
Visual Comput (2007) 23: 631–639
DOI 10.1007/s00371-007-0154-3 O R I G I N A L A R T I C L E

Jianbing Shen
Xiaogang Jin
Xiaoyang Mao
Jieqing Feng

Deformation-based interactive texture design
using energy optimization

Published online: 13 June 2007
© Springer-Verlag 2007

J. Shen · X. Jin (�) · J. Feng
State Key Lab of CAD & CG,
Zhejiang University, Hangzhou,
310027, P.R. China
{shenjianbing, jin, jqfeng}@cad.zju.edu.cn

X. Mao
University of Yamanashi, Japan
mao@yamanashi.ac.jp

Abstract In this paper, we present
a novel interactive texture design
scheme based on deformation and
energy optimization. Given a small
sample texture, the design process
starts with applying a set of deform-
ation operations to the sample texture
to obtain a set of deformed textures.
Then local changes to those deformed
textures are further made by replacing
their local regions with the texture
elements interactively selected from
other textures. Such a deform–select–
replace process is iterated many
times until the desired deformed
textures are obtained. Finally the
deformed textures are composed to
form a large texture with graph-cut
optimization. By combining the
graph-cut algorithm with an energy

optimization process, interactive
selections of local texture elements
are done simply through indicating
the positions of texture elements
very roughly with a brush tool. Our
experimental results demonstrate
that the proposed technique can be
used for designing a large variety
of versatile textures from a single
small sample texture, increasing or
decreasing the density of texture
elements, as well as for synthesizing
textures from multiple sources.

Keywords Deformation · Inter-
active · Texture design · Brushes ·
Energy optimization

1 Introduction

Textures have been a research focus for many years in
human perception, computer graphics and computer vi-
sion. Recent decades of research activities in this area
emphasize on texture synthesis. Given a sample texture,
a texture synthesis algorithm generates a new one bear-
ing the same visual characteristics. In spite of the fact that
numerous methods have been proposed for texture synthe-
sis, how to design a variety of large textures from a single
small sample texture is still a challenging problem.

Recently, Matusi et al. [18] developed a system for de-
signing novel textures in the space of textures induced by
an input database. However, their morphable texture inter-
polation is based on a single one-to-one warping between
the pairs of texture samples, which might be too restric-

tive for textures with highly irregular structures, caus-
ing discontinuous mappings of the patches to the original
image. Shen et al. [22] proposed a completion-based tex-
ture design technique for producing a variety of textures
by applying deformations to the extracted layers of tex-
ture elements. The main limitation of Shen et al.’s method,
however, lies in the fact that it has no interaction with the
local property of the resulting texture elements.

In this paper, we present a new deformation-based
interactive texture design algorithm. The proposed algo-
rithm has the ability to locally change the visual property
of texture elements with little user interaction, and hence
drastically broadens the variation of textures that can be
synthesized with the existing methods. As shown in Fig. 1,
from a single small sample texture, our technique can cre-
ate a variety of versatile textures, regular or irregular, with

632 J. Shen et al.

increased or decreased density of texture elements. The
main contributions of our work consist of the following
three aspects:

– A novel framework for designing a large variety of
textures by integrating the techniques of 1) texture syn-
thesis, 2) interactive image editing, 3) graph-cut based
optimization, and 4) gradient-based Poisson optimiza-
tion.

Fig. 1. Our deformation-based interactive texture design algorithm.
a Small input texture I ; b1, b2, b3 the initial deformed textures
Ib1, Ib2, . . . , Ibk ; c1, c2, c3 the texture elements regions indicated
by the designer’s interactive brush; d1, d2, d3 the composed re-
sult by local deformations using energy optimization; e1, e2, e3 the
interactive deformed textures Ic1, Ic2, . . . , Ick ; f1, f2 the designed
textures Id1,Id2,. . . ,Idk

– An effective graph-cut and energy optimization-based
method for automatically extracting texture elements
indicated by the designer.

– A new optimization based algorithm for synthesizing
textures from multiple sources.

In the rest of the paper, we first introduce the related
work on texture synthesis and interactive image manipu-
lation tools in Sect. 2. Then, in Sect. 3, we discuss the
details of our deformation and energy optimization-based
interactive texture design scheme. The extension of the
existing texture deformation algorithm using the comple-
tion technique is also described in Sect. 3. The details of
the new graph-cut-based energy optimization method are
given in Sect. 4, and the method for synthesizing textures
from multiple sources using optimization is presented in
Sect. 5. After showing the experimental results in Sect. 6,
we conclude the paper and show some directions for future
work in Sect. 7.

