p/pT Ap,y = xk−αcg p;

end
return xk+1,y, p;

of the traditional MPRGP algorithm introduced above de-
pending on the formulation of constraints: the free gradient
Eq. (11), chopped gradient Eq. (12) and projection opera-
tor Eq. (14). We can adopt the outline of MPRGP shown
in Algorithm 1, and extend it to support more general lin-
ear constraints in Eq. (1) by properly redefining these opera-
tions. In the following, we use Ĵ and ĉ to represent the active
constraints set, i.e Ĵx = ĉ, where Ĵ is the sub-matrix of J, and
ĉ is the corresponding sub-vector of c.

4.1. Free Gradient

In MPRGP algorithm, the free gradient φ is supposed to be
an increasing direction (thus its inverse would be a decreas-
ing direction). What’s more, it is required that, an infinitesi-
mal move along the free gradient should not change the ac-
tive set, which can be satisfied by enforcing Ĵφ = 0. Thus,
we define the free gradient φ as a projection of the gradient

g onto the null space of matrix Ĵ:

φ = min
φ

1
2
‖φ−g‖2

2, s.t. Ĵφ = 0. (15)

After substituting φ = g+ ĴT
λ̂φ into Ĵφ = 0, the Lagrange

multipliers λ̂φ can be solved as:

(ĴĴT )λ̂φ =−Ĵg, (16)

and then the free gradient can be obtained by φ = g+ ĴT
λ̂φ.

4.2. Chopped Gradient

The chopped gradient should be complement to the free gra-
dient, and its inverse direction should be a feasible decreas-
ing direction, i.e it should satisfy−Ĵβ≥ 0. Thus we compute
the chopped gradient β(x) by solving

β = min
β

1
2
‖β−gβ‖

2
2, s.t. − Ĵβ≥ 0, (17)

where gβ = g−φ. The LCP equivalence of the above prob-
lem is

0≤ λ̂β ⊥ ĴĴT
λ̂β ≥ Ĵgβ, (18)

which can be solved by using traditional Active Set method.
Finally we can compute the chopped gradient as β = gβ−
ĴT

λ̂β.

4.3. Projection

In order to enforce the final solution to be feasible, we need
to project any infeasible solution x into the feasible domain
Ωc = {x : Jx≥ c} in each iteration. We define the projection
operation as

PΩc(x) = min
y

1
2
‖y− x‖2

2, s.t. Jy≥ c, (19)

which returns a feasible vector y that is closest to x. Similar
to the way of solving β, we start from its LCP correspon-
dence

0≤ λP ⊥ JJT
λP ≥ c− Jx, (20)

which again is solved by traditional Active Set method for
λP. The projected point is then y = x+ JT

λP.

4.4. Convergence

Our extension on the three key operations follows the idea
of original MPRGP algorithm, so that we adopt the same
stopping criteria: ‖φi(x)+ βi(x)‖ < ε for both Algorithm 1
and Algorithm 3. Unfortunately, the convergence proof of
the original MPRGP algorithm cannot be directly applied
to our method because it heavily depends on the fact that
the operator PΩc is separable (see [Dos09]), which does not
hold for the general linear constraints in our case. As a con-
sequence, simply replacing the operators in Algorithm 1 can-
not guarantee the convergence. However, we noticed that
two desirable properties of Algorithm 1 still hold for our ex-
tended operators:
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Figure 2: Collision decoupling is necessary especially when there are a large amount of interbody collisions. We observed no
instability using simply random strategy to filter the constraints.

1. Function values would strictly reduce after either CG or
proportioning step. This is because both φ and β are de-
creasing directions as shown in Appendix A.

2. The series {xk} generated by repeatedly applying the ex-
pansion step is convergent when α∈ (0,2‖A‖−1

2 ]. This is
justified by Proposition 5.6 of [Dos09] because our pro-
jection operator maps any point to a closest point in ΩB
which is a convex set.

