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Abstract In this paper, we present
a novel approach for designing a var-
iety of large textures from a single
small sample texture. Firstly, the
original small texture is segmented
into layers, each of which contains
one particular texture element. Sec-
ondly, each layer is deformed using
a set of chaotic-based transformation
operations. Thirdly, all the deformed
layers are added together to form
a new texture, which is a natural
variation of the original sample
texture. Since each layer is deformed
independently, adding the deformed
layers together usually results in
a texture with overlapping regions
and holes. We employ the graphcut
algorithm and an example-based
image inpainting technique to seam-
lessly patch the overlapping regions
and to fill the holes. Moreover,

an optimized graphcut synthesis
algorithm and a new cyclic texture
synthesis technique are also de-
veloped for efficiently creating large
seamless textures. As a result, our
approach shows particular strength in
generating a large variety of textures
from a single sample texture while
avoiding highly repetitive patterns.
Our experiments demonstrate that
the proposed technique can also
be used for other texture synthesis
applications, such as texture synthesis
from multiple samples.

Keywords Texture design · Layer
completion · Cyclic texture ·
Deformation

1 Introduction

Texture has long been a fascinating topic in human per-
ception. It is a ubiquitous and stochastic visual experience,
and can describe a wide variety of surface characteris-
tics such as terrain, plants, minerals, fur and skin. Texture
is important for many applications in computer graphics,
vision, and image processing. However, it is still a chal-
lenging task to design textures with a variety of realistic
natural patterns.

Procedural textures provide great flexibility and allow
for fine tuning of parameters to control the visual pat-
tern. However, unfortunately, they require programming

skills that are out of the reach of most users. Spatial tex-
tures refer to those textures found on the surface of 3D
shapes, such as the patterns on the weathered stone [12]
and spots on a leopard [32, 37]. Those textures are usually
formed due to natural processes and hence are difficult to
achieve with photo editing software or to model as pro-
cedural textures. Natural textures, however, are extremely
complex, as shown by research in human vision, e.g., [18],
and traditional linear analysis and manifold embedding
cannot be used to characterize them. Matusi et al. [25] de-
veloped a system for designing novel textures in the space
of textures induced by an input database. However, their
morphable texture interpolation is based on a single one-
to-one warping between pairs of texture samples, which
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might be too restrictive for textures with highly irregular
structures, causing discontinuous mappings of the patches
to the original image.

In this paper, we present a novel algorithm for design-
ing a wide variety of textures only from a single small
input texture. Our algorithm involves four main compo-
nents. The first component is a segmentation stage for ex-
tracting texture layers roughly, which is based on existing
color image segmentation techniques [9, 16]. The second
component is deformation operations, which are defined
by our chaotic-based deformation operations (such as ro-
tation, translation, mirror and scale). The third compon-
ent is an example-based image completion method to-
gether with a graphcut algorithm for inpainting the hole
regions induced by deformation. The fourth component is
gradient-based Poisson optimization for removing the vi-
sual artifacts produced by the third stage.

In summary, the main contributions of this paper fall
into three aspects:

– We develop a new framework for designing a large var-
iety of textures by integrating the techniques of 1)
image segmentation, 2) texture synthesis, 3) example-
based image completion, and 4) gradient-based Pois-
son optimization.

– A new set of chaotic-based deformation operations is
presented for producing a variety of deformed texture
patterns.

– A new, easy and efficient cyclic texture designing
method is proposed.

In the rest of the paper, we first introduce the related
work on image inpainting and texture synthesis in Sect. 2.
Then, in Sect. 3, we discuss the details of our completion-
based texture design using our newly defined deformation
operations. The new cyclic texture designing method is
also presented in Sect. 3. After showing the experimental
results in Sect. 4, Sect. 5 concludes the paper and shows
some directions for future work.

2 Related work

Our work mainly draws from two research areas: image
completion and texture synthesis.

Image compl
10.5 0r1.5 63.7353shows
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of different texture elements, our technique can provide
local changes to the size, orientation and relative positions
of texture elements, and hence can further improve the
stochastic property of output textures, resulting in a wider
variety of textures.