2 Related work

Texture synthesis

There is a long sequence of earlier papers on pixel-based
and patch-based texture synthesis, which we can briefly
review here. In non-parametric texture synthesis [6, 11],
texture is synthesized one pixel (or one patch) at a time by
finding pixels (patches) with similar neighborhood to the
already synthesized pixels (patches) in the sample texture.
The traditional approach is to generate textures sequen-
tially in a scanline order. Improvements include hierarch-
ical synthesis [25], coherent synthesis [9, 19], similarity-
based synthesis [4], feature matching and patch deform-
ation synthesis [26], texton revisited synthesis [5], and
appearance-space synthesis [15].

A number of authors have tackled the challenge of com-
bining and mixing textures. Efros and Freeman [11], Cohen
et al. [6] and Kwatra et al. [14] synthesized a non-uniform
texture composed of homogeneous patches. Wei et al. [24]
generated mixture of textures from multiple input textures.
Liu et al. [17] described a system to analyze and manipulate
photographic textures that allows a user to design near regu-
lar textures. Similar to the work by Liu et al. [17], Matusik
et al. [18] strived to build a comprehensive texture model,
then constructed a texture space that spanned the range of
textures induced by a database of natural images.

The idea of applying transformations to the patches
has also been discussed by Kwatra et al. [14] in their
patch-based texture synthesis technique using the graph-
cut algorithm. The results are obtained using deformation
operations, such as rotation, mirror and scaling. However,
as mentioned in their paper, the cost for searching match-
ing patches will increase when the extent of deformation
increases. Shen et al. [22] proposed a completion-based
texture design algorithm by applying transformations to

Deformation-based interactive texture design using energy optimization 633

the extracted texture layers. Their technique can produce
a wide variety of textures by making changes to the size,
orientation and relative position of texture elements. How-
ever, the main limitation of their method lies in its inability
to take into consideration the designer’s need and creation.
Interactions on local texture elements are not allowed for
the designers in their method.

Interactive image manipulation tools

Interactive image manipulation and editing packages, such
as Adobe Photoshop, are commonly utilized by digital
photographers. In their workflow [21], images are manipu-
lated directly and immediate visual feedback is provided.

Recently, many researchers proposed several inter-
active digital image editing tools by using region-based
methods, e.g., the magic wand in Photoshop [21], intel-
ligent paint [2], interactive graph-cut image segmenta-
tion [3], lazy snapping [16], and interactive image photo-
montage [1].

Our work is most closely related to the method of inter-
active digital montage [1], where users use brushes to in-
dicate which parts of a set of photographs should be com-
bined into a composite result. Similarly, our method also
uses the strokes to define constraints for designing a var-
iety of deformed textures. By allowing the user to interact
with local texture elements, our technique can provide local
changes to the size, orientation and relative position of tex-
ture elements according to the texture designer’s need and
creation. Moreover, our proposed algorithm has the ability
to increase or decrease the density of texture elements inter-
actively, which is suitable fordesigning a variety ofversatile
textures from a single small sample texture.

3 Our approach

3.1 Algorithm overview

The goal of our algorithm is to enable the texture designer
to easily create a deformed texture in a spatially varying
manner, along with several common types of deformation
operations (rotation, translation, mirror, scale and flip).

Our proposed workflow is summarized as follows:
1. Load a small sample texture image I .
2. Apply deformation operations (rotation, translation,

mirror, scale and flip) to produce a set of small de-
formed textures Ib1, Ib2, . . . , Ibk . The range of rotation,
translation and scale is interactively controlled by the
designer.

3. Make local changes to the deformed textures by copy-
ing local texture elements from one to the other.

4. Design large textures from the deformed textures ob-
tained in Step (3) by using the graph-cut optimization
algorithm. Apply further deformation operations if ne-
cessary.