Based on these two facts, we can construct a convergent vari-
ant of Algorithm 1 by repeatedly applying the expansion step
in an inner while loop until the function value is strictly de-
creasing. In that way, all three types of steps give strictly
decreasing function values and the algorithm is thus conver-
gent. One additional advantage of this technique is that the
rate of convergence by the expansion step is linear to the
spectral radius of A. Therefore, the inner while loop can take
the advantage of an effective preconditioner.

In the original MPRGP algorithm, where ΩB is a unilat-
erally bounded separable domain, xk+1 is guaranteed to be
feasible after the proportioning step. But this is not the case
for our general convex domain, therefore xk+1 need to be
guarded against infeasibility by another while loop.

The while loops work as a final resort against divergence.
However, these fail-safe strategies are actually not necessary
when some collision constrains are excluded from consid-
eration, see Section 5. Therefore these will not impair the
efficiency of our algorithm. A typical convergence history is
illustrated in Fig. 8.

5. Collision Decoupling

After combining the operations introduced above with the
traditional MPRGP algorithm framework, we develop a
novel solver for the QP problem Eq. (1) with general linear
constraints. However, the computational cost of the method
would be higher than the traditional version because we need
to solve problems Eq. (15), Eq. (17) and Eq. (19) for the
corresponding Lagrange multipliers at each iteration. When
there is a large number of simultaneous interbody collisions,
this problem would be more serious, see Fig. 2.

In order to reduce the computational cost, we propose to
simplify the structure of the matrix JJT and ĴĴT by modify-
ing the collision constraints. For large models with hundreds
of thousands DOFs, we found that it is practical to preserve

Algorithm 3: Modified Monotonic MPRGP outline
Given a SPD matrix A, vectors b, L and initial value
x0 ≥ L, choose Γ > 0, ᾱ ∈ (0,2‖A‖−1

2 ],
set k = 0, p = φ(x0);
while not convergent do

Step 1. {compute g(xk), φ(xk), β(xk), φ̃ᾱ(xk)};
if ‖β(xk)‖2 ≤ Γ

2
φ̃ᾱ(xk)T

φ(xk) then
Step 2. {CG steps};
compute p,xk+1,y using Algorithm 2;
if not convergent and y 6∈ΩB then

Step 3. {expansion step};
y = PΩB(x

k), xk+1 = PΩB(y− ᾱφ(y)),
while higher function value do

xk+1 = PΩB(x
k+1− ᾱg(xk+1));

end
g = Axk+1−b, p = φ(xk+1),k = k+1

end
else

Step 4. {proportioning step};
αp = β

T (xk)g(xk)/β
T (xk)Aβ(xk),

xk+1 = PΩB(x
k−αpβ(xk)),

while higher function value do
xk+1 = PΩB(x

k+1− ᾱg(xk+1));
end
g = Axk+1−b, p = φ(xk+1),k = k+1;

end
end
return xk;

only one collision pair for each participating vertex, and ig-
nore other collisions related to this vertex. That is, if a ver-
tex appears in several non-penetration constraints with the
formulation of Eq. (8), we only preserve one of these con-
straints (random selected) and ignore the others. Then no
two constraints will share the same vertex, and all the con-
straints are decoupled. By using this scheme, each column
of J will contain one non-zero element at most. Then ma-
trix JJT and ĴĴT would be diagonal. Thus the corresponding
problems Eq. (15) Eq. (17) and Eq. (19) can be solved very
efficiently. The computational advantage of this strategy is
illustrated in Fig. 6. Besides, a stronger result supporting the
use of collision decoupling is given in Appendix B, where
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Figure 3: Simulation results for a large dragon model
rolling down a stair. Non-penetration constraints of large
QP problems are handled efficiently and robustly.

Figure 4: A large bunny model collides heavily with a fixed
glass and produces 18342 non-penetration constraints at
this timestep.

Figure 5: Eight dinosaurs fall together. Collision decoupling
scheme is adopted to handle the complex constraints effi-
ciently, while stability and robustness are still preserved.

Figure 6: The overhead of our solver in each timestep with
and without collision decoupling. A frame of this example is
shown in Fig. 5.