3 Completion based texture design using
deformation

3.1 Algorithm overview

In summary, the overall texture design algorithm consists
of the following four steps (as shown in Fig. 1).
1. An image segmentation technique is used to extract

the salient texture layers IL1 , IL2 , · · · , ILk (Fig. 1(b1),
(b2), (b3)) from the input texture image I (Fig. 1(a)). In
order to increase the variations during the deformation,
each layer can be further divided into child layers.

2. Chaotic-based deformation operations O(·) are firstly
applied to transform the segmented texture layers
IL1 , IL2 , · · · , ILk , then the graphcut method is uti-
lized to stitch the transformed texture layers (O(IL1),
O(IL2), · · · , O(ILk )) together at the overlapping re-
gions. After that, a deformed texture I ′

L (Fig. 1(c))is
obtained together with a mask IM corresponding to the
hole regions in I ′

L (Fig. 1(d)).
3. An image completion technique is employed to fill the

hole regions of the deformed texture I ′
L to obtain the

inpainted texture IC (Fig. 1(e)).
4. Steps 1 to 3 are repeated to create a set of small

deformed and inpainted textures IC1 , IC2 , · · · , ICκ

(Fig. 1(e), (f)) and then stitched them together to obtain
a large texture S using graphcut algorithm, followed by
an updating process using gradient-based Poisson opti-
mization (Fig. 1(g)). If necessary, the cyclic texture can
be generated by further processing the texture S using
our new cyclic texture design technique in Sect. 3.5.

3.2 Layering the texture

The first step is to segment the input texture I into seman-
tic layers, so that, within each layer, different texture de-
formation operations can be applied. For example, for the
image in Fig. 1(a), we have the following three segmented
texture layers: one for the pink flowers (Fig. 1(b1)), one
for the green leaves (Fig. 1(b2)), and one for the back-
ground. To accomplish this, we use an automatic image
segmentation method based on mean-shift [9], combining
with efficient graph [16] methods.

Unlike the work by Chuang et al. [7], where the
layers are extracted manually with the matting method,
our whole process for segmenting the texture layers is
fully automatic and also very efficient. Readers may ar-
gue that automatic segmentation usually fails to produce

Fig. 1a–g. Proposed texture design algorithm. a Small input tex-
ture I ; b1, b2, b3 the segmented layers IL1, IL2, IL3; c the de-
formed texture I ′

L ; d the corresponding mask IM ; e inpainted
texture IC1 ; f inpainted texture ICκ ; g one of the large designed
textures

ideal results. However, a fact that deserves particular men-
tion here is that in our case, the segmentation algorithm
actually does not have to be perfect, since the roughly seg-
mented regions will be inpainted by the image completion
algorithm described in Sect. 3.4.

3.3 Texture layer deformation

Once we have extracted the texture layers, we apply a set
of newly defined texture deformation operations to each
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of these layers so as to create various deformed tex-
tures. The deformation operations are formulated as fol-
lows:

O = {T(d, l), R(a, c), M( f), S(e)}, (1)

where T(d, l) represents the “translation” operation that
translates a texture layer along the direction d (d ∈
{up, down, left, right}) with the distance l; R(a, c) is
the “rotation” operation that rotates a texture layer with
the angles a in a direction given by parameter c, c ∈
{clockwise, anti-clockwise}; M( f) defines the operation
“mirror” that mirrors a texture layer in a way specified
by parameter f , f ∈ {

mirrorleft
right, mirrorup

down

}
; S(e) is the

“scale” operation that changes the size of a texture layer
with the scaling extent e, which is set to be e ∈ (0.8, 1.2)
in our experiments.

In order to design a wide variety of natural textures, we
need a method to determine which of the above deforma-
tion operations should be used. A chaotic-based sequence
generator is one possible solution, since it is non-periodic,
non-convergent and extremely sensitive to the initial con-
dition [20]. Among the various nonlinear chaotic maps,
the most famous and widely used map is the logistic map,
which is one of the simplest systems exhibiting order-to-
chaos transitions. The basic logistic map is formulated
as:

xk+1 = 1−λ · xk
2, (2)

where λ ∈ [0, 2]. When λ = 2, the chaotic maps are
called full-maps, which have good statistical proper-
ties [20, 24]. x0 and λ are the initial conditions for pro-
ducing a chaotic sequence. In our experiments, x0 and
λ are initialized as x0 = 0.76234783 and λ = 2, respec-
tively.