5. Repeat Steps (2) to (4) until a satisfactory set of tex-
tures Id1,Id2,. . . ,Idk is obtained, combining the texture
deformation algorithm described in Sect. 3.3.
This workflow is illustrated by the sequence of images

in Fig. 1. Given an input sample texture (Fig. 1a), a set
of deformed textures are produced (Fig. 1b1,b2,b3)
after applying deformation operations. Then the user
uses brushes to paint some texture elements interac-
tively (Fig. 1c1,c2,c3) and the corresponding regions
of those texture elements are automatically calculated
(Fig. 1d1,d2,d3). These texture elements are stitched into
other textures with the gradient-based Poisson optimiza-
tion [1, 20, 22], in order to obtain the textures with vary-
ing local properties (Fig. 1e1,e2,e3). Finally, by applying
the texture deformation algorithm described in Sect. 3.3
to the deformed textures, large textures are designed
(Fig. 1f1,f2).

3.2 Interactive local texture deformation

In order to make the above workflow effective, several
requirements should be met, such as quickly generated
previews of the overall result, a simple, intuitive and easy
to use mechanism for performing the local deformation,
and an undo function allowing the user to modify previ-
ously specified adjustments. Our prototype implementa-
tion is based on the interactive digital photomontage tech-
nique [1] and supports several types of brushes that can be
used to set constraints for the texture’s local deformations.
Similarly to [1], the designer uses the most frequently used
single-texture brushes.

At Step (3), the local deformation of a texture is real-
ized by replacing its local regions with the texture elem-
ents from another deformed texture. We call the texture
to be locally deformed the base texture Ibase (Ibase ∈
{I, Ib1, Ib2, . . . , Ibk}) and the texture providing the tex-
ture elements the reference texture Iref (Iref ∈ {{I, Ib1,
Ib2, . . . , Ibk}− Ibase}). As shown in Fig. 1, the user does
not need to precisely specify the region including the tex-
ture elements in Iref. Instead, the designer uses the brush
to roughly paint the texture elements (“yellow flowers”)
in Iref. The corresponding region including the texture
elements is calculated automatically with the graph-cut-
based energy optimization technique. The obtained texture
elements are then embedded into to the base texture Ibase
seamlessly by the gradient-based Poisson optimization
method [1, 22]. Such local deformations are repeated sev-
eral times, while at each step the user is allowed to choose
new texture elements by painting new strokes according to
his creation. The resulting base texture is further refined
by the texture deformation algorithm using completion
and then is used as the reference texture for another base
texture. The descriptions of the texture deformation algo-
rithm using completion and the graph-cut-based energy
optimization technique can be found in Sects. 3.3 and 4,
respectively.

634 J. Shen et al.

3.3 Texture deformation using completion

The last step of our texture design workflow employs the
texture deformation algorithm using the completion tech-
nique [8, 22, 23], which is based on the method proposed
in [22]. We refer the readers to [22] for a detailed descrip-
tion of their completion-based texture design method. The
texture deformation algorithm using the completion tech-
nique is summarized as follows:

– Input: single sample texture I .
– Step 1: Layering, extracting texture layers using exist-

ing color image segmentation techniques [7, 12].
– Step 2: Deformation, applying chaotic-based deform-

ation operations (such as rotation, translation, mirror,
flip and scale) to the texture layers.

– Step 3: Example-based image completion, inpaint-
ing the hole regions induced by deformation with the
graph-cut algorithm.

– Step 4: Smoothing, removing the visual artifacts pro-
duced by Step 3 through the gradient-based Poisson
optimization [1].

– Output: deformed textures I1, I2, . . . , Ik .

In order to increase the versatility of the deformed
textures, we add a new flip operation to the set of deform-
ation operations provided by [22]. Moreover, we extend it
with more robust chaotic maps [13] beyond the basic lo-
gistic map. The experimental results demonstrate that our
technique can generate a wide variety of large deformed
textures with a good stochastic property.

4 Interactive design using energy optimization

Boykov et al. [3] have developed several techniques that
use the graph-cut algorithm for optimizing pixel labeling.
Some early vision problems, such as image restoration,
can be modeled as an image labeling problem which is to
find a labeling f that assigns each pixel p a label fp, so
that f is both piecewise smooth and consistent with the
target data. Such a labeling f can be obtained as the result
of minimizing the following energy:

E(f) = Esmooth(f)+ Edata(f) , (1)

where Esmooth measures the extent to which f is not piece-
wise smooth, while Edata measures the disagreement be-
tween f and the objective data. Boykov et al. [3] proposed
an algorithm to find f through an iterative process. At
each step, the graph-cut algorithm is used to find out the
swapping between two labels α and β (α-β swap) or the
assigning of a given label (α-expansion) while decreasing
the energy E(f) from that of the previous step. The label-
ing computation is guaranteed to be within a factor of two
of the global minimum when the cost function is a metric.