Figure 7: Collisions between some thin regions on the di-
nosaur mesh cannot be resolved using large timestep size
h = 0.01s (left). This problem is alleviated under h = 0.005s
(right).

it is proved that the objective function value would strictly
decrease after the expansion step so that the additional while
loops in Algorithm 3 are indeed unnecessary.

However efficient it is, collision decoupling would in-
troduce some accuracy loss. This may even result in the
tunnelling artifacts near thin regions of the mesh as shown
in Fig. 7. This may be resolved by adaptive or asynchronous
timestepping schemes. Another problem introduced by de-
coupling is the noise due to randomized selection. A poten-
tially more sophisticated approach is to sort the collisions
according to penetration depth and select in that order.

6. Results

We make several experiments to demonstrate the robustness
and efficiency of our approach as shown in Fig. 3, Fig. 4,
Fig. 5 as well as in the corresponding video. We adopt im-
plicit integration to solve the equation of motion with one
Newton’s iteration at each timestep. DCD collision detec-
tor is adopted, and after the collision decoupling, the con-
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strained QP problems are solved by our extended MPRGP
algorithm.

In Fig. 3, we simulate a dragon model by solving large QP
problems with DOFs= 140208. As our extended MPRGP is
an iterative QP solver, it can handle such large QP problem
in just 36.4ms on average, which is impossible for traditional
active set method [JN06] using direct solvers. In Fig. 4, we
show a result with a huge number of collision constraints
on the bunny model with more than 40k vertices, which col-
lides heavily to a fixed glass. Because we adopt the implicit
strategy, our method is robust and stable in handling such a
seriously deformed configuration. Relatively small timestep
size is used to show the details of impact (see Table 1), much
larger timestep size can be used as long as DCD detector re-
turns correct collision constraints. For the dinosaur example
(see Fig. 5), complex collisions need to be resolved. Due to
the nature of DCD methods, we need to use small timestep
size in this example to avoid undetected collisions, espe-
cially for the thin parts of the dinosaur (i.e the tails, foots
and hands). Though collision decoupling scheme is adopted
to accelerate the MPRGP solver, we have not observed any
visual artifacts as shown in our video, which demonstrates
the robustness and efficiency of our decoupling scheme for
handling complex collisions.

6.1. Performance

The performance of our QP solver is profiled in Table 1.
In order to obtain ᾱ, we use the power method to com-
pute ‖A‖−1

2 . We use ‖A‖−1
2 from the last step as an initial

value for computing a new ‖A‖−1
2 . This warm-started power

method can be convergent within 40 iterations in our experi-
ments and the time for the ᾱ estimation has been included in
t of this table.

As shown in Fig. 8, our MPRGP solver presents simi-
lar convergence speed to the unconstrained CG solver even
for a large linear system with 35832 DOFs and 691 non-
penetration constraints. We use the same coefficient matrix
and right-hand-side vector in both approaches, and just ig-
nore the constraints for the CG method in this experiment.
There are different modifications of the outline of the tra-
ditional MPRGP Algorithm 1. Theorem 3.2 in [Dos09] in-
dicates that MPRGP converges fast when it generates long
chains of CG iterations. Thus in our implementation, we
choose the Monotonic MPRGP [Dos09], which inserts in
between the last feasible iteration and the expansion step a
finite number of unfeasible CG iterations as long as the ob-
jective function decreases. Table 1 demonstrates that, in our
Monotonic MPRGP solver, the CG steps dominate the itera-
tions. This is why our solver presents similar convergence to
unconstrained CG solver in Fig. 8.