For the segmented texture layers ILi , i = {1, · · · , k},
the whole process of texture deformation can be summa-
rized as follows.

– Input: IL1 , IL2 , · · · , ILk , x0, λ.
– Step 1: generate a chaotic sequence H = {h(k) =

|x(k)|, k = 0, 1, 2, · · · , } using formula (2), then map
the above set H into the range (0, 255).

– Step 2: select O(m) as the operation to be applied to
layer k. Here m = mod(mod(h(k), u), v), and O(m)
is the m-th operation of the operation set O in (1).
The parameter of the selected operation, which con-
trols the extent of the deformation, is determined by
n (n = mod(h(k), u)). Parameters u, v and ξ are con-
stants for controlling the range of the transformation
operation. For example, if u = 10, v = 4, ξ = 0.13,
h(k) = 37, then m = 3, n = 7, and hence the fourth op-
eration “scale” S(e) is selected, and the scaling extent
e = ξ ·n = 0.91.

– Output: transformed layers IL ′
1
, IL ′

2
, · · · , IL ′

k
.

All the above transformation operations or their com-
binations can be applied on the texture layers (or child
texture layers) simultaneously, and can also be iterated
multiple times to achieve the desired texture design re-
sults.

3.4 Layer completion

Since each layer is transformed independently, an overlap-
ping of texture elements and holes can be found among
the layers after transformation. Large overlaps will usually
produce discontinuity in texture patterns, while large holes
will cause texture details to be missing after the layers
have been added together. Because of its simplicity and its
capacity to handle textured regions, we use the new modi-
fied example-based completion algorithm to fill the holes
among the layers. This algorithm is based on the work of
Criminisi et al. [10] .

To solve the overlapping problem, we cut the over-
lapping regions with a maximum flow or minimum cost
graphcut algorithm [22], and stitch the layers along the cut
lines. To use a graphcut algorithm, we define each location
in the overlapped region as a vertex v. Let Ci(v) and Cj(v)
be the color values at the location v in the two overlapped
layers Li and L j , respectively. Then the weight function
W(vs, vt) between two vertices vs and vt can be defined as
follows:

W(vs, vt, Li, L j) = ‖Ci(vs)−Cj(vs)‖
+‖Ci(vt)−Cs(vt)‖, (3)

where ‖ · ‖ denotes the Euclidean distance between color
values. After defining the above weight function, the min-
imal cut can be easily computed by a standard graphcut
algorithm [5, 29].

After stitching layers together along the minimum cut
lines, we obtain the single deformed texture image I ′

L
(Fig. 1(c)). A mask image IM (Fig. 1(d)) is also created
according to the hole regions in I ′

L ,

IM(p) =
{

1, ∀p ∈ ∑k
i=1O(ILi )

0, Otherwise
(4)

where O(·) denotes the deformation operations defined in
Sect. 3.3.

We use a new modified inpainting algorithm to fill the
hole regions indicated by IM . Criminisi et al. [10] used the
angle between the isophote direction and the normal direc-
tion of the local boundary to determine the searching order
of the patches, so that the structure of the missing region
can be filled before filling in the texture. For the purpose of
texture design, however, we need to inpaint more texture
information rather than structural information. Therefore,
we can simplify the “filling the highest confidence first”
approaches proposed in [10, 31, 36] by using the simple
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scan-line based patch inpainting method. The completion
process can be described as follows.

– Input: I , I ′
L , IM .

– Step 1: a target patch Ψt ∈ I ′
L is selected in a scan-line

filling order. Searching source image I to determine
a source patch Ψs ∈ I shows the highest similarity be-
tween Ψs and Ψt .