Agarwala et al. [1] used Boykov’s graph-cut optimization
algorithm for their interactive digital photomontage ap-
plication, where a new cost function is used to guide the
optimization process resulting a smooth composition of
source images.

We further extend Agarwala’s work by employing the
energy optimization for texture montage. Suppose that we
have obtained k deformed textures Ib1, Ib2, . . . , Ibk after ap-
plying the deformation operations in the first step. We want
to make local changes to some of those textures by replacing
their local regions with the texture elements from remaining
textures. As shown in Fig. 2, the user starts with select-
ing a base texture Ibase (Fig. 2a, the texture to be locally
changed) and the reference texture Iref (Fig. 2b, the texture
providing the texture elements). After the user indicates
the texture elements in Iref using brushes (Fig. 2c), a sub-
image Is (Is ⊂ Iref) enclosing the brush stroke is clipped out
from Iref. In order to produce the locally deformed texture
(Fig. 2f), we use the graph-cut based energy optimization
algorithm to compute the label of pixels in the composite
texture (Fig. 2d) and find the best path (Fig. 2e) to smoothly
stitch Is with Ibase. The labeling of the pixels in the com-
posite texture is a mapping of the pixels between the base
texture Ibase and the clipped reference texture Is . We de-
note the label for each pixel as L(p), it is certain that a seam
(Fig. 2e) exists between two neighboring pixels (p, q) in the
output if L(p) �= L(q).

In [1, 3], the energy function E for the labeling L of an
image is defined as follows:

E(L) = Edata(L)+λ·Esmooth(L), (2)

Edata(L) =
∑

p

Ed(p, L(p)), (3)

Esmooth(L) =
∑

p,q

Es(p, q, L(p), L(q)), (4)

Fig. 2a–f. Illustration of our interactive design using energy opti-
mization. a The base texture Ibase; b the reference texture Iref; c the
position of the user’s brush; d the cut region (with red boundary)
including texture elements using our energy optimization method;
e its corresponding labeling map; f the designed texture

Deformation-based interactive texture design using energy optimization 635

where the first term is defined by the distance to the image
objective while the second term is defined by the distance
to the seam objective. Since we want to replace the local
region of the base texture with the specified texture elem-
ents in the reference texture, the image objective here is Is .
Therefore Edata(L) is computed as follows:

Edata(L) =
{

0, if L(p) = Is

v, if L(p) �= Is
, (5)

where v is a user specified large value.
Since the labeling is a mapping to either Ibase or Is , the

second term is defined by the distance between the pixels
of Ibase and Is , that is,

Es(p, q, L(p), L(q))= 0, if L(p) = L(q). (6)

Otherwise, the energy is computed in the same way as [1]:

Es(p,q, L(p), L(q))

=
⎧
⎨

⎩

Mx, if “colors”
My, if “gradients”
0.5(Mx + My) if “colors + gradients”

, (7)

where

Mx = ‖CL(p)(p)−CL(q)(p)‖+‖CL(p)(q)−CL(q)(q)‖,
My = ‖∇GL(p)(p)−∇GL(q)(p)‖

+‖∇GL(p)(q)−∇GL(q)(q)‖,

Fig. 3. Comparison of our deformation-based algorithm with image
quilting [11], Wang tiles [6] and graph-cut [14]

and ∇G(p) is a six-component color gradient (in R, G, B)
at pixel p.

The algorithm terminates when a pass over all labels
fails to reduce the cost function. Kwatra et al. [14] and
Agarwala et al. [1] have successfully used the ‘alpha ex-
pansion’ with this interaction penalty. In our case, we have
also found that it is good enough to produce satisfactory
composite textures (Fig. 2f).

5 Texture design from multiple sources
using optimization

Our texture design method from multiple sources using
optimization is extended from [24], but differs in that
we perform patch-based synthesis via optimization while
theirs is based on pixel-by-pixel mixture. The goal of
multi-source texture design is to synthesize new textures
that capture the combined characteristics of several input
textures. For example, given four flower and grass textures
(Fig. 6a), a set of new textures can be generated with a hy-
brid appearance (Fig. 6b–l).