Currently, we adopt Jacobi preconditioner in our solver
to improve the convergence of the CG iterations. As the
CG steps dominate the iterations, this simple precondition-

scene vertices tets h cg/it t T
Fig. 3 46736 160553 10 99.4% 36.4 400
Fig. 4 40107 164419 3 99.1% 24.5 600
Fig. 5 11944 41992 5 99.0% 5.13 400
Fig. 12 9537 49152 10 99.8% 1.72 200

Table 1: Performance measured on a PC with Intel CPU
E7500, 2.93GHz, with 8 GB of memory. From left to right,
number of vertices (vertices), tetrahedron (tets), timestep
size (h, in millisecond), percentage of CG steps in the iter-
ations with the Monotonic MPRGP outline (cg/it), average
time to solve the QP for each Newton’s step (t, in second),
and the total frames (T).

Figure 8: Convergence history of relative error |Fk −
F∗|/|F0−F∗|, where Fk is the objective function value at
iteration k and F∗ is the optimum. Comparison of the un-
constrained CG method with our extended MPRGP under
35832 DOFs and 691 non-penetration constraints.

ing scheme can significantly improve the convergence of our
solver as shown in Fig. 9.

6.2. Comparison with ICA

Fig. 10 compares the convergence rate and computational
time between our solver and the ICA solver introduced in
[Cot09], which is based on PGS. In this comparison, the
same set of collisions after applying the constraint decou-

Figure 9: Convergence history of: ‖φi(x)+βi(x)‖. Compar-
ison of our extended MPRGP solver with and without pre-
conditioning. The example problem is same as that of Fig. 8.

c© 2015 The Author(s)
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Figure 10: Convergence and time comparison of ICA with
our extended MPRGP solver.

Figure 11: The scaling of ICA and our method against the
number of DOFs (number of vertices × 3) used for the dino
model. The number of decoupled constraints are marked on
data points and models of different resolution are generated
via local remeshing. One frame of this example is shown in
Fig. 7.

pling is passed to both methods. ICA converges faster ini-
tially, but the rate drops quickly after first several iterations.
This is consistent with the fact that Jacobian method (and its
PGS variant) is effective only for high frequency residuals.
The corresponding animation for Fig. 10 is shown in Fig. 12
(as well as in the video). In this example, we can not obtain
physically plausible results until the residual (absolute error
of the KKT condition) is smaller than 10−2. Under such an
accuracy requirement, our method converges more than one
order of magnitude faster than ICA.

Because our method provides better convergence rate, the
performance advantage over ICA will be more significant on
models with higher resolution, which has been verified in our
experiments. However, on lower resolutions, ICA should be
used since overhead of the sparse solve in JA−1JT becomes
marginal. Fig. 11 illustrates the scaling of both algorithms
against the number of vertices.

7. Conclusion and Limitation

In this paper, we introduce a novel collision handler for vol-
umetric deformable objects, which is robust, stable and effi-
cient in handling deformable bodies with hundreds of thou-

(a) Frame 1 (b) Frame 30

(c) Frame 60 (d) Frame 100

Figure 12: Non-plausible (in yellow) and plausible (in
green) results generated by using relative error tolerance as
10−1 and 10−2 respectively.

sands of DOFs. Our solver extends the traditional MPRGP
algorithm to support general linear constraints arising in col-
lision handling while preserving its high convergence rate.
The constraint decoupling scheme further improves the ef-
ficiency by ignoring a subset of collisions. Besides, our
method naturally inherits the typical advantages of PCG
method: it can be easily implemented on a massive paral-
lel processor, and better convergence can be achieved by
incorporating a more sophisticated preconditioner such as
a geometric multigrid [ZSTB10]. We leave these as poten-
tial future works. On the other hand, the convergence of
such solver is also dominated by the conditioning of A, see
[Dos09] for a proof. A good preconditioner is required for
acceptable convergence rate if bad meshing or high stiffness
is used for the elastic body.

However, we have made some non-trivial assumption in
our development that worth further exploration. The colli-
sion decoupling ignores some collision constraints without
noticeable artifacts, but it nevertheless leads to accuracy loss,
which is a common limitation of many methods simplifying
the collision constraints [BJ08]. Besides, we have assumed
frictionless contacts in all results. Unfortunately, the LCP
problem resulted from the frictional cone constraints can-
not be properly decoupled to be handled efficiently by our
method. If they are desired, one can combine our solver with
previous methods such as [OTSG09] taking the Lagrangian
multipliers computed by our method as input or consider
each frictional contact locally as [BMF03].
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Appendix A: Guaranteed Decreasing Direction

To prove the convergence of Algorithm 3, we need to show
that φ

T g ≥ 0 and β
T g ≥ 0. These just follow from funda-

mental linear algebra, but we present the details here for
completeness.