– Step 2: copy the whole patch data from Ψs to Ψt ,
use graphcut to update the overlapped region, and set
IM(p) = 1 for ∀p ∈ Ψt ;

– Step 3: if there exists a point p so that IM(p) = 0, go
back to Step 1.

– Output: the completed texture IC .

3.5 Cyclic texture design

With existing non-parametric texture synthesis tech-
niques [14, 22, 25], cyclic textures can be generated by
imposing a periodic boundary condition in searching for
the candidate patches from the input texture. In this
paper, we propose a very easy and efficient method to
create cyclic textures. The basic idea is that if we cut

Fig. 2. Illustration of a cyclic texture design algorithm

a tube and open it, we will obtain a sheet whose two
sides satisfy the periodic condition. Therefore, given an
arbitrary texture, we can make it satisfy periodic con-
dition in horizontal direction simply by first stitching
its left and right sides together with a graphcut algo-
rithm to form a tube, and then cut the tube along an
arbitrary vertical line. Let w and h be the width and

Fig. 3a–d. An example of cyclic texture. a the source texture; b the
synthesized cyclic texture; c seamless tiling in each direction (left,
right, up, down); d a snapshot of applying the cyclic texture for
editing terrain texture maps in a video game application

Fig. 4. Comparison of our completion-based algorithm with image
quilting [14], Wang tiles [8] and graphcut [22]
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height of the large designed texture I((0, 0), (w, h)).
The details of the algorithm are described as follows
(Fig. 2).

1. In the horizontal direction, the source texture is re-
arranged as Ih = Ih1 ∪ Ih2, where Ih1 = I((w/2 +
1, 0), (w, h)), Ih2 = I((0, 0), (w/2, h)).

2. Let the width of the overlapping region be mh . The
graph-cut algorithm is applied to synthesize seamlessly
in the horizontal direction. We denote the synthesized
texture image as I ′

h = graphcut(Ih1, Ih2).
3. In the vertical direction, the image I ′

h is rearranged as
Iv = Iv1 ∪ Iv2, where Iv1 = I ′

h((0, 0), (w−mh, h/2)),
Iv2 = I ′

h((0, h/2+1), (w−mh, h)).
4. Let the height of the overlapping region be mv. Then

run the graph-cut algorithm to synthesize seamlessly in

Fig. 5. Examples of spatially varying deformed textures using our completion-based design method. Left columns (a1, a2, a3, a4) are the
input textures, the others are the deformed textures

vertical direction. The final synthesized cyclic texture
image is represented as I ′ = graphcut(Iv1, Iv2).
Such a cyclic texture image can be used for seamless

tiling in applications such as terrain texture map editing
in video games. Figure 3 shows a cyclic texture generated
by our new cyclic texture method and its application to
seamlessly tiling a terrain.

3.6 Gradient-based Poisson optimization

In the image completion process in Sect. 3.4, for many
applications the source patches and the inpainted patches
are too dissimilar for a graphcut algorithm alone to result
in visually seamless patch updating. Visual artifacts may
still exist in the inpainted patches if the graphcut algorithm
cannot find the ideal seams.
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Fig. 6a–f. Examples of cyclic deformed textures obtained by applying the cyclic texture synthesis technique to the textures in Fig. 5b(2),
c(2), d(2), e(2), f(2), respectively. Texture size: a 268×230; b, c, d, e, f 310×310

Fig. 7. Blending textures from multi-source textures. Texture size: input: 144×144; output: 360×360

Agarwala et al. [1] used a gradient-based Poisson
equation to smooth out the color differences between jux-
taposed image regions. Similarly, we adopt gradient-based
Poisson optimization to smooth out the color differences
between the inpainted textures. For a single color chan-
nel, the pixel values I(x, y) are re-ordered into a vector
v(x, y) [1]; two linear equations are specified by an input
gradient ∇ I(x, y) as follows:

vx+1,y −vx,y = ∇ Ix(x, y), (5)
vx,y+1 −vx,y = ∇ Iy(x, y). (6)

The red, green and blue channels are corrected inde-
pendently. The Dirichlet boundary condition is the out-
rider boundary of the completed image. The final op-
timized texture is obtained by solving a Poisson equa-
tion [26, 27]. After this optimization process, the artifacts
are reduced and nearly invisible.