Fig. 4. Comparison of our deformation-based algorithm with graph-
cut [14]

636 J. Shen et al.

Fig. 5. Examples of spatially varying designed textures using our deformation-based method. Left columns (a1, b1, c1, d1) are the input
textures, the others are the deformed textures. Texture size: input: 268×230; output: 360×360

The details of the proposed texture design algorithm
from multiple sources via optimization are described as
follows:

– Input: multiple texture sources {I1, I2, . . . , Ik}.
– Step 1: Each source texture is divided into l patches,

and the source textures are represented by the patch
sets:

I1 = {
PI1

1 , PI1
2 , . . . , PI1

l

}
, I2 = {

PI2
1 , PI2

2 , . . . , PI2
l

}
,

. . . , Ik = {
PIk

1 , PIk
2 , . . . , PIk

l

}
.

– Step 2: Randomly select an initial patch PIk
l , paste it to

the left top corner of the output texture Imk, then find
the best matched neighborhood patch Pi constrained

through optimizing the following function:

min
∑

(
P

Ik
l ,Pi

)
wi ·

(∥∥PIk
l − Pi

∥∥+∥∥Ni
(
PIk

l

)− Ni(Pi)
∥∥)

,

(8)

where index i runs through all the input textures,
Ni(PIk

l), Ni(Pi) are the neighborhoods of PIk
l and Pi ,

respectively, and wi are the weights specified by the
relative importance of the input sources.

– Step 3: Copy the best matched patch Pi to the out-
put texture Imk . Apply the graph-cut algorithm [3] to
obtain a minimum-error-cut seam in the overlapped re-
gion between Pi and PIk

l .
– Step 4: Run Steps 2 to 3 iteratively until the whole out-

put texture Imk is synthesized. The texture deformation

Deformation-based interactive texture design using energy optimization 637

Fig. 6. Designed textures from multi-source textures using our optimization algorithm. Texture size: input: 230×230; output: 360×360

using the completion technique described in Sect. 3.3
is then employed for further designing the deformed
textures.

– Output: the final designed textures {Im1, Im2, . . ., Imk}.

6 Experimental results and discussions

Our algorithm has been applied to a variety of sample tex-
ture images. In our experiments, most of the source texture
images are downloaded from the websites1. For compari-
son, we use those sample textures used by existing texture
synthesis work [6, 11, 14]. All the experiments shown in
this section were run on a PC with Pentium IV 1.6 GHz
CPU + 512 MB RAM.

In Fig. 3, we compare our approach with other existing
techniques. The result for graphcut was taken from [14],
while the other two were generated by our implemen-
tation. The texture size is 268×230 for Fig. 3a, and
360×360 for Fig. 3(b,c,d,e). The patch size is selected as
64×64. From the images we find that the quality of the
texture generated with our approach is superior to that of
image quilting [11] and Wang tiles [6] and is compara-
ble to the result produced by graphcut [14]. The sample
texture in Fig. 3a consists of only two different lotus flow-
ers. The techniques that simply use the original patches
selected from the sample texture can lead to the repeti-
tion of those texture elements in the resulting large texture.
As shown in Fig. 3d, all the flowers have the same shape
and orientation as either of the two flowers in the sam-
ple texture. However, our interactive technique can create
the texture consisting of the flowers of different shape,
size and orientation, which is demonstrated in Fig. 3e. The

1 http://www.cc.gatech.edu/cpl/projects/graphcuttextures
http://people.csail.mit.edu/wojciech/TextureDesign/index.html

density of the lotus flowers in our results can be increased
or decreased at the desired position according to the user’s
need.

Figure 4 is another example demonstrating the effec-
tiveness of our method, compared with the Graph-cut [14]
method. As shown in Figs. 4c–e, the density of texture
elements (flowers) is increased (Fig. 4c and d) or de-
creased (Fig. 4e).