Lemma 1 The solution of Eq. (15) satisfies φ
T g ≥ 0 and

φ
T gβ = 0.

Proof The first assertion can be seen from the following ex-
pansion:

1
2
‖φ−g‖2

2 =
1
2
‖φ‖2

2−2φ
T g+

1
2
‖g‖2

2.

Thus, if φ
T g < 0 then −φ, which is also feasible, is a better

solution. The second assertion can be proved by solving the
KKT system Eq. (15) analytically for φ:

φ = g− ĴT (ĴĴT )−1Ĵg = g−Pg,

which in turn reveals that φ
T gβ = gT Pg−gT P2g = 0.

We then show that β
T

φ = 0 and β
T gβ ≥ 0, so that: β

T g≥
0.

Lemma 2 The solution of Eq. (17) satisfies β
T

φ = 0.

Proof This can be proved similarly, i.e., if β
T

φ 6= 0, we show
that: β̂ = β− pφφ, where pφ = β

T
φ/φ

T
φ, is a better solution.

Clearly, this is a feasible solution since Ĵφ = 0. By plugging
β̂ into Eq. (17), we get:

1
2
‖β−gβ− pφφ‖2

2 =
1
2
‖β−gβ‖

2
2 +

1
2

p2
φφ

T
φ− pφφ

T
β

=
1
2
(‖β−gβ‖

2
2−

1
2

p2
φφ

T
φ).

Where we have used the property φ
T gβ = 0 from Lemma 1.

Lemma 3 The solution of Eq. (17) satisfies β
T gβ ≥ 0.

Proof If we denote by ĴA the set of active constraints
of Eq. (17), then the following system gives the same so-
lution:

1
2
‖β−gβ‖

2
2 ĴAβ = 0.

The result thus follows immediately from Lemma 1.

Appendix B: Guaranteed Function Value Decrease

Here, we want to prove the following lemma:

Lemma 4 Assuming F(x) = 1
2 xT Ax− xT b and J is derived

from a decoupled set of collisions, we have:

F(PΩB(x− ᾱg(x)))≤ η f F(x),

where η f = 1−min(ᾱ,2‖A‖−1
2 − ᾱ)λmin(A).

Proof Without loss of generality, for the matrix Jm×n, we
assume m < n and each row of J is normalized so that JJT =
I. We can then augment J with n−m mutually orthogonal
basis to get:

J̃n×n ,

(
Jm×n

J(n−m)×n
aug

)
,

so that J̃T J̃ = J̃J̃T = I. Since J̃ is invertible, we can introduce
a new set of variables s such that s = J̃x and Fs(s) , F(x).
In this way, the Projection operator under s becomes:

Ps
Ωc(s) = min

s∗
1
2
‖s∗− s‖2

2, s.t. s∗ ≥ c̃,

which is derived by substituting x,y with J̃T s, J̃T s∗ in PΩc(x)
where c̃ is defined by augmenting c with −∞. This is a sep-
arable problem so that the Proposition 5.10 of [Dos09] ap-
plies, giving:

Fs(Ps
Ωc(s− ᾱgs))≤ η f Fs(s) = η f F(x),

where gs = J̃(AJ̃T s− b) = J̃g. Note that ᾱ and η f will not
be changed by our variable substitution since eigenvalues are
invariant under similarity transform. To reach our final con-
clusion, we note that:

Fs(Ps
Ωc(s− ᾱgs)) = F(J̃T Ps

Ωc(s− ᾱgs)) =

F(J̃T Ps
Ωc(J̃(x− ᾱg))) = F(PΩc(x− ᾱg)).

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.