4 Experimental results

In our experiments, most of the source texture images
were downloaded from a website1, and for comparison, we
tried to use those sample textures that had been used by
existing texture synthesis work [8, 14, 22], if possible. All
the experiments shown in this section were run on a PC
with Pentium IV 1.6GHz CPU + 512MB RAM.

In Fig. 4, we compare our approach with other existing
techniques. The result for graphcut was taken from [22],

1 http://www.cc.gatech.edu/cpl/projects/graphcuttextures.

while the other two results were generated by our imple-
mentation. The texture size is 268×230 for Fig. 4(a), and
360×360 for Fig. 4((b), (c), (d), (e)). The patch size is se-
lected as 64 ×64. From the images, we can find that the
quality of the texture generated with our approach is supe-
rior to that of image quilting [14] and Wang tiles [8], and
is comparable to the result produced by graphcut [22].

As demonstrated in Fig. 4, however, a major advantage
of our technique over all other existing work is that it
can generate a wide variety of large textures with a good
stochastic property from a single small sample texture. In
the case of a very small sample texture, it is possible that
the variations of texture elements contained in the texture
are very limited. For example, the sample texture shown
in Fig. 4(a) consists of only two different lotus flowers.
The techniques that simply use the original patches se-
lected from such a sample texture can result in a large tex-
ture consisting of the repetition of those texture elements,
such as the one shown in Fig. 4(d), where all the flow-
ers have the sample shape and orientation as either of the
two flowers in the sample texture. As shown in Fig. 4(e),
however, with the deformation of individual texture layers,
our technique can create a texture consisting of flowers
of different shapes, sizes and orientations, which looks
more like a natural lotus flower field. Figures 5 and 8 give
some more examples demonstrating the capability of our
technique to create a large variety of textures from a small
sample, while maintaining continuity of texture features as
well as the shapes of an individual object.

Figure 6 shows the results from further conversion of
the textures shown in Fig. 5(b(2), c(2), d(2), e(2), f(2))
into cyclic textures using our new cyclic texture design
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Fig. 8. Deformed textures using our completion based design method. The first row is the small input texture, the others are the deformed
textures; Input size: 268×230; O5 mm
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technique. Here, the width of overlapping region is set as
mh = mv = 50.

Figure 7 demonstrates another interesting application
of our technique, namely texture synthesis from multi-
ple source textures. In Fig. 7, six 144×144 input textures
are used to create the output textures of size 360 ×360
(Fig. 7(b), (c), (d), (e), (f)). Those textures are also the re-
sults of our cyclic texture synthesis technique and hence
can be used for seamless tiling.

All textures shown in this paper are created full au-
tomatically, although the users are allowed to control the
extent of the deformation with the parameters discussed in
Sect. 3.3. The inpainting patch size is chosen as 32×32.

5 Conclusions and future work

We have presented a novel completion-based approach for
designing realistic textures from sample textures. A large
advantage of our approach over most existing texture syn-
thesis techniques lies in its capability to create a wide
variety of very natural textures from a single small sam-
ple texture. The good stochastic property of the resulting
textures is achieved through applying chaotically defined
deformation operations to the major texture elements ex-

tracted from the sample texture, and the local continuity
of texture patterns are ensured by employing the newest
image completion and gradient-based Poisson optimiza-
tion techniques. We have also presented a new technique
for quickly processing an arbitrary texture to satisfy pe-
riodic boundary conditions so that it can be directly used
for seamless tiling in some special applications, such as
terrain texture map editing in video games and virtual
agent environments. However, the broken texture elements
will occur when the completion stage cannot inpaint the
hole layers ideally or Poisson optimization cannot smooth
seamed patches perfectly. Our experimental results also
demonstrate that the proposed technique can be applied to
other applications such as texture synthesis from multiple
sources.

Currently, we are extending our approach from still
texture design to video texture [28] design. The difficulties
in designing video textures through deformation include
maintaining the consistency of the deformed textures be-
tween adjacent frames.
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