Figure 5 gives more examples demonstrating the ca-
pability of our technique for creating a large variety of
textures from a small sample, while maintaining the con-
tinuity of texture features as well as the shapes of indi-
vidual texture elements. Our method changes the density
of texture elements (yellow flowers) interactively accord-
ing to the designer’s need. In Fig. 5a2–a6, the density of
the texture elements decrease gradually. We can also inter-
actively make the left part and the right part of the de-
signed texture with different density (Fig. 5a3), create new
texture elements (Fig. 5a5), locally enlarge the size of tex-
ture elements (Fig. 5a6), design regular (Fig. 5a5,a6) or ir-
regular (Fig. 5a2–a4) texture patterns, and make the shape
of designed texture look like a large ‘S’ shape (Fig. 5b5).

Figure 6 demonstrates another interesting application
of our technique. Therein textures are synthesized from
multiple source textures using our optimization method.
In Fig. 6, four input textures of size 230×230 are used to
interactively create a variety of designed textures of size
360×360 (Fig. 6b–l).

7 Conclusions and future work

A novel deformation-based interactive texture design
method using energy optimization has been proposed
in this paper. Experimental results demonstrate both
the feasibility and the effectiveness of our algorithm.

638 J. Shen et al.

The main advantage of our algorithm over most ex-
isting texture synthesis methods lies in its capability
to create a wide variety of very natural textures inter-
actively, from only a single small sample texture, ac-
cording to the texture designer’s need and creation. By
applying the extended graph-cut-based energy optimiza-
tion approach and the completion-based texture defor-
mation method, we have designed textures with good
stochastic property. Our experimental results also demon-
strate that the proposed technique can be applied to
other applications such as texture synthesis from multiple
sources.

Although the deformation operations used in our
method can produce good results, it would be mean-
ingful to develop more sophisticated and powerful de-

formation tools in the future. Another potential exten-
sion of our method would be its application in dynamic
texture design [10] where the consistency of the de-
formed textures between adjacent frames should be con-
sidered.

Acknowledgement This work was supported by the China 973
program (Grant No. 2002CB312101), the China 863 program
(Grant No. 2006AA-01Z314), the National Natural Science Foun-
dation of China (Grant No. 60573153), the Natural Science Foun-
dation of Zhejiang Province (Grant No. R105431), the Program for
New Century Excellent Talents in University (Grant No. NCET-
05-0519), and the Ministry of Education, Science, Sports and Cul-
ture, goverment of Japan, Grant-in-Aid for Scientific Research (B)
(Grant No.18300030, 2006). The authors would like to thank Vivek
Kwatra for making the Graphcut texture synthesis results available.

References
1. Agarwala, A., Dontcheva, M.,

Agrawala, M., Drucker, S., Colburn, A.,
Curless, B., Salesin, D., Cohen, M.:
Interactive digital photomontage. ACM
Trans. Graph. 23(3), 294–302 (2004)

2. Barrett, W.A., Cheney, A.S.: Object-based
image editing. ACM Trans. Graph. 21(3),
777–784 (2002)

3. Boykov, Y., Kolmogorov, V.: An
experimental comparison of
min-cut/max-flow algorithms for energy
minimization in vision. IEEE Trans. Patt.
Anal. Mach. Intel. 26(9), 1124–1137 (2004)

4. Brooks, S., Dodgson, N.: Self-similarity
based texture editing. ACM Trans. Graph.
21(3), 653–656 (2002)

5. Charalampidis, D.: Texture synthesis:
textons revisited. IEEE Trans. Image
Process. 15(3), 777–787 (2006)

6. Cohen, M.F., Shade, J., Hiller, S.,
Deussen, O.: Wang tiles for image and
texture generation. ACM Trans. Graph.
22(3), 287–294 (2003)

7. Comaniciu, D., Meer, P.: Mean shift:
A robust approach towards feature space
analysis. IEEE Trans. Patt. Anal. Mach.
Intel. 24(5), 603–619 (2002)

8. Criminisi, A., Pérez, P., Toyama, K.:
Region filling and object removal by
exemplar-based image inpainting. IEEE
Trans. Image Process. 13(9), 1200–1212
(2004)

9. Dischler, J.-M., Maritaud, K., Lévy, B.,
Ghazanfarpour, D.: Texture particles.

Comput. Graph. Forum. 21(3), 401–410
(2002)

10. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.:
Dynamic textures. Int. J. Comput. Vision
51(2), 91–109 (2003)

11. Efros, A.A., Freeman, W.T.: Image quilting
for texture synthesis and transfer. In:
Proceedings of SIGGRAPH ’01,
pp. 341–346. Los Angeles, ACM, New
York (2001)

12. Felzenszwalb, P.F., Huttenlocher, D.P.:
Efficient graph-based image segmentation.
Int. J. Comput. Vision 59(2), 167–181
(2004)

13. Jakimoski, G., Kocarev, L.: Chaos and
cryptography: block encryption ciphers
based on chaotic maps. IEEE Trans. Circ.
Syst. – 1: Fund. Theory Appl. 48(2),
163–169 (2001)

14. Kwatra, V., Schödl, A., Essa, I., Turk, G.,
Bobick, A.: Graphcut textures: image and
video synthesis using graph cuts. ACM
Trans. Graph. 22(3), 277–286 (2003)

15. Lefebvre, S., Hoppe, H.: Appearance-space
texture synthesis. ACM Trans. Graph.
25(3), 541–548 (2006)

16. Li, Y., Sun, J., Tang, C.K., Shum, H.Y.:
Lazy snapping. ACM Trans. Graph. 23(3),
303–308 (2004)

17. Liu, Y., Lin, W.C., Hays, J.H.: Near regular
texture analysis and manipulation. ACM
Trans. Graphics. 23(3), 368–376 (2004)

18. Matusik, W., Zwicker, M., Durand, F.:
Texture design using a simplicial complex

of morphable textures. ACM Trans. Graph.
24(3), 787–794 (2005)

19. Nicoll, A., Meseth, J., Müller, G.,
Klein, R.: Fractional Fourier texture masks:
guiding near-regular texture synthesis.
Comput. Graph. Forum 24(3), 569–579
(2005)

20. Pérez, P., Gangnet, M., Blake, A.: Poisson
image editing. ACM Trans. Graph. 22(3),
313–318 (2003)

21. Reichmann, M.: An image processing
workflow. http://luminouslandscape.com/

tutorials/workflow1.shtml
22. Shen, J.B., Jin, X.G., Mao, X.Y.,

Feng, J.Q.: Completion based texture
design using deformation. Visual Comput.
22(9), 936–945 (2006)

23. Shen, J.B., Jin, X.G., Zhou, C., Wang,
C.C.L.: Gradient based image completion
by solving the Poisson equation. Comput.
Graph. 31(1), 119–126 (2007)

24. Wei, L.Y.: Texture synthesis from multiple
sources. Proceedings of the SIGGRAPH
2003 Conference on Sketches &
Applications. ACM, New York (2003)

25. Wei, L.Y., Levoy, M.: Fast texture synthesis
using treestructured vector quantization. In:
Proceedings of SIGGRAPH ’00,
pp. 479–488. New Orleans, ACM, New
York (2000)

26. Wu, Q., Yu, Y.: Feature matching and
deformation for texture synthesis. ACM
Trans. Graph. 23(3), 362–365
(2004)

Deformation-based interactive texture design using energy optimization 639

JIANBING SHEN is a PhD candidate of the
State Key Lab of CAD&CG, Zhejiang Univer-
sity, People’s Republic of China. He received
his BSc and MSc degrees in mechatronic engin-
eering from Zhejiang University of Technology.
His research interests include texture synthe-
sis, image completion, and high dynamic range
imaging and processing.

XIAOGANG JIN is a professor of the State Key
Lab of CAD&CG, Zhejiang University. He re-
ceived his BSc degree in computer science in

1989, MSc and PhD degrees in applied math-
ematics in 1992 and 1995, all from Zhejiang
University. His current research interests include
implicit surface computing, special effects simu-
lation, mesh fusion, texture synthesis, crowd an-
imation, cloth animation and facial animation.

XIAOYANG MAO is an associate professor at
the University of Yamanashi in Japan. She re-
ceived her MS and PhD degrees in computer
science from Tokyo University. Her research in-
terests include flow visualization, texture syn-

thesis, non-photorealistic rendering and human
computer interactions.

JIEQING FENG is a professor at the State Key
Lab of CAD&CG, Zhejiang University, Peo-
ple’s Republic of China. He received his BSc
degree in applied mathematics from the Na-
tional University of Defense Technology in 1992
and his PhD in computer graphics from Zhe-
jiang University in 1997. His research interests
include space deformation, computer-aided geo-
metric design and computer animation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

